
Are Cognitive Architectures Mature Enough to Evaluate Notification Systems?

Douglas G. Turnbull, C. M. Chewar, and D. Scott McCrickard
Center for Human-Computer Interaction and Department of Computer Science

Virginia Polytechnic Institute and State University (Virginia Tech)
Blacksburg, VA 24061-0106

dturnbul@vt.edu; {cchewar, mccricks}@cs.vt.edu

Abstract
This study investigates the use of cognitive architectures for
usability and software engineering of notification system
user interfaces. These interfaces, which are special in that
they are used in a divided-attention situation, require
careful study of multi-tasking support of the information
design. Cognitive architectures appear promising for this
type of research, since they attempt to model human
information processing characteristics related to system
events. Three versions of cognitive architectures are
compared according to criteria that would support
research of notification systems. Data is gathered from
empirical observation and is used to draw conclusions
about suitability for modeling notification interfaces (and
thus reducing the expense of user testing). The findings
show that no system is ideal, but a combination of features
from each of the three systems may be an ideal future
solution.

Keywords: human-computer interaction, ACT-R, Soar,
EPIC, dual-task, information display, empirical study

1. Introduction

Although there have been many challenges, usability
testing continues to dominate interface evaluation. The
typical setup calls for gathering data and feedback from
participants as they interact with interfaces in a controlled
computing environment. However, testing sufficient
numbers of the appropriate kinds of participants
bottlenecks the software development process. Because of
this, challenges, work-arounds, or modifications to pure
usability testing are not rare [10, 14]. A recently maturing
sector of cognitive science, cognitive architectures, could
fulfill the role of usurper once-and-for-all. Cognitive
architectures such as ACT-R, Soar, and EPIC, much like
computer architectures, specify the mechanisms and
constraints of human information processing, including
theories of memory, attention, perception, and action.
Implementations contain perceptual-motor systems
designed specifically for interaction with graphical user

interfaces, potentially giving interface evaluators cheap,
instantaneous methods of extracting volumes of data about
usability in a completely managed environment. Modeling
the human side of human-computer interaction could
partially or completely eliminate the need for human
participants in usability evaluation.

A specific set of tools, notification systems, provides an
interesting challenge for the “cognitive architecture
methodology.” Notification systems are a special type of
human-computer interface attempting to deliver current,
important information to the user in an efficient and
effective manner [8, 9]. Examples include stock tickers,
instant messengers, and email tool-bar notifications.
Notification system designers build systems with a user’s
complete task environment in mind. For example, a
designer could argue that users of a notification system
would feel annoyed, if while immersed in an important
task, they are notified with a “pop up” window. On the
other hand if the notification is very important, and the user
is not occupied perhaps a pop-up window would be
appropriate. Many methods alerting users of information,
including pop-up windows, sound, secondary displays and
real-world interfaces are deployed as appropriate based on
the expected or specified task-environment of the user.

Task environments encase an enormous variety of tasks.
Tasks can be described as “primary,” the main focus of a
user’s attention, or “secondary,” tasks that demand
occasional or no attention. A distinction also exists
originating with Norman between complex tasks, described
with a deep and wide decision tree, and shallow tasks,
described with a narrower and shallower tree [11].
Notification systems exist as complex, simple, primary, or
secondary tasks, and everything in between. A well
designed notification system allows itself to become
secondary while still alerting the user of needed
information in a manner conducive with its complexity and
secondary status. Therefore, for cognitive architectures of
be effective, user behavior cannot simply progress linearly
with a single task, but must be prepared for sudden or
subtle shifts of cognitive resources to a set of tasks as
simple as closing a “pop-up” and as complex as playing an
engaging chess match.

2003 International Conference on Software Engineering Research and Practice (SERP 2003),
Las Vegas NV, June 2003.

As the study of Notification Systems becomes an
increasingly important topic within HCI, it is important to
assess the suitability of current cognitive architectures. It is
hoped that such results can help steer the development of
these architectures so that they can positively impact
notification system research. This study proceeds along two
paths. First we inquire about the practicality of applying
cognitive architectures to any Human-Computer Interaction
domain. Architectures must be easy to install and learn. A
brief survey of HCI literature is done to examine
precedents for using cognitive architectures.

