Photomicrograph by Michael W. Davidson

Computational
Aspects of the
Pentium Affair

Tim Coe, Vitesse Semiconductor Corporation
Terje Mathisen, Norsk Hydro

Cleve Moler, The MathWorks

Vaughan Pratt, Stanford University

THE PENTIUM AFFAIR HAS BEEN WIDELY PUBLICIZED.
It started with an obscure defect in the floating-point unit of Intel Corpora-
tion’s flagship Pentium microprocessor. It ultimately led to a deluge of traf-
fic on the Internet, to hundreds of reports in the mass media, to bad jokes
on late-night television, to a $475 million fourth-quarter debit on Intel’s
balance sheet, and to a surge in sales of jewelry made from recycled silicon.
Technically, what was behind it all> How did the world learn about the

defect> How bad is it> How likely is it that scientific and engineering
how the Pentium floating- computations on Pentium-based machines will be affected? If you own a
point division problem Pentj)um, is it possible, and efficient, to wo’rk around the bug wit_h. soft-

. ware? Or should you take advantage of Intel’s offer to replace the chip?

was discovered, and what The short answer is this: there is a very small chance of encountering
you need to know about arithmetic errors on the Pentium that are many orders of magqitude
larger than they should be. If you want to have more confidence in the

the mathematics and arithmetic operations done by the Pentium, you should replace the chip.
computer engineering If that’s inconveni.ent, or while you are waiting for the r'eplacement, you
. should use compilers and application software that incorporate the
involved before deciding workaround described in this article. If you continue to use pre-Pentium
whether to replace the software with an original-issue chip, your computations will probably not

be affected, but you won’t be able to tell for sure.
chip, install the

workaround provided The story unfolds

here, or do nothing. The first signs of the Pentium FDIV bug were seen early last summer by
Intel engineers in California and Oregon and by a mathematics professor
in Virginia. (FDIV is the collective term for several floating-point divide

This is the story of exactly

18 1070-9924/95/$4.00 © 1995 IEEE IEEE COMPUTATIONAL SCIENCE & ENGINEERING

instructions.) Intel became aware of the prob-
lem while developing the Pentium’s not-yet-an-
nounced successor. Since extensive testing of
the Pentium itself had not revealed any difficul-
ties, and since no sign of the bug had been seen
elsewhere, Intel was convinced that the problem
was almost inconsequential. H.P. Sharangpani,
an Intel chip designer, and M.L. Barton, an In-
tel computational scientist, carried out an exten-
sive study during the summer of 1994. How-
ever, their report, “Statistical Analysis of
Floating Point Flaw in the Pentium Processor
(1994),” was not made public until the middle
of December, by which time the bug had most
definitely been seen elsewhere.

Nicely’s prime

Thomas Nicely is a mathematics professor at
Lynchburg College in Virginia. His research in-
volves computational number theory, especially
the distribution of prime numbers. Among all
integers, the primes, p,, occur infrequently. But
they occur often enough to make the infinite
sum of their reciprocals, X 1/p,, diverge. Twin
primes, t,, are pairs of consecutive odd numbers,
like 29 and 31, which are both prime. It is not
known whether there are infinitely many twin
primes, but even if there are, they occur so
rarely that the sum of their reciprocals, X 1/2,
has a finite value. This quantity is known as
Brun’s sum, but it has never been evaluated very
accurately. Nicely set out to compute it. He has
been working on the project for over a year, us-
ing half a dozen different computers and an ex-
tensive collection of software that evaluates sev-
eral interrelated quantities. In March 1994, he
added a Pentium to his collection of machines,
and in June, he noted inconsistencies between
values he was computing using hardware-based
floating-point arithmetic and software-based
multiple-precision arithmetic. It took him four
months to confirm that the difficulty was not in
his own programs, not in his math libraries, not
in his compiler, not in his operating system, but
in the hardware itself.

