
An Extensible Framework for Information Visualization
and Collection

William Luebke Michael Richmond Jacob Somervell D. Scott McCrickard
Center for HCI and Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0106, USA

{wluebke, mrichmon, jsomerve, mccricks}@vt.edu

ABSTRACT
Developing successful information visualization experiments,
principles, and applications requires iterative refinement of ideas
and prototypes. Oftentimes realizing these prototypes involves a
great deal of programming effort. Clearly, minimizing this effort
permits research at a more accelerated pace due to shorter
prototype turnaround time. The authors developed an extensible
and flexible system along these lines that enables programmers
and researchers to update and interchange data visualization and
collection techniques with little effort. This system is discussed
along with its relevant design patterns in the greater context of
software orthogonality. Finally, the system is utilized to develop
a computer supported cooperative work application for a large
screen display.

Categories and Subject Descriptors
D.2.11 [Software Engineer ing]: Software Architectures –
patterns, domain specific architectures.

General Terms
Design

K eywords
Software engineering, software architectures, orthogonality,
frameworks, large screen displays, computer supported
collaborative work.

1. INTRODUCTION
As computer and Internet use increases over time, the amount of
information our civilization collectively gathers grows
exponentially [7]. Consequently, people are confronted with
more information and are expected to digest it in less time. For
this reason, information needs to be filtered, summarized, and
displayed, enabling a person to obtain information relevant to
them in a way that can be understood intuitively or with little
effort.

The broad range of information sources and communication

mechanisms complicates the creation of software to address the
myriad different configuration options for various interfaces,
visualizations, and information repositories. All too often, a
resulting program, in an effort to tie together a wide variety of
disparate components, will be difficult to modify and reuse at a
future time. Our approach involves generating an extensible
framework that will alleviate these issues.

As humans are primarily visually oriented creatures [1], creating
information visualization techniques is a very important area of
research within the human-computer interaction community.
Information visualization has extremely broad applicability due
to the virtually limitless information mediums, contexts, and
combinations thereof. For example, different visualization
techniques need to be employed when peripherally displaying
stock quotes using a ticker than when displaying a company’s
profits on a presentation during a meeting.

However, many information visualization prototypes use
different visualization techniques to convey similar information,
and others use similar visualization techniques to display
different information. For example, several different methods
are employed to display image data in different scenarios,
PhotoMesa [3] and the Data Mountain [11] being two examples.
This illustrates the former case. Countless familiar statistical
diagrams, such as bar charts, scatter plots, etc. that can display
data collected from vastly different locations illustrate the latter
case. In both of these cases, there is an overlap in functionality
between the two programs: programmers collectively have
rewritten either the data collection mechanisms or the
information visualization implementations. The benefits of
software component reuse are clear—much time and effort could
have been saved if duplicate functionality were not implemented
more than once.

North’s Snap-Together Visualization [10] addresses many of
these issues, allowing users to coordinate multiple data
visualization techniques to increase their understanding of an
information space. However, it focuses on databases as data
sources and visualizations confined to a standard computer
monitor. To address the needs of the mobile user with changing
needs, a system must be highly adaptable. Successful
information visualization techniques could also benefit from
experimentation in other information contexts. For example,
how could Shneiderman’s Starfield display [2] be adapted (if
necessary) to work well on the screen of a cellular telephone?

Issues such as these drove our desire for a common, unifying,
extensible framework to serve as a laboratory for information
visualization and collection. The framework’s architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM-SE Conference ’03, March 7-8, 2003, Savannah, GA.

Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.

should provide an effortless way to extend its information
collection, filtering, and visualization capabilities. These
capabilities should be easy to author, with very little
programming overhead dedicated to interfacing with the
framework itself. The framework should also support dynamic
reconfiguration, allowing experimenters to swap information
collection, filtering, or visualization capabilities without
modifying any code or even stopping the program. As they would
all follow a minimal common interface, they could also be easily
shared with other researchers and tried out with their own
implementations in novel ways not necessarily thought of by the
original author. A side effect of this type of architecture (and
modularization in general) is that these capabilities are
orthogonal to the framework itself, confining bugs and other
issues to the modules where they belong, and generally
simplifying code all around. Cohesion increases as the
independent parts are decoupled.

