

Embracing Agile Development of
Usable Software Systems

Abstract Jason Chong Lee

Center for Human-Computer

Interaction and Department of

Computer Science

Virginia Tech

Blacksburg, VA 24061-0106

chonglee@vt.edu

The interdisciplinary nature of system design can lead
to communication problems between developers in
different fields. This is becoming evident in the
emerging field of agile software development which has
largely ignored or been unable to address usability.
This work presents a development process and toolset
that draws on extreme programming—an agile software
development process, and scenario-based design—a
usability engineering process. This approach will allow
developers in both fields to better communicate and
work together to efficiently design usable systems.

Keywords
extreme programming, scenario-based design, agile
development, usability, central design record

ACM Classification Keywords
H5.2. Information Interfaces and Presentation: User
Interfaces – Evaluation/Methodology, Theory and
Methods; D2.2 Software Engineering: Design Tools and
Techniques – Evolutionary prototyping, User interfaces

Copyright is held by the author/owner(s).

CHI 2006, April 22–27, 2006, Montréal, Québec, Canada.

ACM 1-59593-298-4/06/0004.

Introduction
The growing importance of computing systems in our
daily lives is reflected by the reality of the multi-
disciplinary nature of system design. One critical

example of the problems that can arise from this is the
disconnect between software engineers and usability
engineers. Software engineers focus on the design,
implementation and maintenance of software systems,
but often marginalize the design of the human-
computer interfaces through which those systems are
used. On the other hand, usability engineers focus on
developing systems so end-users can use them
effectively but do not account for the underlying system
design, implementation or market-driven forces that
guide much of software engineering.

This research will address the problems associated with
multi-disciplinary system design—focusing specifically
on software and usability engineering—by developing a
design process that supports the effective creation of
usable software-based systems through common
practices and toolsets derived from both areas. This
work draws from extreme programming (XP), an agile
software development process, and claims-centric
scenario-based design (SBD), a usability engineering
process. Although the two processes emerged from
different fields, they share similar motivations and the
combination of the two will result in a process that
supports team collaboration in effectively developing
usable computer systems.

Need for Agile Usability
Many existing software engineering processes are
unable to account for continuous requirements and
system changes requested throughout the development
process. Agile software engineering methodologies
have emerged in the last decade to address this
shortcoming. Extreme programming, one of the most
widely practiced agile methodologies, eschews large
upfront requirements and design processes in favor of

an incremental, evolutionary process [1]. It is
structured to efficiently handle emerging and changing
requirements through active communication among
project stakeholders, simple design, continuous
feedback from clients and from testing, courage
through a willingness to address any needed changes
and respect for team members.

One shortcoming with current agile software
development methods is that they do not address
usability [2]. Although this is an acknowledged
shortcoming, it is not clear how to incorporate usability
into such processes without sacrificing the benefits
provided by agile software development. Two primary
issues this work will address are:

• How can interaction architecture issues be
addressed in an agile development framework?

• How can usability evaluations be conducted in an
agile framework without bottlenecking the
development process?

The first question has been addressed by combining a
design representation based process from usability
engineering to the extreme programming framework.
The proposed work will address the second question.

Scenario-Based Design to the Extreme
Interaction architecture level issues are addressed by
incorporating my past work on design representations
in scenario-based design into the extreme
programming framework. Scenario-based design is an
iterative, user-centered process—qualities that are
shared by many agile methodologies including XP. Our
adaptation of scenario-based design is supported by
LINK-UP, an integrated design environment and

knowledge management system [5]. A core feature of
LINK-UP is the central design record (CDR), a design
representation that makes explicit where and how
handoffs occur in the development process and
highlights design decisions that need reconsideration
during subsequent development iterations [4]. The
CDR consists of an organized set of scenarios
describing different usage situations, claims which
highlight positive and negative effects of specific design
features, and overall design goals. In several studies,
the CDR was found to help usability designers to
iteratively improve designs through targeted feedback
and support communication of design intentions to
project stakeholders [3], [4].

Pilot Case Study Results. The purpose of the pilot
study was to evaluate how effectively the CDR allowed
developers to address interaction architecture issues in
an agile development environment. Seven
undergraduate students worked in teams of two and
three to develop applications on handheld devices.
Students iteratively developed CDR representations of
their designs within the existing extreme programming
framework to address usability issues. Extreme
programming includes accelerated design sessions
known as ‘planning games’ to determine key features
to support and to identify and assign development
tasks [1]. The CDR was initially useful to the student
developers in defining the task flow and specific
interface features. Both new claims and existing claims
from LINK-UP were used to highlight specific design
tradeoffs. However in subsequent iterations,
developers did not use the CDR and instead focused
their efforts on the functioning system prototype.
Although this is in-line with the XP concept of design

representations as transient artifacts, much of the
usability benefits of the CDR and LINK-UP were lost.