The pair of 12-digit integers, p and p + 2,
where

p =9824633702441

are twin primes. To 16 significant figures, the
reciprocal of p is

1/p = 1.212659629408667 - 1012

But, the value of the reciprocal computed by the
Pentium is

1/p=1.212659624891158 - 10712

SPRING 1995

The error is after the ninth significant digit. Er-
rors of this size occur all the time in floating-
point computation. But, before the Pentium,
they could always be traced to the use of the 32-
bit, single-precision floating-point format, not
the 64-bit, double-precision and 80-bit, ex-
tended-precision formats that Nicely was using.
(See the sidebar on IEEE floating-point arith-
metic.) Nicely reported the problem to Intel
Customer Support, but did not get an immedi-
ate response.

IEEE Floating-Point Arithmetic

The ANSI/IEEE Standard 754 for Binary Floating-Point Arithmetic, ap-

proved 10 years ago this month on March 21, 1985, is the basis for
the floating-point architecture of all contemporary computers. Any
nonzero number is written in the form

(1 +f)-2¢°

with 0 <= f< 1 and integer e. The quantity fis the fraction, or, less offi-
cially, the mantissa. The quantity e is the exponent. Both fand e must

have finite expansions in base 2. The finite nature of f means that num-

bers have a limited accuracy and so arithmetic may involve round-off
error. The finite nature of e means that numbers have a limited range
and so arithmetic may involve under- and overflow.

Let p be the number of bits used to represent f. Then 27 - fis an inte-
ger. Between any two successive powers of 2, say 2¢ and 2¢*7, there are

2 floating-point numbers, equally spaced a distance 2¢ apart. The
quantity 2, which is the distance from 1 to the next larger floating-

point number, is called the relative accuracy or one unit-in-the-last-place

and is often denoted by &.

The standard allows some flexibility in the number of possible for-
mats and the details of the representation. The instance of the stan-
dard implemented on the Pentium and previous intel microprocessors
provides three formats:

Single Double Extended
precision precision precision

Word size in bits 32 64 80

Bits for f 23 52 63

Bits for e 8 1 15

Relative accuracy 2723~1.2.107 252222.107% 278=11.1071

Approximate range 25177~ 10t otz qots

For example, to express the decimal fraction 1/10 in base 2 requires
an infinite series,
1/10=(1+27+244254+284294 2712427134+). 2

Floating-point approximations to 1/10 are obtained from 23, 52, or
63 terms of this series. Binary numbers are often printed by grouping

four bits at a time into a base 16 or hexadecimal representation. The re-

sulting approximations to 1/10 are

Single precision: 1.9999%a - 27*
Double precision: 1.999999999999%a - 27

Extended precision: 1.999999999999999%a - 27*

ot6383 1 ote964

COMPUTATIONAL ASPECTS OF THE PENTIUM AFFAIR

Figure 1. Testing
25 billion random
integers, Andreas
Kaiser found 23
whose reciprocals
are computed inac-
curately by the
Pentium. Here is
part of that list,
with floating-point
representations.

20

On October 30, Nicely sent an e-mail memo
to several other people he knew were doing
technical computations on the Pentium. It was
forwarded to Richard Smith, president of Phar
Lap Software, who posted it to the Canopus fo-
rum on CompuServe, a commercial network
devoted largely to PC users. Alex Wolfe, a re-
porter for the EE Times, a computer-industry
weekly newspaper, spotted the CompuServe
posting and sent it on to one of us—Terje
Mathisen—the first of the authors of this article
to get involved.

Wolfe sent the memo to Mathisen because
Mathisen had, the day before, coincidentally
posted a note to the Internet news group
comp.sys.intel about the accuracy of the Pen-
tium transcendental math functions. The Pen-
tium uses different algorithms than earlier Intel
chips. The results for functions like sin(x) have
improved accuracy and may differ in the least
significant bit of the double-precision represen-
tation. As a result, the Pentium actually fails a
test program designed for the earlier chips.
Mathisen’s posting explained all this and
pointed out that it was unimportant. But the er-
ror Nicely had uncovered in 1/x was far larger
and completely unexpected.