Drawing upon design patterns and other tried and true software
engineering strategies, as well as some new ideas, we have made
progress in achieving the aforementioned goals with our
implementation of a framework, and have had much preliminary
success with it. Our initial project, described in this paper,
involved studying effective visualizations for shared large screen
displays in a laboratory environment. First, we present details of
the framework.

2. ORTHOGONALITY AND EXTENSIBLE
ARCHITECTURES
2.1 Orthogonality
Orthogonality describes a decoupling situation where unrelated
software functionality is confined to separate modules. The term
is borrowed from mathematics, where in a Cartesian space two
vectors are orthogonal if the angle between them is a right angle.
A change in one software module will not affect other orthogonal
software modules, since the modules are not interdependent [12].

A system with a high level of orthogonality has many benefits.
First, bugs and other defects are isolated to a specific module
instead of existing throughout the entire system, making them
easier to track down and fix. Second, a change in one module
will not affect the rest of the system—making the addition of
enhancements more straightforward. Finally, the flexibility of
the system overall is increased, as one module can be swapped
out for another one if it implements the same interface, and the
other modular components will not need to change. This can
even be accomplished at run-time to enable extensible
frameworks that lend themselves to on-the-fly configuration and
plugablility.

Such flexibility is achieved through the proper implementation of
interfaces that allow the abstraction of dynamic software
components. (This is called the “ Interface” design pattern [5].)
Interfaces control not only what functionality a given
implementation will have, but also dictate how interaction with
the implementation will occur via the function names contained
in the interface. This allows software components to
communicate in precisely the same fashion regardless of what
implementation a software component is using, and enables a
system to remove one implementation of a component and

replace it with another that implements the same interface—even
at run time (using something similar to the “Dynamic Linkage”
design pattern [11]).

Figure 1. Example or thogonal/extension model
implementation in Java.

/ / Thi s i s an exampl e of t he i nt er f ace t hat def i nes what t he
/ / r equi r ed behavi or of some obj ect i s .
publ i c i nt er f ace SomeI nt er f ace
{

/ / . . .
}

/ / Thi s c l ass i s an i mpl ement at i on of SomeI nt er f ace t hat
/ / per f or ms t he r equi r ed behavi or .
publ i c c l ass SomeI mpl ement at i on i mpl ement s SomeI nt er f ace
{

/ / . . .
}

/ / Thi s i s anot her i mpl ement at i on of SomeI nt er f ace t hat
/ / per f or ms t he r equi r ed behavi or , j ust i n a di f f er ent way.
publ i c c l ass Anot her I mpl ement at i on i mpl ement s SomeI nt er f ace
{

/ / . . .
}

/ / Thi s c l ass houses an i nst ance of SomeI nt er f ace, but by
/ / r ef er r i ng t o i t as a SomeI nt er f ace i nst ead of a
/ / SomeI mpl ement at i on, di f f er ent i mpl ement at i ons ar e abl e t o
/ / be swapped out so l ong as t hey i mpl ement t he f unct i onal i t y
/ / r equi r ed of SomeI nt er f ace.
publ i c c l ass Ext ensi bl eObj ect
{

/ / Her e i s t he r ef er ence t o SomeI nt er f ace:
pr ot ect ed SomeI nt er f ace _i nt er f ace;

publ i c voi d cr eat eSomeI nt er f ace(St r i ng c l assName)

t hr ows Except i on
{

/ / Ret r i eve t he c l ass i nf or mat i on about t he c l ass
/ / named by c l assName, and cal l t he ot her met hod
/ / s i gnat ur e:
cr eat eSomeI nt er f ace(Cl ass. f or Name(cl assName)) ;

