
Eleven Guidelines for Implementing Pair Programming in the Classroom

Laurie Williams1, D. Scott McCrickard2, Lucas Layman1, Khaled Hussein2
1North Carolina State University, Department of Computer Science

{lawilli3, lmlayma2}@ncsu.edu
2Virginia Polytechnic Institute and State University, Department of Computer Science

 {mccricks, khussein}@cs.vt.edu

Abstract

Utilizing pair programming in the classroom
requires specific classroom management techniques.
We have created nine guidelines for successfully
implementing pair programming in the classroom.
These guidelines are based on pair programming
experiences spanning seven years and over one
thousand students at North Carolina State University.
In Fall 2007, pair programming was adopted in the
undergraduate human-computer interaction (HCI)
course at Virginia Tech. We present the pair
programming guidelines in the context of the HCI
course, discuss how the guidelines were
implemented, and evaluate the general applicability
and sufficiency of the guidelines. We find that eight
of the nine guidelines were applicable to the Virginia
Tech experience. We amended our peer evaluation
guideline to account for constantly supervised
pairing, as was the case at Virginia Tech. We add
two guidelines stating that a pair should always be
working toward a common goal and that pairs should
be encouraged to find their own answers to increase
their independence and self-confidence.

1. Introduction

Research suggests that pair programming has
many pedagogical benefits. Pair programming
creates an environment conducive to active learning
and collaboration, helps to lower student frustration
with challenging problems, and increases
programming self-confidence and interest in
information technology [1]. To leverage the benefits
of pair programming, educators must create an
effective pair programming environment in the
classroom. Implementing effective pair
programming requires several specific classroom
management techniques.

Successful pair programming requires discipline
on the part of the students and positive reinforcement
on the part of the teaching staff. Based upon our
experiences, we previously documented classroom

management guidelines in hopes of enabling other
educators to be as successful as possible with pair
programming [13]. The first and third authors from
North Carolina State University (NCSU) have used
pair programming extensively in CS1, undergraduate
software engineering, and several graduate-level
courses over the last seven years, involving more
than one thousand students. Through this experience,
many lessons have been learned and policies and
practices have been adapted to be more successful
with the collaborative pedagogy of pair
programming.

In this paper, we describe nine guidelines for
successfully implementing pair programming in a
classroom or lab environment. During the Fall 2007
semester, these guidelines were followed to varying
degrees as pair programming was adopted in the
upper-level undergraduate course in human-computer
interaction (HCI) at Virginia Tech. The objective of
this paper is to evaluate and evolve our guidelines by
retrospectively comparing them with the classroom
management practices and qualitative experiences at
Virginia Tech.

The rest of this paper is organized as follows: In
Section 2 we provide related research results in pair
programming. In Section 3, we provide information
about the HCI course at Virginia Tech. In Section 4,
we present the NCSU pair programming guidelines
and provide observations regarding the extent to
which each of these were used at Virginia Tech. In
Section 5, we evolve our guidelines. We summarize
in Section 6.

2. The Positive and Negatives Aspects
of Student Pair Programming

Much of the research on pair programming in an
academic environment has concentrated on
evaluating the efficacy of the practice. Studies
conducted at NCSU [2, 7-9, 12] have shown that pair
programming creates an environment conducive to
more advanced, active learning and social interaction,
leading to students being less frustrated, more

Agile 2008 Conference

978-0-7695-3321-6/08 $25.00 © 2008 IEEE

DOI 10.1109/Agile.2008.12

445

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 19:44 from IEEE Xplore. Restrictions apply.

confident, and more interested in IT. The benefits to
pair programming contrast with the negative aspects
of traditional solo programming pedagogies, which
can leave students feeling isolated, frustrated, and
unsure of their abilities. These benefits appear to
help increase retention in computer science,
particularly among women [15].

Pair programming encourages students to interact
with peers in their classes and laboratories, thereby
creating a more communal and supportive
environment. Students of the current Millennial
generation place particular value on collaborative
environments [10]. Furthermore, the collaboration
inherent in pair programming exposes and reinforces
students to the collaboration, teamwork, and
communication skills required in industry. A study
of undergraduate students at Pace University found a
positive correlation between out-of-class
collaboration and student achievement based on
student projects and examination grades [5].