2. Research Questions

Three questions provide a test to establish whether task
interaction is properly modeled by the architectures. These
questions can be thought to probe the cognitive
architecture’s ability to handle the spectrum of notification
system assertiveness.

First, the most assertive: Does the architecture properly
handle forcible interruptions of one task by another? An
example of this phenomenon is seen when a pop-up
window appears in foveal vision, forcibly diverting
attention to itself.

Second: How much attention must a cognitive
architecture apply to a peripheral stimulus to perceive and
choose to react to it? A secondary task that gently asserts
itself peripherally gives users a choice to ignore or attend to
the secondary task. An email tool-bar notification allows
users to choose whether to divert attention to their email
client, or continue with their ongoing task.

Third: Can the architecture comprehend and learn
information occurring pre-attentively? Ambient displays
and many real-world interfaces maintain a constant
peripheral stream of information. The goal is to maintain a
level of comprehension over a period of time that leaves, at
the least, a “feel” for ongoing events on in long-term
memory. Architectures must allow memory to be pre-
attentively altered at a perceptual level while gradually
establishing links between stimulus and meaning on a
higher, long-term level of understanding.

Next, we discuss the methodology used to asses the
ACT-R, Soar and EPIC systems with respect to these
questions.

3. Methodology

These questions, combined with the aforementioned
practical concerns of installation, learnability, and HCI
literature presence correspond to six criteria that are
considered. In considering each criteria, we assign
acceptability points on a five point scale: five being
completely acceptable and one being completely
unacceptable. Using this scale is clearly subjective, it

should be considered as both our educated opinions as well
as extensive user feedback. The real substance of this study
lies not in the ratings but in the experienced chronicled
here—giving both architecture designers and HCI
practitioners guidance on the practical and theoretical
capabilities of cognitive architectures.

The basic methods for approaching each criteria were
the same. Installations were generally given a two-hour
time limit. However, if we felt progress could still be made
after two hours, installation continued until success or until
all avenues had been exhausted. We also judged the
learnability of a system by what could be learned within a
two hour period by an advanced HCI student with a strong
computer science background. Resources obtained from the
architecture’s websites1 formed the focus of the learning
sources. Reviewing the HCI literature revolved around
analyzing the results from the ACM® Web Portal using the
keywords <cognitive architecture> AND HCI (e.g. ACT-R
and HCI). Beneficial results either evaluate an interface or
extend HCI theory with a cognitive architecture. To answer
the aforementioned concerns about modeling complex task
interaction, documentation by the system’s authors referred
to as “primary literature” is queried first, with secondary
sources being called upon when the primary literature fails
to provide answers.

4. Observations and Results

This section presents the details related to the empirical
observations achieved using each cognitive architecture.
Most discussion and conclusions are saved for the next
section.

4.1. Cognitive Architectures in HCI Literature

HCI practitioners use ACT-R and Soar similarly. Both

architectures are used to explore how users reason through
interfaces. Typically both are used together to confirm one-
another. Rieman et al implement ACT-R and Soar models
to support consistency in interface design [13]. Peck and
John account for 90% of user browsing behavior in an “on-
line help browser” [12]. These results, however, were scant.
Out of a combined twenty-one results for ACT-R and
twenty-nine for Soar (with much overlap) only four
involved the use of ACT-R and Soar for theory extension.
Many of the other results were workshops of studies
promoting the use of cognitive architectures in HCI. The
results, while not prolific, point to a small precedent of
using ACT-R and Soar to make theoretical points.