}

publ i c voi d cr eat eSomeI nt er f ace(Cl ass c l s)
t hr ows Except i on

{
/ / Make sur e t hat t he c l ass i sn’ t j ust an i nt er f ace
/ / (s i nce we cannot i nst ant i at e i nt er f aces)
i f (c l s. i sI nt er f ace())
{

t hr ow new I l l egal Ar gument Except i on(" The " +
" c l ass cannot be an i nt er f ace. ") ;

}

/ / Make sur e t hat t he c l ass i sn’ t an abst r act
/ / c l ass. Thi s par t i s a bi t t r i cky, but t he
/ / 11t h bi t of t he modi f i er s i s set i f t he c l ass i s
/ / abst r act . (See t he JVM Speci f i cat i on, Tabl e 4. 1
/ / f or det ai l s.)
i f (c l s. get Modi f i er s() &0x0400) >0)
{

t hr ow new I l l egal Ar gument Except i on(" The " +
" c l ass cannot be abst r act . ") ;

}

/ / Make sur e t hat t he c l ass act ual l y i mpl ement s t he
/ / SomeI nt er f ace i nt er f ace:
i f (! SomeI nt er f ace. cl ass. i sAssi gnabl eFr om(cl s))
{

t hr ow new I l l egal Ar gument Except i on(" The " +
" model c l ass must i mpl ement t he " +
" SomeI nt er f ace i nt er f ace. ") ;

}

/ / Make sur e t hat t he c l ass has a def aul t
/ / const r uct or so t hat we can cr eat e i t wi t hout
/ / passi ng any ar gument s:
t r y
{

c l s. get Const r uct or (new Cl ass[] { }) ;
}
cat ch (NoSuchMet hodExcept i on e)
{

t hr ow new I l l egal Ar gument Except i on(" The " +

Figure 1 provides an example Java1 implementation of a class
that allows extensible, orthogonal plugability. In the example,
Ext ensi bl eObj ect is a class that requires a certain orthogonal
functionality defined by SomeI nt er f ace in order to perform its
function in the program. Two implementations of
SomeI nt er f ace exist—SomeI mpl ement at i on and
Anot her I mpl ement at i on. The cr eat eSomeI nt er f ace
method is called to initialize (or reinitialize) the _i nt er f ace
field of Ext ensi bl eObj ect where the class name of the desired
implementation is passed in.

For illustrative purposes, the code in Figure 1 can be represented
diagrammatically as shown in Figure 2. Objects are labeled
boxes, and interfaces are a specific styles of “plugs” attached to
the left side of objects that implement them. Extensible objects
that use orthogonal interfaces are designated with a plug insert of
the appropriate type on their right side.

Figure 2. Diagram of Figure 1 classes and inter faces.

2.2 Adapter Extension
One can see that the orthogonality/extension model can be
extended in other ways, creating a highly customizable system.
For example, a structure similar to the adapter design pattern can
be implemented, as depicted in Figure 3. We term this an
“Adapter Extension.”

Figure 3. Example Adapter Extension.

2.3 M ultiple-Delegation Extension
As shown in Figure 4, there is no reason why an extensible
object cannot delegate to multiple other implementations, should

1 Java supports this activity easier than a non-dynamically typed
programming language. For example, in C++, a programmer
would be unable to easily perform these tests or create instances
of classes just with a string containing the class name, as this
sort of functionality is not available in the language natively.
Java provides a reflection API, which is a vital part of the
orthogonality/extension model, as it allows runtime querying of
the methods and inheritance model of a class, and provides
methods for dynamically loading and instantiating classes.

that behavior make sense for the interface in question. This is
called a “Multiple-Delegation Extension.”

Figure 4. Example Multiple-Delegation Extension.

2.4 Non-tr ivial Extension
The orthogonality/extension model can be used to develop
complex, robust systems in other non-trivial ways. Figure 5
provides a simple example.

Figure 5. Example Non-tr ivial Extension.