 Pair programming also benefits the teaching staff.
Less grading is required due to half the number of
assignment submissions. A pair of students can
oftentimes figure out the low-level technical or
procedural questions that typically burden the
teaching assistants in the laboratory [4, 16],
instructor’s office hours and email inbox. Finally,
there are fewer “problem students” to deal with
because the peer pressure involved in pair
programming encourages all students to be active
participants in the class. Students become concerned
about jeopardizing their partner’s grade and work
harder on assignments, often getting started earlier
than if they worked alone (though not all students
report starting earlier [11]).

Alas, there are some costs to implementing pair
programming. Most of the costs for educators are
outlined in the guidelines of Section 4. For students,
there are two major costs that persist without
apparent recourse. First, we observe that a small
segment of students (approximately 5%) will always
desire to work alone. Most often, these are the top
students who do not want to be “slowed down” by
another student and who do not see benefit in
teaching others. Another problem for students is the
need to coordinate schedules when pair programming
is required outside of a classroom or laboratory
setting.

3. Pair Programming at Virginia
Tech

Twenty-two students were enrolled in the HCI
course offered in Fall 2007. The second and fourth
authors of this paper were the course instructor and
teaching assistant (TA), respectively. The course met

twice weekly for 75 minutes. Prior to taking the HCI
course, the students had taken three object-oriented
programming courses (C++ or Java), and the course
prerequisite was a second-semester data structures
course. Students did not use the pair programming
practice in these prior classes, though two students in
the class had pair programming experience from
summer internships.

The HCI course consisted of weekly lectures,
generally paired with an in-class activity on the
second class session of each week. However, during
weeks 9 and 10 of the 15-week semester, both the
lectures and activities were replaced by four pair
programming sessions. During these sessions,
students implemented a navigation interface for
Tablet PCs using the C# 2.0 language.

The pair programming assignment was the third
phase of a four-phase group project effort in which
the students gathered requirements, designed,
implemented, and tested navigation interfaces for on-
campus security officers. The students worked in
groups of three or four during the requirements,
design, and testing phases. The implementation
phase was conducted as a series of pair programming
efforts, with each individual responsible for a unique
part of the implementation of their group’s project.
The project was worth 40% of each student’s overall
grade, with the pair programming phase worth 25%
of the project grade (and thus 10% of the overall
course grade). The pair programming session
replaced an identically-weighted group prototyping
assignment from previous semesters that did not
require them to program fully-functional prototypes.
In these past semesters, students instead used tools
like PowerPoint to create semi-functional prototypes.

Traditionally, there is no formal lab time for the
course, but for this instantiation of the course four
class sessions were converted to lab-style pair
programming sessions. The sessions took place in a
classroom with single-person desks; no lab room was
available where teams could meet at tables as is
recommended for pair programming. The students
arranged their desks such that pairs were seated next
to each other, each with a personal laptop. The
student pairs spread throughout the room to isolate
themselves from other pairs.

The students began the implementation process in
class in the pairs and were required to complete it
outside of class (alone or in pairs), if necessary. The
pairs were formed using the PairEval1 system
(discussed in Section 4.4). The pairs were assigned
for the first and section session and then reassigned
for the third and fourth sessions. Each student in the

1 PairEval can be freely downloaded for use at
http://agile.csc.ncsu.edu/pairlearning/paireval.php.

446

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 19:44 from IEEE Xplore. Restrictions apply.

pair served as driver and as navigator two times in
the four sessions.

The pair programming phase required each
individual in the class to turn in a unique program,
with the understanding that they would be expected
to complete the phase using pair programming. The
phase required each student to code a unique
information display and interaction method for the
project. For example, one student might create a
pie-chart menu system and another might create a
map-based system and another a series of popup
boxes. In so doing, the assignment resulted in
different display and interaction options for accessing
the interface, which were then tested by the project
groups in the usability evaluation phase.

4. Guidelines

In this section, we provide guidelines [13] and
rationale for implementing pair programming in the
classroom based upon our experiences at NCSU and
reflect on whether the class at Virginia Tech utilized
these guidelines. Our guidelines are similar to but
expand guidelines proposed in 2002 [3].

4.1. Supervised pairing experience
Guideline 1. Students need training in pair

programming in a supervised setting to experience
the mechanics of successful pairing.

