
Flynn classification

S = single, M = multiple, I = instruction (stream), D = data (stream)

SISD MISD

SIMD MIMD

Basic concepts

Def. The speedup of an algorithm is

Sp =
T ∗

Tp
=

time for best serial algorithm
parallel time with p processors

≈ T1

Tp
.

Def. The efficiency of an algorithm is Ep =
Sp
p

.

Amdahl’s law: if a program consists of two parts, one that is inherently sequential
and one that is fully parallelizable, and if the inherently sequential part consumes
a fraction f of the total computation, then the speedup is limited by

Sp ≤
1

f + (1− f)/p
≤ 1

f
, for all p.

2 Virginia Tech

PMS notation

P processor, including instruction interpretation and execution

M memory, registers, cache, secondary storage

S switch, often implicit in line junction

L link, often just a line

T transducer, I/O device

K controller, generates microsteps for single operations applied externally

D data processing, arithmetic, any transformation of data

C computer, complete system

3 Virginia Tech

Distributed memory SIMD computer

 network)

S(interleave) Pc(control unit) M(working registers)

D(arith. unit) D D D

M M M M

S(interconnect

4 Virginia Tech

Shared memory SIMD computer

M

S(interleave) Pc(control unit) M(working registers)

M M M

S(alignment network)

D DDD

5 Virginia Tech

Shared memory multiprocessor

M

P

P

P

S

M

M

6 Virginia Tech

Message passing multiprocessor

M

M P S P M

P

7 Virginia Tech

Shared memory multiprocessor with private memories

�� ��

�� �� �	

�
�

�
�

�
�

�
�

�� �� ��

��

M

TT T

K K K

S

P--M.privP--M.priv P--M.priv

S

M M

8 Virginia Tech

Interconnected shared memory clusters

��
�
��
�

��
�
��
�

�� �� 	

��
�
��
�

�
��
�
��
�

��
�
��
�

��
��
�
��
�

��
��
�
��
�

��

��
��
�
 �

!"

#�
#
$�
$

%�
%
&�
&

'�
'
(�
(

)�
)
*�
*

+�
+
,�
,

-�
-
.�
.

/0 12 34

5�
5
6�
6

7�
7
8�
8

9�
9
:�
:

;< => ?@

A�
A
B�
B

M

TT T

K K K

P

P

P

S

M

M

M

ST K

T K

T K

K T

K T

K T

PPP

S

M M M

PPP

S

M M

9 Virginia Tech

SIMD algorithms—linear recurrence

An mth order linear recurrence R(n,m), where m ≤ n− 1, is

xi = 0, i ≤ 0,

xi = ci +
i−1∑

j=i−m
aijxj, 1 ≤ i ≤ n.

The case m = n− 1 is called a general linear recurrence. SIMD code for a general
linear recurrence is

x[i] := c[i], (1 ≤ i ≤ n); (column sweep)

for j := 1 step 1 until n− 1

x[i] := x[i] + a[i, j] ∗ x[j], (j + 1 ≤ i ≤ min(j +m,n));

10 Virginia Tech

SIMD algorithms—matrix-matrix multiply

SIMD matrix-matrix multiply (outer product version):

for i := 1 step 1 until N

for j := 1 step 1 until N

c[i, j] := 0;

for k := 1 step 1 until N (sum of N N ×N matrices)

for i := 1 step 1 until N

for j := 1 step 1 until N

c[i, j] := c[i, j] + a[i, k]× b[k, j];

11 Virginia Tech

Shared vs. distributed memory

Task Shared memory Message passing

interprocessor memory read/write software send/receive
communication

memory read/write long and variable only to private memory
latency

messages through single memory word long, aggregated
switch

collision avoidance request randomization global scheduling of
messages

12 Virginia Tech

Multiprocessor recurrence solver

Here is a naive (and incorrect) parallel program for a shared memory (or implicit
message passing) multiprocessor:

shared n, a[n, n], x[n], c[n];

private i, j;

for i := 1 step 1 until n− 1 fork DOROW;

i := n; /* Initial process handles i = n. */

DOROW: x[i] := c[i];

for j := 1 step 1 until i− 1

x[i] := x[i] + a[i, j] ∗ x[j];

join n;

Synchronization has two flavors: control-based involves progress of other
processes/threads, data-based involves status of some variable.