3. ARCHITECTURE
The architecture of the system was designed to be extensible,
flexible, and scalable, by providing a set of interfaces (and in
some cases, default implementations) for information
representation, collection, and visualization. Figure 6 provides a
graphical representation of the system architecture.

The Mai n object sits at the root of the extensibility framework;
its role is to instantiate and hold an implementation of the Cor e
interface. The core implementation is intended to be the “heart”
of the framework—it holds the other four orthogonal components
of the system: First, information of interest to users is abstractly
represented and stored in the system through the “ item of interest
(I OI)” interface. The I OI interface is generic enough to
represent nearly any form of information, as there are no
restrictions on the details of the implementing class. For
example, it is possible to author textual IOIs, IOIs containing
image data, sound bytes, or video streams. We have also
implemented a “news IOI” which uses multiple-delegation
extension to combine a textual IOI and an image IOI to represent
a news article gathered from World Wide Web sources.

Object
Z

Object
W

Object
V

Object
Y

Object
X Interface

 A

Interface
B

Interface
C

Interface
D

Object
Z

Object
Y Interface

B

Object
X Interface

A

Some
Implementatio

n

Extensible
Object

Another
Implementatio

n

Some
Interface

Object
W

Object
V

Object
Z

Object
Y

Object
X Interface

A

Second, the Col l ect or interface represents a mechanism that
collects information and creates IOIs from it. A collector can
conceivably be implemented2 to collect information from just
about any source; it could read from a database, watch the stock
market, ask users for input, or parse data gathered from the
Internet.

Figure 6. Extensible information visualization and collection
architecture. (Aster isks denote zero or more of a type of

inter face.)

Third, the Cont ent Manager interface provides a mechanism to
determine what information is of most importance to the system
at the current time. This information can be used to start or stop
various collectors or to filter information.

Finally, the Layer interface provides access to the core, so
external programs or users can interact with it. There are three
main implementations of the layer interface. First, the command
line layer allows control over the system to an administrator
through the command line. Second, a network layer enables
other programs to communicate with the core through the
network. The framework supports a client/server paradigm by
allowing two instances of the framework to run simultaneously—
one using a server core, and the other using a core proxy that
interfaces with the server core through its network layer. In this
manner, all data storage and collection, potentially processor
intensive tasks, can be performed by the server, while clients can

2 Although the collector implementation must be written in Java,
Java can interface with any other language, so the collection
mechanism is not limited by this. In fact, Perl was used in one of
our implementations to monitor news sites on the Internet such
as Yahoo! News.

launch visualization layers. This also minimizes the work
necessary to add additional clients. Lastly, the visualization
layer displays IOIs stored in the core to users.

The visualization layer is another example of a non-trivial
extension as it provides extension interfaces of its own for a
layout manager and components. The Component interface
utilizes adapter extension to display an IOI in a meaningful way,
separating potentially non-orthogonal information and
visualization. The Layout Manager implementation then
positions components to produce a visualization. For example,
we have implemented a layout manager that displays the
components associated with news IOIs arranged into a grid to
form a grid visualization. Other better-known visualizations
could easily fit in this model. For example, a hyperbolic browser
[8] could assign a hierarchy to components and display the
resulting tree using the hyperbolic layout algorithm.

It should be clear that implementations of the Layer interface
need not be purely visual in nature. For example,
implementations could be written to play sounds or otherwise
affect the environment using real world displays [9].

The framework adheres to the aforementioned orthogonality
model, which results in a robust, flexible framework for
information visualization and collection. This framework is of
particular interest to research where the addition, combination,
and/or removal of systems components or implementations
makes testing a large number of possible implementations
difficult. For example, the orthogonality between the collectors
and the display makes it possible to change what type of display
is being used or how the display is implemented without having
to change how or what information is collected and vice versa;
making it easy to test a large number of visualizations without
the headache of reconfiguring a large system.

4. RESULTS
The extensible/orthogonal framework has enabled our
visualization system to evolve rapidly. We have successfully
used it to develop a system called the “Photo News Board.” Its
architecture is presented in Figure 7.