1 Architecture websites: ACT-R: http://act-r.psy.cmu.edu/,;

EPIC: http://www.eecs.umich.edu/~kieras/epic.html,
Soar: http://ai.eecs.umich.edu/soar/)

Kieras and Meyer dominate EPIC’s literature. Each of their
papers develops the capabilities of EPIC further—always
with the disclaimer that EPIC remains a research system [6,
7]. Extending HCI theory is no the goal of these works.
Hornof and Kieras use EPIC to show how users anticipate
the location of items in a menu [4]. The authors themselves
admit that menus have been heavily studied in the field,
hence they merely demonstrate EPIC’s ability to function
within an established framework. Other studies include an
attempt to model the multi-modal behavior of telephone
operators. Out of the twenty-five results, none of the
studies involve expansion of HCI theory. The results are
more scant than the ACT-R and Soar results.

4.2. System Installation and Learnability

Installation ease varied drastically from architecture to
architecture. ACT-R came packaged as a “zip” file
containing a win32 installation executable. On execution,
an easy to follow “wizard” interface guided installation. An
ACT-R environment was up and running in no less than
twenty minutes after beginning the download. Installing
Soar, however was much more trouble. We exhausted the
two hours attempting to install Soar. After going down
several blind alleys and being forced to back-track, we
discovered that Soar’s installation depends heavily on the
installed Tcl/Tk version (a prerequisite for Soar). After
upgrading to Tcl/Tk 8.4, installation was successful. EPIC
was only partially installable. EPIC comes packaged as
LISP source code. The authors have yet to document an
installation procedure and do not provide any method for
testing installation.

Similarly, ACT-R and Soar provided extensive tutorials
on their websites, while EPIC had none whatsoever. ACT-
R’s installation includes a trainer environment and example
modules which correspond to examples in one of nine
tutorial units. The first unit prints to approximately twenty
pages, and took the entire two hours to complete. The
tutorials target an audience in psychology, which can be a
hindrance for computing professionals. For example, the
first tutorial spent considerable space explaining a concept
akin to “scope.” The tutorial instructs based on an earlier
version of the environment, meaning some instructions are
faulty. Overall, ACT-R’s tutorials come in easy to swallow
packages which fruitfully combine theory with practice.

Soar’s tutorials come in four parts, each prints to about
sixty to eighty pages. Two hours was spent to the first third
of the first tutorial. Each tutorial focuses on a specific
problem. In the first tutorial the student must devise simple
strategies for a “pac-man®” style game called “Eaters.” To
work with Eaters examples, the tutorial requires an
additional piece of software called Visual Soar. The
experience, however, was very fun, engaging and easy.

4.3. Examining Architecture Characteristics

ACT-R, EPIC, and Soar share several cognitive
structures. Cognitive architectures divide elements of
human memory between declarative memory, descriptive
memory about things (what a bike is) and procedural
memory, methods for doing things (how to ride a bike).
While the names assigned to units of declarative memory
change per architecture, elements of procedural memory
are almost always referred to as production rules or as
abbreviated productions. Production rules take their name
from their syntax which is of the form: If some declarative
memory precondition is met, then alter declarative
memory. Cognitive architectures execute by repeatedly
selecting production rule(s) whose preconditions are met
then executing the selected rule(s).

To develop models of cognitive phenomena, a modeler
specifies the production rules, the structures of declarative
memory, and declarative memory’s initial state. Models are
tested against empirical data on the phenomena and refined.
Recall the three criteria: (1) Does the architecture properly
handle forcible interruptions of one task by another? (2)
How much attention must a cognitive architecture apply to
a peripheral stimulus to perceive and choose to react to it?
and (3) Can the architecture comprehend and learn
information occurring pre-attentively? Understanding the
specific constraints of each architecture allows a closer
examination of its ability to capture user behavior within
the task environment.

4.3.1. ACT-R. In addition to production rules and chunks,
ACT-R’s unit of declarative memory, ACT-R implements
goals – chunks that encapsulate an end-state of declarative
memory. Since goals are chunks, production rules may
create subgoals to establish a prerequisite state of
declarative memory. For example, if ACT-R aims to obtain
a college degree, a natural subgoal might be to pass
freshman calculus. ACT-R maintains goal-subgoal
relationships using a goal stack. That is, ACT-R pushes
new subgoals on top of their parent goals much like a
computer program’s run-time stack pushes called
procedures on top. ACT-R stands out by enforcing the
serial execution of production rules. Productions are
strategically selected based on past experience using that
production rule with the current goal [1].