Proposed Work: Agile Usability Evaluation
In the pilot study, the utility of the CDR diminished
because of the lack of a clear connection between
interface features described and usability evaluations
that were conducted on it. A key addition to the
process will be to define how this connection will be
made to support iterative enhancement to the
interaction architecture based on usability evaluations.
By extending the concept of test-driven development to
user interface testing and integrating it with the CDR
design representation, developers will be able to
validate system usability and iteratively enhance
designs without requiring extensive up-front
requirements analysis or interaction architecture
design. Rather, requirements analysis will proceed
hand-in-hand with interface design as requirements
emerge and evolve.

One of the key concepts of extreme programming is
test driven development [1]. When implementing
features, developers first write test cases to validate
the functionality of new code classes and methods
before beginning any actual implementation. This
growing suite of tests is used to verify code
functionality. Only code that passes the entire test
suite can be added to production code. This allows
developers to make code modifications based on
changing requirements while ensuring that all other
parts of the code still function correctly. This process
gives developers continuous feedback and allows them
to reliably make changes to code at all stages of
development. A similar process could work with
respect to usability evaluations while still supporting

overall architecture views and consistency through the
CDR. The organization of the CDR naturally supports
both high level system views (through core claims and
scenarios) and feature-level views (through information
and interaction claims). Developers can leverage this
view to develop usability tests to validate specific
claims in the CDR. As developers associate usability
tests with the claims in the CDR, they will build up a
test suite analogous to the one used to validate
program code. Both analytic and empirical evaluations
from the evolving test suite will validate the features
defined by each claim or identify areas for improvement
in the interface that have to be made.

One important difference between the usability test
suite and the code test suite is that the usability test
suite cannot be completely automated since many
evaluation techniques require participant feedback and
data. As the design progresses, the number of claims
and associated usability tests that need to be run would
become difficult to manage in an agile framework. One
way to mitigate this problem will be to use the
relationships between the claims to identify which areas
of the interface need to be evaluated in the current
iteration [6]. A second way to mitigate this problem
will be to leverage discount usability methods to
validate claims at each iteration. These methods would
be easier to run in short time-frames while providing
useful usability feedback. Empirical evaluations, which
are often more time and resource intensive, could then
be spaced out between several iterations as necessary.

Key Contributions
Integrating usability evaluations into the agile
development process by leveraging the CDR will allow
developers to validate the quality of the system

interface in an efficient manner using a design
representation-based development process. The
proposed solution will make the following contributions:

• Allow developers who use agile software
development processes to efficiently address
usability issues

• Support collaboration between software engineers
and usability specialists by facilitating
communication of design intent and rationale

• Support efficient design representation-based
development by leveraging techniques from agile
software development

References
[1] Beck, K. Extreme Programming Explained:
Embrace Change. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, 1999.

[2] Constantine, L. Process Agility and Software
Usability. Software Development 9, 5 (2001).

[3] Lee, J. C., Chewar, C. M., and McCrickard, D. S.
Image is Everything: Advancing HCI Knowledge and
Interface Design Using the System Image. In Proc.
ACMSE 2005, Vol. 2, 376-381.

[4] Lee, J. C., Wahid, S., Chewar, C. M., Congleton, B.,
and McCrickard, D. S. Spiraling Toward Usability: An
Integrated Design Environment and Management
System. Technical Report TR-05-15, Computer Science,
Virginia Tech, 2005. (Submitted to Intl. Jour. of ITSE)

[5] Rosson, M. B. and Carroll, J.M. Usability
Engineering: Scenario-Based Development of Human-
Computer Interaction. Morgan Kaufman, New York, NY,
2002.

[6] Wahid, S., Allgood, C. F., Chewar, C. M., and
McCrickard, D. S. Entering the Heart of Design:
Relationships for Tracing Claim Evolution. In Proc. SEKE
2004, 167-172.

	Copyright is held by the author/owner(s).
	CHI 2006, April 22–27, 2006, Montréal, Québec, Canada.
	Abstract
	Keywords
	ACM Classification Keywords
	Introduction
	Need for Agile Usability
	Scenario-Based Design to the Extreme
	References