The Photo News Board is an application built upon the
previously described framework that collects news headlines and
photos, and displays them on a large screen display. Intended to
run in a shared environment, such as a common meeting room,
the Photo News Board displays news stories and photos
according to the common interests of the people in the presence
of the display. Newer stories are displayed in the center of the
display and older stories towards the edge. As new photos
appear in the display, existing photos shift outwards, away from
the center. A simple highlighting technique is used to show the
details of the story associated with the photo (See Figure 8).

The Photo News Board derives its cores from the default cores
provided by the framework, adding user profile functionality. It
also provides implementations for the necessary interfaces. For
example, the Def aul t Cont ent Manager implementation takes
into account users’ interests (found in their profiles) to determine
which collectors to launch. Text, image, and news IOIs were
developed, as well as collectors that gather this information.
Finally, the visualization layer’s functionality is completed by
our Gr i dLayout and Gr i dComponent implementations.

Main

Core
Interface

Core
Proxy

*

Network
Layer

Server
Core

Layer
Interface

Collector
Interface

IOI
Interface

*

*

*

Content
Manager
Interface

*

Visualization
Layer Layout

Manager
Interface

Component
Interface

Command
Line Layer

Figure 8. A screenshot of the Photo News Board.

Throughout the Photo News Board development, many parts of
the system were iteratively refined or replaced. We easily added
and removed new collectors, IOIs, visualizations, layout
managers, and components, especially early on in development in
order to try different information visualization techniques. For
example, we were initially using a standard flat, two-dimensional
visualization implementation, but later replaced it with an
implementation written with the Jazz Zoomable Interface Library
[4]. These changes had no impact on the rest of the system,
compressing development time considerably.

A simple usability evaluation in a controlled lab environment

was conducted to show the system to users and get feedback
about some of the design elements used in the display. From this
pilot study, we learned that the display was effective at providing
shared information on a public display. Users liked the access to
the news stories and thought the highlighting reflecting the
interests of the room occupants was a useful thing for promoting
interaction [13].

Perhaps most telling as to the success of our framework is the
fact that a developer not involved in the creation of the
framework created several layouts that were easily plugged into
the Photo News Board system. The layouts used animation and
visualization techniques in conveying textual and graphical
information, and worked on both desktop and large screen
displays.

Our initial experiences with the framework suggest that it will
successfully promote rapid extensibility and software reuse, but
the true test of the utility of the framework will take place when
other external developers make use of it—either by adapting the
Photo News Board or by developing other systems.

In the future, we hope to utilize the extensibility of the system in
order to promote further experimentation and understanding of
various layout, updating, and content management mechanisms.
While currently only a handful of implementations of various
orthogonal components of the system exist, as more are
completed, they can be combined with current implementations
and each other to explore “Cartesian product” combinations of
components.

Figure 7. Photo News Board architecture. (Aster isks denote zero or more of a type of inter face.)

PNB
Server
Core

Main

Core
Interface

Layer
Interface

Collector
Interface

IOI
Interface

*

*

*

Image
Collector

News
Collector

PNB
Core
Proxy

*

Image
IOI

Text
IOI

Network
Layer

Command
Line Layer

Content
Manager
Interface

Default
Content
Manager

Visualization
Layer Layout

Manager
Interface

*
Component

Interface

Random
Layout

Grid
Component

News
IOI

Grid
Layout

It should be noted, however, that some combinations of
information and information mediums would be incompatible.
For example, a text-to-speech layer implementation would be
unable to convey image data in a meaningful way. However, this
itself is not a limitation of the architecture, but merely highlights
that the system is flexible enough to support examples that do
not always make sense. These incompatible combinations of
orthogonal components could lead to interesting adaptations in
information visualization techniques. One example of this would
be the best way to convey dense, complicated information onto a
small display, such as that of a PDA or cellular telephone.