Does the architecture properly handle forcible
interruptions of one task by another? ACT-R’s goal stack
setup obviates concern about whether a secondary,
unrelated goal can interrupt the ongoing goal-stack.
Anderson and Lebiere address this problem. A production
rule could create a subgoal or change the current goal to
reflect interruptions of one task by another. The example
they give involves escaping a fire:

 IF the goal is to do any task

 AND one hears “FIRE!

 Then escape the fire.

However, this solution comes with a warning:

 Cognitive Psychology has tended not to be in the
 business of creating such emergency interrupts
 and studying the cognition that results. Therefore,
 we cannot say that ACT-R’s attention mechanism
 is the right mechanism for modeling such
 interrupt handling because there is no data with
 which to assess it. All we can say is that there is
 no inherit contradiction between such interrupt
 handling and ACT-R goal structures [1].

Nevertheless, Gray and Altman present an alternate
argument. Gray and Altman discuss cognitive strategies of
memory management during task switches and develop an
ACT-R model that strategically coordinates the activation
of task-specific memory [2]. This study, unfortunately,
stands alone in the literature. Moreover, Gray and Altman’s
study sticks to two related and simple tasks. More research
is needed before it can be said whether or not ACT-R can
handle abrupt and forced task-switching—an essential
characteristic for investigating usability questions of
notification systems.

How much attention must a cognitive architecture
apply to a peripheral stimulus to perceive and choose to
react to it? In order to respond to a stimulus pre-
attentively, ACT-R must be able to select a production rule
based on knowledge about the periphery pre-attentively.
Production rules only test chunks from declarative memory.
Therefore any stimulus must arrive in declarative memory
for it to be testable. To get to declarative memory, attention
must be directed to objects in visual or auditory memory
via commands in a production rule’s execution side. For
example, an approaching fire would prompt the mind to
react, yet ACT-R would completely ignore the fire unless
attention was focused on it [1].

In addition, it is highly unlikely that ACT-R would
select production rules unrelated to the current goal. In
ACT-R, any production rule has an associated expected
gain relative to the current goal. The probability a
production rule will be selected is high when its expected
gain .is high ACT-R performs a cost-benefit analysis based
on the production rules past progress toward the goal [6]. In
short, there is a small probability that an unrelated
production, such as the “FIRE!” example above, would get
chosen when other productions remain. ACT-R stays
preoccupied with a good book instead of escaping a fire.

ACT-R completely ignores a secondary task prompting
reaction if the task is unrelated to the current goal.
Unfortunately this also severely limits this cognitive

architecture’s ability to represent many notification
systems.

Can the architecture comprehend and learn
information occurring pre-attentively? ACT-R creates a
distinction between chunks received about the world— “the
characters ‘3 + 4 = ?’ “—and chunks resulting from goal
completion— “the result of adding 3 and 4 was 7.” As the
same productions process the former type into the latter
type, the result becomes reinforced. Hence, when “3 + 4 =
?” are seen, ACT-R begins to respond with a result of “7”
quicker on each successful addition. In notification
systems, expert users comprehend visualizations similarly.
Immediate mappings between stimulus and meaning grow
with time. ACT-R provides extensive tools for increasing
knowledge via automatic encoding and understanding of
stimulus.

ACT-R fails, however, to support any pre-attentive
comprehension. Over time the knowledge gained by a
complex display might become automatic. However, a
production rule must still be fired to recognize the
previously solved problem. Productions are selected to
support the current goal with secondary, unrelated goals or
tasks remaining outside of consideration.