On November 3, Mathisen posted an article
with the title “Glaring FDIV bug in Pentium!”
to comp.sys.intel. He used Nicely’s prime and
included a small test program. On November 7,
the EE Times ran a front-page story by Wolfe
with the headline “Intel Fixes a Pentium FPU
Glitch.” These stories set off a frenzy of Inter-
net activity. At the height of the frenzy a month
later, over 2,000 messages a week were being
posted to comp.sys.intel, and articles about the
Pentium or FDIV were being posted to over
300 news groups.

Kaiser’s list

After Mathisen’s posting, several people be-
gan experiments to assess the extent of the er-
ror. In a few days, Andreas Kaiser, a computer

3221224323 = 1.7fff£70600000 . 231
12884897291 = 1.7ffff70580000 . 233
206158356633 = 1.7ffff704c8000 - 2%
824633702441 = 1.7fff£f£7052000 - 23°

1443107810341 = 1.4fffedac25000 - 240
6597069619549 = 1.7fffff7057400 . 24
9895574626641 = 1.1fffc6bc2a200 - 24
13194134824767 = 1.7f£f£704e7e00 . 243
26388269649885 = 1,7ffff704fddoo . 24
52776539295213 = 1.7ff££7046£680 . 245

consultant in Stuttgart, Germany, generated 25
billion random integers and checked the accu-
racy of the computed reciprocals. He posted a
list of 23 integers whose reciprocals are com-
puted inaccurately by the Pentium.

The exponent portion of the floating-point
representation is not involved in the error con-
dition, so scaling by powers of two does not
have any significant effect. Kaiser scaled his val-
ues to be integers to avoid the difficulties asso-
ciated with binary conversion of decimal frac-
tions. Figure 1 shows a portion of this list, plus
the integers’ hexadecimal floating-point repre-
sentations. The first number, 3221224323, is
the smallest integer whose reciprocal fails.
None of these numbers can be represented ex-
actly in single-precision floating-point format,
so at this point it still appeared that the diffi-
culty was limited to double precision.

The first thing to notice about Kaiser’s list is
the string of £’s in each hexadecimal represen-
tation. In fact, all but two of the numbers on the
list start with 1. 7££££. Each £ corresponds to
four ones in binary. So, in almost all of Kaiser’s
numbers, the first 20 bits after the leading bit
have to be a single zero, followed by at least 19
ones. The two exceptions to this pattern on
Kaiser’s list have at least 12 ones near the be-
ginning of the fraction. After these leading
ones, the bit pattern is not so obvious, but it’s
still important.

Coe’s ratio

One of us, Tim Coe, was reading
comp.sys.intel because he was thinking of buy-
ing his own Pentium-based computer. Coe, an
electrical engineer, has designed floating-point
chips. He was particularly intrigued by Kaiser’s
list of erroneous reciprocals, which provided a
rare glimpse at the inner workings of another
designer’s creation. Coe was able to use the list
to devise a model of the behavior of the Pen-
tium division algorithm that explained its er-
rors. Earlier Intel floating-point chips had used
a fairly simple, binary, repeated-subtraction al-
gorithm for floating-point division. But the
Pentium has Intel’s first implementation of a
radix 4 SRT algorithm. SRT refers to the au-
thors of the original algorithm, D. Sweeney,
J.E. Robertson, and T.D. Tocher, whose work
was published in 1958. The use of 4 for the
radix, or number base, produces two bits in the
quotient on each machine cycle, effectively dou-
bling the performance over earlier chips run-
ning at the same clock rate.

Kaiser’s and other early experiments had fol-
lowed Nicely’s example and concentrated on

IEEE COMPUTATIONAL SCIENCE & ENGINEERING

computing reciprocals, 1/x. But the FDIV com-
mands, and Coe’s model, accept a pair of float-
ing-point arguments, ¥ and y, and compute
their ratio, y/x. Coe realized that the situations
leading to the largest errors involved both x and
y and bit patterns that “conspire” to excite the
bug at an early stage in the division. He illus-
trated this with the example 4195835/3145727
in a posting to comp.sys.intel on November 14,
1994. The true value is

1.33382044...
But the value computed by the Pentium is
1.33373906...