The instructor cannot assume that the students will
know what to do if they are told to pair program. The
students may feel the idea is to divide the work into
two parts, each student doing half. The students
should be made aware that they are to work together
at one computer in driver and navigator roles, they
need to switch roles, they both need to be active
participants at all times, and so forth. Resources for
educating students about pair programming,
including a 15-minute video, can be found at
http://agile.csc.ncsu.edu/pairlearning/.

The watchful eye of a trained instructor or TA is
essential for making sure that students are properly
assuming the roles of driver and navigator, switching
roles periodically, and that both students are engaged.
A driver who never navigates may dominate the
session, and a navigator who never drives may
become disinterested. Furthermore, students benefit
from “bonding” with their partner by working on a
joint project in a structured setting and will be more
comfortable meeting outside of class. We strongly
advise against pairing first or second year
undergraduate students if no pair programming will
occur in a closed lab or classroom setting that is
monitored by a member of the teaching staff.

Observations. Prior to starting the pair
programming sessions, the Virginia Tech students

had a lecture that introduced them to the key concepts
of pair programming. A few students indicated that
they had previously used pair programming as part of
summer internships and jobs. This small number of
students viewed pair programming negatively and as
a burden to their workload without seeing much
benefit. Care was taken to respond to the criticism
calmly and rationally to avoid having these students
“poison” the experience for others.

 After an initial information exchange period
(around five minutes) when the pairs would get to
know each other, they settled down to work on the
assignment. They were told that any part of the
assignment not completed in class would have to be
finished on their own, providing motivation to make
significant progress in the class sessions. The pairs
were told to remain in their assigned roles (driver or
navigator), and they seemed to do so without
complaint. It was unclear how much of the navigator
effort was dedicated to helping the driver and how
much was spent on other tasks like email or web
surfing. However, there were no complaints about
this from any of the drivers.

Students made unexpectedly good progress in the
first session. The navigators for most teams were
able to find code libraries unknown to the instructors
and not referenced by the assignment. These
resources enabled faster completion of the
assignment. Later sessions seemed to lack the burst
of enthusiasm noted in the first session. The first
session was by far the loudest, perhaps because of the
excitement (and to some degree the confusion) of a
new development technique. However, in later
sessions the navigator seemed to better understand
the role to be undertaken.

4.2. Teaching staff pair management
Guideline 2. Teaching staff must actively engage

in the management of pair interactions.
In solo programming labs, TAs spend most of

their time answering questions of the students. In a
paired lab, the role of the TA changes to some degree
from technical assistant to proactive monitor. In
paired labs, the number of technical questions put to
the TAs is lower than in solo labs because pairs can
usually figure out most aspects of an assignment
together. Questions from pairs tend to be focused
more on learning objectives and concepts rather than
technical hang-ups, and may require more time per
question (though this is time well-spent). With the
remaining time, the TA needs to proactively visit the
pairs, ask how they are doing, and ensure that they
are working together effectively. The TA must look
for dysfunctional pairs who are not working well
together and take proactive steps to remedy the

447

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 19:44 from IEEE Xplore. Restrictions apply.

problem. The TA must also ensure that the students
switch roles periodically.

Observations. During the first pairing, it was
obvious that most students were paired with partners
that they did not know well. For the first few
minutes, they exchanged general information about
programming knowledge and interface building
expertise. After about five minutes, the students
settled into the assigned work with no prompting
from the TA.

The TA was present throughout the pair
programming sessions. He walked through the room,
observing the pairs at work and answering any
questions that arose. When appropriate, he would
redirect questions to the pairs in hopes of helping
them identify ways to find the answers themselves.

4.3. Attendance and tardy policy
Guideline 3. Strict attendance and tardy policies

are necessary to protect students from a non-
participatory partner.

A student who does not attend lecture impacts his
or her ability to work effectively on and to contribute
fairly to a paired project. A strict attendance policy
enables the teaching staff to identify early those
students who are no longer participating in the class
but have not dropped it.

A persistently tardy pair programming partner
puts his or her partner at the disadvantage in not
having a collaborator. We recommend that a student
is reassigned to a different pair if their partner does
not arrive before a specified period of time (e.g. 10
minutes). A student who arrives late must work
alone with a penalty on the lab assignment. The
penalty for being tardy is important or students who
would rather work alone will “conveniently” show up
late so that he or she can work alone.