Therefore, while ACT-R fosters an interesting
environment with which to observe how users attentively
understand visualizations, it fails to support any parallelism
whatsoever for pre-attentive comprehension. Unfortunately,
notification systems that aim for pre-attentive
comprehension are designed within completely separate
constraints than those demanding complete attention,
voiding any benefits ACT-R might bring.

4.3.2. EPIC. EPIC represents cognition, perception, and
action using several interconnected processors executing in
parallel. Each processor corresponds to a component of
cognition, perception or action. For instance, the “cogp”
processor selects and executes production rules and
interacts with working memory, similarly the “auditory”
processor “listens” to audio input with write-only access to
memory. EPIC’s parallelism runs deep; all production rules
whose preconditions match are executed.

Does the architecture properly handle forcible
interruptions of one task by another? EPIC targets human
factors and engineering psychology problems. Kieras’s
EPIC site states:

 The most important issue that we are studying
 with EPIC is the nature of human multiple-task
 performance: these are situations in which a
 person is executing more than one task
 simultaneously, such as tuning a radio while
 driving a car, or making tactical decisions while
 tracking a specific target in a military fighter
 aircraft [7].

EPIC’s management of attention show this as well. EPIC
represents each task as a set of production rules with a
governing goal. EPIC can be built using an executive-
control mechanism, working by shifting the focus of
attention from one task’s governing goal to another
(synonymous to an operating system’s scheduler). Using
this framework, Kieras and Meyer modeled the results of
many classic multi-tasking experiments. Despite EPIC’s
success in this realm, Kieras and Meyer always remind
their audience that EPIC remains a research system not
ready for mass use. In addition, little has been published
since 1999 further chronicling the system [6].

How much attention must a cognitive architecture
apply to a peripheral stimulus to perceive and choose to
react to it? EPIC executes all production rules whose
prerequisites are met, allowing a decision to be made
without diverting from other decision-making resources.
The multiple actions are capable of reacting with one
response modality and not another. EPIC could easily swat
a fly with its left hand and continue to work ardently on a
paper. Attention, therefore, is extremely parallel and very
capable of handling reactive tasks [7].

In EPIC, each input channel (vision, auditory, tactile)
has its own processor. EPIC undergoes great lengths to
ensure that visual events outside of the fovea are
processed—allowing for reaction to events in the periphery.
The visual field is divided into several zones. As an object
moves closer to the fovea, more visual properties (location,
color, etc) become available. Noticed changes in properties
are reported to a visual perception processor that maintains
data structures within working memory. This data remains
available to EPIC’s cognitive processor. There is only one
drawback, however, there has not been enough detailed
research on which visual properties should be available at
what foveal distance [7].

In any case, EPIC provides a great window for
exploring these issues. Given an appropriate model of
vision, the reactive decision-making can be modeled while
not distracting from a primary task’s parallel cognition. It
remains to be seen to what extent modeled peripheral
reactions interfere impacts primary task cognition. In this
sense, EPIC seems too parallel, but promising for
notification systems research nevertheless.

Can the architecture comprehend and learn
information occurring pre-attentively? Amongst the EPIC
literature listed on EPIC’s site, nothing is available
describing EPIC’s theories of learning. Indeed, EPIC has
avoided intense single-task problem-solving cognition,
concentrating on multitasking simpler tasks. With EPIC
therefore, it seems perception-meaning mappings are
“hard-wired.”

However, EPIC attempts to provide adequate perceptual
systems. As mentioned above, EPIC keeps tabs on all

elements in vision, paying attention to what properties
should be knowable at each level of perception. Therefore,
testing a notification system for peripheral comprehension
might prove more fruitful with EPIC.

The final piece of the puzzle lies in the massively
parallel production rule selection and execution.
Knowledge gain can occur without any reallocation of
attention from the primary task. Productions to understand
the display and productions to continue performing the
primary task will fire simultaneously without interrupting
one-another. This by itself seems unrealistic. Added with
the concept of “hard-wiring” the display to EPIC and pre-
attentive comprehension seems very unrealistically
modeled. Seemingly removing both the potential for
primary task disruption and the integral learning process
does not allow for a fruitful exploration of comprehension.
At best, “hard-wired” comprehension can model the most
expert behavior, but only if the comprehension disrupts the
primary-task appropriately.