5. CONCLUSION
Creating information visualization and collection applications
and conducting usability experiments requires iterative
refinement of ideas and prototypes. A system architecture
designed with orthogonality, flexibility, extensibility, and
plugability in mind shortens the amount of time between these
iterations and stands to make research and development in the
HCI community faster by affecting the development process in a
number of ways: First, existing information collection and
visualization functionality can be leveraged, eliminating the
writing of superfluous code. Second, as modularization and
orthogonality are employed, code developed under this paradigm
has the associated benefits. Finally, orthogonal implementations
under this framework can be swapped and combined to easily
and quickly develop interesting information collection and
visualization systems. The framework detailed in this paper has
such an architecture, and has been effectively extended into an
information collection and visualization prototype.

6. REFERENCES
[1] Abrams, A. Multimedia magic: Exploring the power of

multimedia production. Allyn and Bacon/Longman, Boston,
MA, 1996.

[2] Ahlberg, C. and Shneiderman, B. Visual Information
Seeking: Tight Coupling of Dynamic Query Filters with
Starfield Displays. In Proceedings of ACM Conference on
Human Factors in Computing Systems (CHI ’94). (Boston,
MA, April 1994), ACM Press, 313-317.

[3] Bederson, B.B. PhotoMesa: A Zoomable Image Browser
Using Quantum Treemaps and Bubblemaps. In
Proceedings of ACM Conference on User Interface Software
and Technology (UIST ’01). (Orlando, FL, November,
2001), ACM Press, 71-80.

[4] Bederson, B.B., Meyer, J., and Good, L. Jazz: An
Extensible Zoomable User Interface Graphics Toolkit in
Java. In Proceedings of ACM Conference on User Interface
Software and Technology (UIST ’00). (San Diego, CA,
November, 2000), ACM Press, 171-180.

[5] Gamma, E., Helm, R., Johnson R., and Vlissides, J. Design
Patterns: Elements of Reusable Object Oriented Software.
Addison Wesley Publishing, Boston, MA, 1995.

[6] Grand, M. Patterns in Java, Volume 1. Wiley Computer
Publishing, New York, NY, 1998.

[7] Internet statistics, Merit Network, Inc. (1995).
ftp://nic.merit.edu/nsfnet/statistics.

[8] Lamping, J., Rao, R., Pirolli, P. A Focus + Context
Technique Based on Hyperbolic Geometry for Visualizing
Large Hierarchies. In Proceedings of ACM Conference on
Human Factors in Computing Systems (CHI ’95). (Denver,
CO, May 1995), ACM Press, 401-408.

[9] McCrickard, D.S., Wrighton, D., and Bussert, D.
Supporting the Construction of Real World Interfaces. Tech
note in Proceedings of IEEE Conference on Human Centric
Computing (HCC ’02). (Arlington VA, September 2002),
IEEE Computer Society Press, 54-56.

[10] North, C., Shneiderman, B. Snap-Together Visualization:
A User Interface for Coordinating Visualizations via
Relational Schemata. In Proceedings of ACM Conference
on Advanced Visual Interfaces (AVI ’00). (Palermo, Italy,
May, 2000), ACM Press, 128-135.

 [11] Robertson, G., Czerwinski, M., Larson, K., Robbins, D. C.,
Thiel, D., van Dantzich, M. Data Mountain: Using Spatial
Memory for Document Management. In Proceedings of
ACM Conference on User Interface Software and
Technology (UIST ’98). (San Francisco, CA, November
1998), ACM Press, 153-162.

[12] Smaragdakis, Y., Batory, D. Implementing Reusable Object
Oriented Components. In Proceedings of International
Conference on Software Reuse (ICSR ’98). (Victoria, BC,
Canada, June 1998), IEEE Computer Society Press, 143-
153.

[13] Somervell, J., Chewar, C. M., McCrickard, D. S.,
Ndiwalana, A. Enlarging usability for ubiquitous displays.
In Proceedings of the ACM-SE Conference, 2003.