Observations. The professor and teaching
assistant made it clear during multiple class sessions
early in the semester that absence or lateness to the
pair programming sessions would result in a grade of
zero on that portion of the assignment. This policy
seemed to be well understood by the students, as
there was not a lateness/absence problem for the pair
programming sessions despite several students who
were chronically late or absent at other times during
the semester.

4.4. Peer evaluation
Guideline 4. Instructors should provide a

systematic mechanism for obtaining students’
feedback about their partners and must act upon the
feedback when indications are a student is not being
an equal participant.

Some students attempt to escape an assignment
without doing the work, thereby shortcutting the
lessons the assignment is designed to teach. By
having students systematically evaluate their
partner’s performance, students are motivated to
participate equally in pair programming.
Furthermore, the process helps to identify non-
participatory students.

We have created an online peer evaluation system
known as PairEval. Based upon the peer rating
system by Kaufman et al. [6], the students are asked
to choose one of the nine key words in the bullets
below (short descriptions are provided to the students
as well) to describe the contribution of his or her
partner. The students choose among the following
ratings:

1. Excellent. Consistently went above and
beyond—tutored teammates, carried more than
his/her fair share of the load

2. Very good. Consistently did what he/she
was supposed to do, very well prepared and
cooperative

3. Satisfactory. Usually did what he/she was
supposed to do, acceptably prepared and cooperative

4. Ordinary. Often did what he/she was
supposed to do, minimally prepared and cooperative

5. Marginal. Sometimes failed to show up or
complete assignments, rarely prepared

6. Deficient. Often failed to show up or
complete assignments, rarely prepared

7. Unsatisfactory. Consistently failed to
show up or complete assignments, unprepared

8. Superficial. Practically no participation
9. No show. No participation at all

In choosing a word to describe the contributions of
their partner, students generate a wider range of
responses than when previously asked for a
numerical rating. In PairEval, students can also
provide text comments describing the rationale
behind their rating.

PairEval generates a summary report of peer
evaluations for each assignment. Instructors can see
the rating for all previous assignments for every
student so trends in participation can be observed. If
a student gives his or her partner a low overall rating
(e.g. “Marginal” or below), the PairEval summary
report marks the student in red. The teaching staff
can review the evaluation more carefully and contact
the student if necessary.

 At NCSU, our policy is that if the instructor
meets with a student and determines that the student
made little or no effort on a partnered assignment, the
student will have his or her grade reduced and the
partner’s grade will be correspondingly increased.
We recommend a strict policy whereby a student’s
score can be multiplied by their contribution (e.g. if

448

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 19:44 from IEEE Xplore. Restrictions apply.

they did 50% of what they were supposed to, they get
50% of the score) and their partner’s grade is boosted
by 50%. Furthermore, part of the students’ grades
should be contingent on completing peer evaluations
to ensure that peer evaluation occurs.

When pairing students for homework assignments,
prompt attention and adequate consequences are
essential to bring potential “freeloaders” back into a
contributing role. After the instructor handles a few
of these instances, an environment of participation is
created in the classroom and instances of freeloading
become rare. We recognize that not all problem
students will be identified because sometimes
students are reluctant to file negative reports on their
partners.

Observations. At Virginia Tech, students
completed a PairEval evaluation on their partner after
each pair programming session. The Virginia Tech
team did not have a clear sense of how to adjust
grades based on paired participation. Without a
clear impetus, the students were often slow in
completing the evaluations. Furthermore, all paired
work was done in the classroom under the watchful
eye of the TA and non-participation was not a
problem that needed to be acted upon by the teaching
staff.

4.5. Balancing individual and
collaborative work

Guideline 5. In each course, students should be
evaluated on a balance of individual and
collaborative work.

We want to ensure that individual students are
learning the course material, and that some students
are not relying solely on their partners.
Consequently, students should be evaluated by their
performance on both individual and collaborative
assignments. The individual-collaborative balance
may change according to the course makeup. For
example, in CS1 at NCSU, the weekly paired lab
assignments count for only 10% of the overall grade.
In the software engineering course at NCSU, the
students must maintain a passing grade on individual
work to pass the class.

Observations: At Virginia Tech, pair
programming was used as a more “individual”
approach to software development in what is
generally a groupwork-dominated course. Sixty
percent of the course grade is group related, with the
group project worth 40% of the grade, group
activities worth 10%, and participation 10%.