4.3.3. Soar. Soar differentiates itself from ACT-R and
EPIC by not allowing the right-side of production rules to
alter declarative memory. Instead, productions propose
operators which in turn act upon declarative memory. At
any iteration in Soar’s execution cycle, selected production
rules propose a set of operators. Soar analyzes the proposed
operators, considering intersecting proposals (two
productions propose the same operator) and past
experience. Unlike ACT-R, “goals” and “task” do not
correspond to explicit structures within the architecture and
may be represented multiple ways [3].

Does the architecture properly handle forcible
interruptions of one task by another? Soar avoids
formalizing goals and tasks. This leaves Soar open to a
variety of approaches to model sudden interruptions.
Unfortunately, nothing within the Soar primary literature
attacks this problem. The secondary literature also yields
very little results. Searching the “PsychInfo” database on
OVID for “Soar + cognitive” returned 11 results, none of
which were related to task switching, interruptions, or
multitasking. The same search at IEEE® Explore produced
four results, having little to do with task-switching or
interruptions. Research is required to examine Soar’s
capabilities with abrupt interruptions, which would allow
better assessment of the usefulness for notification systems
research [3].

How much attention must a cognitive architecture
apply to a peripheral stimulus to perceive and choose to
react to it? After production rules propose a collection of
operators, one must be selected and executed. Soar’s choice
involves choosing amongst proposed operators. Goals and
tasks are secondary constructs in Soar. Therefore, it can be
said that Soar’s choice occurs without attention toward a

goal or task. Operator selection occurs based upon a
holistic analysis, rather than goal-specific, therefore
allowing operators from separate tasks to enter into
consideration. Soar’s cognitive functions could fairly
leverage the decision between very different operators,
such as choosing between the operators: “check one’s
email” on peripheral perception or “continue to work,”
when the tradeoff [3].

A potential benefit and drawback to Soar is its lack of a
perceptual-motor system. Modelers are expected to provide
their own “input” and “output” functions. Input functions
work on their own to provide data to working memory,
instead of passively needing to be queried like ACT-R.
Customized input functions might provide appropriate pre-
attentive feature analysis [3].

Can the architecture comprehend and learn
information occurring pre-attentively? Many times, Soar
considers two operators, which appear equally favorable.
On such an impasse, Soar performs complex levels of
consideration before selecting an operator. Soar remembers
the results of the scenario. Mapping perception onto action
(pre-attentively or otherwise) is managed through a
different mechanism. Production rules in Soar can perform
“state elaboration” before proposing operators. The
knowledge that “red” means, “my team scored!”, for
example, would be acquired outside of Soar’s actions,
exemplified in executing operators. The downside, as
mentioned, is that modelers are expected to provide their
own perceptual-motor systems. Both methods of learning
provide a rich cognitive exploration of pre-attentive
information [3].

Table 1

Rating ACT-R Soar EPIC
Installation 5 2 1
Learnability 4 5 1
HCI Lit. 2 2 1

Question (1) 3 3 4
Question (2) 1 4 4
Question (3) 2 4 2
Total 17 20 13

Overall ratings, reflecting that no architecture is
currently fully capable for modeling notification
system user behavior. Each has its own specific
flaws, and none has an overwhelming advantage.

5. Discussion and Conclusions

Cognitive architectures strive to capture the universal
limitations and capabilities of human cognition, perception,
and action. Modelers take architectures into their domains

of study to refine a universal theory of cognition. To model
notification systems, a broader view of cognition, not
limited to a single task, but rather concerned with an
individual’s complete environment is needed. Architectures
should seek crucial bottlenecks in perception, cognition,
and action while elaborating on human beings’ documented
ability to multi-task [8]. EPIC sets out to address these
concerns, but remains poorly documented, difficult to learn
and unusable. Soar provides an avenue for notification
systems issues, is easy to learn and use, yet requires
modelers specify complete perceptual-motor models – no
easy task. ACT-R is also easy to learn, use, and install but
implements attention strictly serially. There is almost no
chance that ACT-R would move away from a current task.

