Flynn classification

S = single, M = multiple, I = instruction (stream), D = data (stream)

SISD	MISD
SIMD	MIMD

Basic concepts

Def. The *speedup* of an algorithm is

$$S_p = \frac{T^*}{T_p} = \frac{\text{time for best serial algorithm}}{\text{parallel time with } p \text{ processors}} \approx \frac{T_1}{T_p}.$$

Def. The *efficiency* of an algorithm is $E_p = \frac{S_p}{p}$.

Amdahl's law: if a program consists of two parts, one that is inherently sequential and one that is fully parallelizable, and if the inherently sequential part consumes a fraction f of the total computation, then the speedup is limited by

$$S_p \le \frac{1}{f + (1 - f)/p} \le \frac{1}{f}, \qquad \text{for all } p$$

Virginia Tech

PMS notation

- P processor, including instruction interpretation and execution
- M memory, registers, cache, secondary storage
- S switch, often implicit in line junction
- L link, often just a line
- T transducer, I/O device
- K controller, generates microsteps for single operations applied externally
- D data processing, arithmetic, any transformation of data
- C computer, complete system

Distributed memory SIMD computer

Shared memory SIMD computer

Shared memory multiprocessor

Message passing multiprocessor

Shared memory multiprocessor with private memories

Interconnected shared memory clusters

Virginia Tech

SIMD algorithms—linear recurrence

An *m*th order linear recurrence R(n,m), where $m \leq n-1$, is

$$x_i = 0, \qquad i \le 0,$$

 $x_i = c_i + \sum_{j=i-m}^{i-1} a_{ij} x_j, \qquad 1 \le i \le n.$

The case m = n - 1 is called a *general linear recurrence*. SIMD code for a general linear recurrence is

SIMD algorithms—matrix-matrix multiply

SIMD matrix-matrix multiply (outer product version):

```
for i := 1 step 1 until N

for j := 1 step 1 until N

c[i, j] := 0;

for k := 1 step 1 until N (sum of N N × N matrices)

for i := 1 step 1 until N

for j := 1 step 1 until N

c[i, j] := c[i, j] + a[i, k] \times b[k, j];
```

Shared vs. distributed memory

Task	Shared memory	Message passing
interprocessor communication	memory read/write	software send/receive
memory read/write	long and variable latency	only to private memory
messages through switch	single memory word	long, aggregated
collision avoidance	request randomization	global scheduling of messages

Multiprocessor recurrence solver

Here is a naive (and incorrect) parallel program for a shared memory (or implicit message passing) multiprocessor:

```
shared n, a[n, n], x[n], c[n];

private i, j;

for i := 1 step 1 until n - 1 fork DOROW;

i := n; /* Initial process handles i = n. */

DOROW: x[i] := c[i];

for j := 1 step 1 until i - 1

x[i] := x[i] + a[i, j] * x[j];

join n;
```

Synchronization has two flavors: *control-based* involves progress of other processes/threads, *data-based* involves status of some variable.

Parallel programming concepts

Producer/consumer synchronization associates a full/empty state with each variable and uses synchronized read and write operations that operate only when the variable has a specified state.

Syntax: produce <shared variable> := <expression> consume <shared variable> into <private variable> copy <shared variable> into <private variable> void <shared variable>

Atomicity: an atomic operation takes place indivisibly with respect to other parallel operations. Atomic operations can be achieved by *mutual exclusion*; such a region of code is called a *critical section*.

Syntax: critical

<code>

end critical

Recurrence solver producer/consumer synchronized on x[j]

```
procedure dorow(value i, done, n, a, x, c)

shared n, a[n, n], x[n], c[n], done;

private i, j, sum, priv;

sum = c[i];

for j := 1 step 1 until i - 1

{copy x[j] into priv; /* Get x[j] when available. */

sum := sum + a[i, j] * priv; }

produce x[i] := sum; /* Make x[i] available to others. */

done := done - 1;

return;

end procedure
```

Recurrence solver producer/consumer synchronized on x[j] (continued)

```
shared n, a[n, n], x[n], c[n], done;

private i;

done := n;

for i := 1 step 1 until n - 1

{void x[i];

create dorow(i, done, n, a, x, c); } /* Create n - 1 procedures. */

i := n;

void x[i];

call dorow(i, done, n, a, x, c); /* Call the nth one. */

while (done \neq 0) ; /* Loop until all procedure instances finish. */

<code to use x[] >
```

Final, synchronized, multiprocessor recurrence solver

```
procedure dorow(value i, done, n, a, x, c)
           shared n, a[n, n], x[n], c[n], done;
           private i, j, sum, priv;
           sum = c[i];
           for j := 1 step 1 until i - 1
               {copy x[j] into priv;
                sum := sum + a[i, j] * priv; \}
           produce x[i] := sum;
                       /* Lock out other processes. */
           critical
               done := done - 1; /* Decrement shared done. */
           end critical /* Allow other processes. */
           return;
end procedure
```

Final, synchronized, multiprocessor recurrence solver (continued)

```
shared n, a[n, n], x[n], c[n], done;

private i;

done := n;

for i := 1 step 1 until n - 1

{void x[i];

create dorow(i, done, n, a, x, c); }

i := n;

void x[i];

call dorow(i, done, n, a, x, c);

while (done \neq 0) ;

<code to use x[ ]>
```

Loop scheduling algorithms

```
Consider the FOR loop: forall i := lwr step stp until upr
```

```
shared lwr, stp, upr, np; /* Block mapping. */

private i, lb, ub, me;

/* Compute private lower and upper bounds from lwr, upr, stp, process number

me, and number np of processes. */

for i := lb step stp until ub

\langle \text{loop body}(i) \rangle;
```

shared lwr, stp, upr, np; /* Cyclic mapping. */ private i, me; for i := lwr + me * stp step np * stp until upr $\langle loop body(i) \rangle$;

Loop scheduling algorithms (continued)

```
shared lwr, stp, upr, np, isync; /* Self-scheduling code for each process. */
private i;
barrier
       void isync;
       produce isync := lwr;
end barrier
while (true)
begin
      consume isync into i;
      if (i > upr) then
        {produce isync := i;
         break;} /* End while loop. */
      else
        {produce isync := i + stp;
             \langle \mathsf{loop body}(i) \rangle; \}
```

end

Distributed memory multiprocessors

The type of locality required for good distributed memory multiprocessor performance is called *partitionable locality*. This is often achieved in real problems by physical *domain decomposition*. (Large area/perimeter or volume/surface ratios are desirable.)