The pair programming phase of the group project
required every student to design and program a
unique component of the project, a definitive skill of
the course and discipline. The pairs were established

outside the groups; that is, pairs of students who were
also group members were disallowed. This method
for pairing ensured that each group member had a
working knowledge of the earlier project phase
results, such that each individual could implement
some portion of the group project’s interface.
However, the pair programming ensured that there
was support for the students in their programming
efforts. In the end, though, each student received an
individual grade, shifting toward a more equal
balance of group-individual grades.

4.6. Choosing the pairs
Guideline 6. When assigning pairs, instructors

should attempt to maximize the chances students will
work well together.

At NCSU, we assign the pairs rather than allow
them to choose their partners. Through the PairEval
system, we monitor the compatibility of our pairs in
addition to their contribution. We have found that
less than 9% of pairs report compatibility problems
[14]. Students consistently express a desire to work
with a partner of equal or better skill level relative to
themselves. We have examined a variety of factors
to determine if we can proactively assign effective
student pairs. We have found that pairing a Myers-
Briggs Sensor with an Intuitor has resulted in pairs
that are statistically more likely to rates themselves
“Very Compatible” compared with other partner
matchings. Dysfunctional pairs appear to be the
result of matching students of vastly different skill
levels and work ethic [14].

Observations. The Virginia Tech students used
the PairEval system to assess their personality types,
experience, and partner preferences. Based upon the
compatibility information collected with PairEval,
pairs were selected to help ensure that participants
would be matched in terms of personality types.

PairEval seemed to facilitate the creation of good
matches—pairing excited, talkative students with
calmer, more laconic ones. This arrangement was
often to the benefit of information exchange but
sometimes with some unspoken tension where the
“calm” partner clearly wants to complete the project
with a minimum of talking. However, this is only an
observation; there were no complaints about this,
save for one person who commented about the
partner being too “quiet and professional.” By the
second pairing, students seemed to settle into their
assignment more quickly.

4.7. Pair rotation
Guideline 7. Students should have different

partners throughout the semester.

449

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 19:44 from IEEE Xplore. Restrictions apply.

At NCSU, we assign students new partners at least
three or four times per semester. Periodically
assigning new partners is beneficial for the students
because they have the opportunity to meet more of
their peers. Also, students will be less likely to be
intolerant of their partner if they know their
“relationship” only lasts a week or two. Rotating
pairs is beneficial for the teaching staff because
obtaining multiple forms of peer evaluation on each
student provides a more accurate picture of the
contributions of the student. Additionally, the regular
pair rotation allows dysfunctional pairs to separate
without overt action on the part of the instructor.

Observations. At Virginia Tech, the students
rotated pairs once during the four sessions, after the
first two pair programming sessions, so that students
would have the opportunity to meet more of their
peers and to benefit from their added knowledge and
expertise.

4.8. Students must promptly notify
instructors of problems

Guideline 8. Students must understand that
problems with their partner must be surfaced
immediately to give the instructor a chance to correct
the situation.

The most common problem with pairing is non-
participation on the part of one student. Students are
encouraged to report problems with their partner as
quickly as possible. The instructor must then work to
understand the non-participatory student’s
perspective as well, and/or ask the student if he or she
intends to continue with the class. If the instructor
determines that a student is not going to contribute
fairly to an assignment, then the partner will be given
reparations on the assignment, such as the option to
complete a subset of the assignment individually.
When students report problems at the last minute,
they are not given these same reparations, motivating
the students to report problems early when corrective
actions are still possible.

Observations. The pairs seemed to work together
well in the Virginia Tech implementation of the
project, with no serious complaints emerging from
any of the four sessions. As the pair programming
session was well into the course syllabus—the ninth
and tenth weeks of a 15-week semester—the less
serious students had already withdrawn from the
course. Also, the course is generally taken by juniors
and seniors who have previously demonstrated a
level of responsibility and an ability to work well
with others.

4.9. Pair programming ergonomics
Guideline 9. Pairs should be able to comfortably

sit next to each other as they work, and both should
have easy access to the monitor, mouse, and
keyboard.

At NCSU, the software engineering laboratory has
an ideal pair programming setup. All computers in
the lab have two monitors, two mice, and two
keyboards and the room is arranged as shown in
Figure 1 to facilitate pair-to-pair communication. A
more traditional setup is adequate if two people can
sit comfortably next to each other where both can see
the display (generally a six-foot table per pair). The
litmus test is that the driver and navigator should not
need to switch chairs when they switch roles.