Each architecture has growing to do before applying it
to multitasking–demands required in the study of
notification systems. It appears, also, that each architecture
concentrates on separate types of tasks. ACT-R and Soar,
as exemplified in the HCI survey, concentrate on the
complex cognition of problem-solving. Linear progress
toward completing a complex task, with a deep, narrow
decision tree, mostly ignores the possibility that several of
these tasks could be interacting concurrently. EPIC,
however, has concentrated on multitasking simpler tasks
(shallow, broad decision trees). A user’s environment
undoubtedly overflows with every type of task, simple and
complex. To truly be complete, architectures must begin to
examine each other in detail, and learn. Until then, it is
difficult to imagine testing notification systems with
shoddy multi-tasking models, a poorly documented system,
or a non-existent perceptual-motor system. However, if
positive attributes from each were taken together, then
automated models and evaluations of concurrent user
interfaces might seem far less of an unattained ambition.

References

1. Anderson, L. The Atomic Components of Thought (Mahwah
NJ, 1998), Erlbaum.

2. Altman, E and Gray, W. “An Integrated Model of Set Shifting
and Maintanence.” In Proceedings of the Third International
Conference on Cognitive Modeling (Veenendaal, The
Netherlands, 2000), 17-24.

3. Bates et. al., The Soar User’s Manual Version 8.2 (Online,
1998)
[http://ai.eecs.umich.edu/soar/docs/manuals/soar8manual.pdf].

4. Hornof, A. and Kieras, D. E. “Cognitive Modeling
Demonstrates How People Use Anticipated Location
Knowledge of Menu Items.” In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (1999)
410 – 417.

5. Kieras, D. E., Wood, S. D., and Meyer, D. E. “Predictive
Engineering Models Based on the EPIC Architecture for a
Multimodal High-Performance Human-Computer Interaction
Task.” ACM Transactions on Computer-Human Interaction 4,
3, (September 1997). 230-275.

6. Kieras, D. E. and Meyer, D. E. “Predicting Performance in
Dual-task Tracking and Decision Making with EPIC
Computational Models.” In Proceedings of the First
International Symposium on Command and Control Research
and Technology (Washington D.C. 1995), National Defense
University, 314-325.

7. Kieras, D. E. and Meyer, D. E. The EPIC architecture:
principles of operation (Online, 1998)
ftp://www.eecs.umich.edu/people/kieras/EPIC/EPICArch.pdf.

8. McCrickard, D. S. and Chewar, C. M. “Attuning Notification
Design to User Goals and Attention Costs.” Communications
of the ACM 46, 3 (March 2003), 67-72.

9. McCrickard D. S., Czerwinski, M., and Bartram, L.
“Introduction: Design and Evaluation of Notification User
Interfaces.” International Journal of Human-Computer
Studies 8, 5 (May 2003), 509-514.

10. Nielsen, J. “Why GUI Panic is Good Panic.” Interactions 1, 2
(1994), 55-58.

11. Norman, D. The Psychology of Everyday Things (1988).

12. Peck, V.A. and John, B. E. “Browser-Soar: A Computational
Model of a Highly Interactive Task.” In ACM CHI`92
Conference on Human Factors in Computing Systems, (1992),
165-172.

13. Rieman, J. Lewis, C., Young, R.M., and Polson P.G. “Why is
a Raven Like a Writing Desk? Lessons in Interface
Consistency and Analogical Reasoning from Two Cognitive
Architectures.” In ACM CHI`94 Conference on Human
Factors in Computing Systems, (1994) 434 – 444.

14. “The State of the Art in Automating Usability Evaluation of
User Interfaces.” ACM Computing Surveys 33, 4 (December,
2001), 470-516.