13 Virginia Tech

Parallel programming concepts

Producer/consumer synchronization associates a full/empty state with each
variable and uses synchronized read and write operations that operate only when
the variable has a specified state.

Syntax: produce <shared variable> := <expression>

consume <shared variable> into <private variable>

copy <shared variable> into <private variable>

void <shared variable>

Atomicity: an atomic operation takes place indivisibly with respect to other parallel
operations. Atomic operations can be achieved by mutual exclusion; such a region
of code is called a critical section.

Syntax: critical

<code>

end critical

14 Virginia Tech

Recurrence solver producer/consumer
synchronized on x[j]

procedure dorow(value i, done, n, a, x, c)

shared n, a[n, n], x[n], c[n], done;

private i, j, sum, priv;

sum = c[i];

for j := 1 step 1 until i− 1

{copy x[j] into priv; /* Get x[j] when available. */

sum := sum+ a[i, j] ∗ priv; }
produce x[i] := sum; /* Make x[i] available to others. */

done := done− 1;

return;

end procedure

15 Virginia Tech

Recurrence solver producer/consumer
synchronized on x[j] (continued)

shared n, a[n, n], x[n], c[n], done;

private i;

done := n;

for i := 1 step 1 until n− 1

{void x[i];

create dorow(i, done, n, a, x, c); } /* Create n− 1 procedures. */

i := n;

void x[i];

call dorow(i, done, n, a, x, c); /* Call the nth one. */

while (done 6= 0) ; /* Loop until all procedure instances finish. */

<code to use x[]>

16 Virginia Tech

Final, synchronized, multiprocessor recurrence solver

procedure dorow(value i, done, n, a, x, c)

shared n, a[n, n], x[n], c[n], done;

private i, j, sum, priv;

sum = c[i];

for j := 1 step 1 until i− 1

{copy x[j] into priv;

sum := sum+ a[i, j] ∗ priv; }
produce x[i] := sum;

critical /* Lock out other processes. */

done := done− 1; /* Decrement shared done. */

end critical /* Allow other processes. */

return;

end procedure

17 Virginia Tech

Final, synchronized, multiprocessor recurrence solver
(continued)

shared n, a[n, n], x[n], c[n], done;

private i;

done := n;

for i := 1 step 1 until n− 1

{void x[i];

create dorow(i, done, n, a, x, c); }
i := n;

void x[i];

call dorow(i, done, n, a, x, c);

while (done 6= 0) ;

<code to use x[]>

18 Virginia Tech

Loop scheduling algorithms

Consider the FOR loop: forall i := lwr step stp until upr

shared lwr, stp, upr, np; /* Block mapping. */

private i, lb, ub, me;
/* Compute private lower and upper bounds from lwr, upr, stp, process number
me, and number np of processes. */

for i := lb step stp until ub
〈loop body(i)〉;

shared lwr, stp, upr, np; /* Cyclic mapping. */

private i, me;
for i := lwr +me ∗ stp step np ∗ stp until upr
〈loop body(i)〉;

19 Virginia Tech

Loop scheduling algorithms
(continued)

shared lwr, stp, upr, np, isync; /* Self-scheduling code for each process. */
private i;
barrier

void isync;
produce isync := lwr;

end barrier
while (true)
begin

consume isync into i;
if (i > upr) then
{produce isync := i;
break;} /* End while loop. */

else
{produce isync := i+ stp;
〈loop body(i)〉; }

end

20 Virginia Tech

Distributed memory multiprocessors
The type of locality required for good distributed memory multiprocessor
performance is called partitionable locality. This is often achieved in real problems
by physical domain decomposition. (Large area/perimeter or volume/surface ratios
are desirable.)

Example of precedence imposed by interprocess communication:

and receive blocking)

C B

D

A

C B

D

Only receive blocking Process rendezvous (both send

A

D

A

R

S

R B

C

S R

S

21 Virginia Tech