Observations. At Virginia Tech, there was no
laboratory available during the class time, so we
required all students to bring their laptops to class for
the pair programming sessions. The situation was
workable for four sessions, but for more sessions we
would have pursued a lab setting that better promotes
optimal information exchange.

5. Impact on Guidelines Based on
Virginia Tech Experiences

Based upon the Virginia Tech experience, we
suggest one modification and two additions to our
guidelines. First we modify Guideline 4 to the
following:

Revision to Guideline 4. When students are pair
programming outside of a closed laboratory or
classroom setting, instructors should provide a
systematic mechanism for obtaining students’
feedback about their partners and must act upon the
feedback when indications are a student is not being
an equal participant.

If the teaching staff is actively engaged in all
pairing activities, the staff can perform first-hand
intervention on ineffective or problem pairs, thus
reducing the need for peer evaluation. The Virginia
Tech teaching staff did not make use of the pair
evaluation feedback and the experience was mostly
positive. The CS1 class at NCSU also does not
collect or follow up on peer evaluation feedback.
Similar to the Virginia Tech class, the NCSU CS1
class does not require pairing outside of class, and
pairing is only done by the student under the watchful
eye of a TA. However, peer evaluations should
always be conducted when any paired activity occurs
outside of the teaching staff’s observation

450

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 19:44 from IEEE Xplore. Restrictions apply.

Figure 1: Pair Programming Lab at North Carolina State University

Additional Guideline 10. The programmers in

a pair should be working toward a common goal.
In the Virginia Tech class, the two students in a

pair each had individually graded assignments to
complete with the help of his or her partner.
Therefore, when pairing, the students were not
working toward a common goal but were assisting
each other in complete individual goals. The students
in a pair were not on the same project team. The
motivation for this arrangement was to ensure that
each student has a working knowledge of the earlier
project phase results of their team to be able to
implement some portion of the group project’s
interface without another team member. However,
some of the communication and motivation problems
may have been reduced had the two students been
working toward a common goal.

Additional Guideline 11. Teaching staff should
encourage pairs to find answers on their own rather
than providing them with answers.

The TA at Virginia Tech often would provide a
general direction and would redirect questions to the
pairs in hopes of helping them identify ways to find
the answers themselves. In doing so, he could help
the students gain confidence in their ability to work
independently and to learn about searching for and
finding answers. When students work alone, such
question redirection might be frustrating. But, in
pairs, students generally have good luck figuring out

how to solve their problems together, particularly
with general guidance provided by the TA.

6. Summary

Pair programming has been shown to create an
environment conducive to active learning and
collaboration, to help lower student frustration with
challenging problems, to increase programming self-
confidence, and to increase interest in information
technology [1]. In this paper, we present some
guidelines for classroom management when pair
programming is used in the classroom. These
guidelines were developed through the experiences of
over one thousand NCSU students collaborating on
software development in courses over the last seven
years. We compare these guidelines to the
experiences of a Virginia Tech HCI class in which
pair programming was used. The students in the HCI
class pair programmed during four 75-minute class
periods, in the classroom that was monitored by the
TA. The Virginia Tech class followed six of the
NCSU guidelines. They did not follow up on peer
evaluation; have a need to have students promptly
report pairing problems; or have an ergonomic
pairing setup. Because these students only worked in
the classroom with their partners for a short period of
time, none of these turned into problems. As a result,
we evolved the guideline that prescribed that peer
evaluation was an important component for success
of pairing in the general sense. Their experience and

451

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 19:44 from IEEE Xplore. Restrictions apply.

that of the NCSU CS1 class suggests that perhaps
such peer evaluation is only necessary when pairing
is also done outside of the classroom.

We also added two new guidelines. The first
suggests that it is important for students in a pair be
working for a common goal. The second additional
guideline suggests that teaching staff refrain from
telling pairs the answer and instead point them in the
right direction and enable them to find the answer
together. We hope these guidelines can help other
educators be as successful as possible with pair
programming in the classroom.

7. Acknowledgements

We would like to acknowledge the instructors and
teaching assistants at North Carolina State University
who have helped to institute pair programming:
Carol Miller, Suzanne Balik, Ed Gehringer, Matthias
Stallman, Mark Sherriff, Sarah Smith Heckman,
Kristy Boyer and many others. This material is based
upon the work supported by the National Science
Foundation under Grants ITWF 00305917, BPC
0540523, and STTR 0740827. Any opinions,
findings, and conclusions or recommendations
expressed in this material are those of the authors and
do not necessarily reflect the views of the National
Science Foundation.

7. References

[1] S. B. Berenson, K. M. Slaten, L. Williams, and
C.-w. Ho, "Voices of Women in a Software Engineering
Course: Reflections on Collaboration " ACM Journal on
Educational Resources in Computing, vol. 4, no. 1, pp. 1-
18, March 2004.
[2] S. B. Berenson, L. Williams, and K. M. Slaten,
"Using Pair Programming and Agile Development Methods
in a University Software Engineering Course to Develop a
Model of Social Interactions," in Crossing Cultures,
Changing Lives Conference, Oxford, UK, 2005, p. to
appear.
[3] J. Bevan, L. Werner, and C. McDowell,
"Guidelines for the Use of Pair Programming in a
Freshman Programming Class," in Conference on Software
Engineering Education and Training, Kentucky, 2002, pp.
100-107.
[4] B. Hanks, "Problems Encountered by Novice Pair
Programmers," in International Computing Education
Research Workshop, Atlanta, GA, 2007, pp. 159 - 164.

[5] A. Joseph and M. Payne, "Group Dynamics and
Collaborative Group Performance," in Thirty-fourth
SIGCSE Technical Symposium on Computer Science
Education, Reno, NV, March 2003, pp. 368-371.
[6] D. B. Kaufman, R. M. Felder, and H. Fuller,
"Peer Ratings in Cooperative Learning Teams," in
American Society for Engineering Education, Charlotte,
NC, 1999.
[7] L. Layman, "Changing Students’ Perceptions:
An Analysis of the Supplementary Benefits of
Collaborative Software Development," in 19th Conference
on Software Engineering Education and Training
(CSEE&T '06), Turtle Bay, Hawaii, 2006, pp. 156-166.
[8] L. Layman, L. Williams, J. Osborne, S.
Berenson, K. Slaten, and M. Vouk, "How and Why
Collaborative Software Development Impacts the Software
Engineering Course," in Frontiers in Education,
Indianapolis, IN, 2005, pp. T4C 9-14.
[9] N. Nagappan, L. Williams, M. Ferzli, K. Yang,
E. Wiebe, C. Miller, and S. Balik, "Improving the CS1
Experience with Pair Programming," in ACM Special
Interest Group Computer Science Education (SIGCSE)
2003, Reno, 2003, pp. 359 - 362.
[10] D. Oblinger, "Boomers, Gen-Xers, and
Millennials: Understanding the New Students," Educause
Review, vol. 38, no. 4, pp. 37-47, July/August 2003.
[11] B. Simon and B. Hanks, "First Year Students’
Impressions of Pair Programming in CS1," in International
Computing Education Research Workshop, Atlanta, GA,
2007, pp. 73-86.
[12] K. M. Slaten, M. Droujkova, S. Berenson, L.
Williams, and L. Layman, "Undergraduate Student
Perceptions of Pair Programming and Agile Software
Methodologies: Verifying a Model of Social Interaction,"
in Agile 2005, Denver, CO, 2005, pp. 323-330.
[13] L. Williams, "Lessons Learned from Seven Years
of Pair Programming at North Carolina State University,"
Inroads: ACM SIGCSE Bulletin, vol. 39, no. 4, pp. 79-83,
December 2007.
[14] L. Williams, L. Layman, J. Osborne, and N.
Katira, "Examining the Compatibility of Student Pair
Programmers," in Agile 2006, Minneapolis, MN, 2006, pp.
411-420.
[15] L. Williams, C. McDowell, N. Nagappan, J.
Fernald, and L. Werner, "Building Pair Programming
Knowledge Through a Family of Experiments," in
International Symposium on Empirical Software
Engineering (ISESE) 2003, Rome, Italy, 2003, pp. 143-152.
[16] L. Williams, E. Wiebe, K. Yang, M. Ferzli, and
C. Miller, "In Support of Pair Programming in the
Introductory Computer Science Course," Computer Science
Education, vol. 12, no. 3, pp. 197-212, 2002.

452

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 19:44 from IEEE Xplore. Restrictions apply.