The Pentium value is accurate to only 14 bits, or
less than five significant decimal digits. The rel-
ative error is 6.1-1075. This is worse than single-
precision round-off error and over ten orders of
magnitude worse than double-precision round-
off error.

On November 15 one of us, Cleve Moler,
posted a summary of what was known at the time
to comp.sys.intel, as well as to the Internet news
groups devoted to numerical analysis and to Mat-
lab, the mathematical software package put out
by the MathWorks. He used Nicely’s prime and
Coe’s ratio as examples. By this time, the Net
had become hyperactive and the posting was re-
distributed widely. A week later, reporters for
major newspapers and news services had Xeroxed
copies of faxed copies of printouts of Moler’s
posting. At the same time, Moler began a series
of postings about possible software workarounds
for the bug and announced that the MathWorks
would release a Pentium-aware version of Matlab
that incorporated the workaround (see the side-
bar on the Internet’s role).

The story began to get popular press cover-
age when Net activists called their local newspa-
pers and TV stations. On November 22, the
Cable News Network was the first of the mass
media to carry the story. Their report included
brief interviews with Moler and with Stephen
Smith, Intel’s Pentium engineering manager.
On Thanksgiving day, November 24, stories
appeared in a number of major newspapers, in-
cluding the New York Times, Boston Globe, and
San Jose Mercury News. The Times story in-
cluded a sidebar entitled “Close, But Not Close
Enough,” which used Coe’s ratio to illustrate
the problem. The story on page one of the
Globe had the headline “Sorry, Wrong Num-
ber” and demonstrated the error by evaluating
Coe’s ratio in a spreadsheet.

SPRING 1995

The Role of the Internet

Bits, bugs, chips, and hexadecimals make up one side of this story.
But looked at from a different perspective, the Pentium affair is also a
story about the Internet. The initial publicity, the intense reaction, the
source of media coverage, and the eventual corporate responses have
all been on the Internet.

The authors of this article have never met face-to-face. Their collabo-
ration is all by Internet, e-mail, and telephone. And they have offered
the workaround to compiler vendors, commercial software developers,
and ordinary folks via the Net. Certainly the facts would not have been
discovered or disseminated as they were without this relatively new
communication tool, which has now become a new medium for scien-
tific investigation. —£d.

By late November, Intel was offering to re-
place the chip for customers who could con-
vince interviewers that they were heavy users of
floating-point arithmetic. The Intel white paper
by Sharangpani and Barton began to receive
limited distribution outside the company. The
first section of the paper outlines the SRT divi-
sion algorithm and explains the defects in Pen-
tium implementation. The description confirms
the essendal features of Coe’s model.

The division algorithm

To get an idea of the source of the FDIV bug,
consider the computation of Coe’s ratio using
long division and decimal arithmetic. After ob-
taining the first four significant digits of the
quotient, the worksheet might look something
like Figure 2 on the next page. What would you
choose for the next digit in the quotient? The
correct choice, when multiplied by the divisor,
must produce a value close to, but less than, the
remainder. When we do this by hand, we do
not use precise algorithms for determining the
digits; we use a combination of trial and error,
experience, pattern matching, and luck. In this
example, you can divide 25, the first two digits
of the last remainder shown, by 3, the leading
digit of the divisor, and correctly guess that the
next digit in the quotient must be an 8.

"The Pentium would do the same computation
using radix 4, rather than decimal, arithmetic.
In radix 4 notation, the normalized numerator
and denominator are

4195835 /222 = 1.00000113323
3145727 /271 = 1.13333333332

The SRT algorithm constructs the quotient
from the digits -2, -1, 0, +1, and +2. Using

21

COMPUTATIONAL ASPECTS OF THE PENTIUM AFFAIR

1.3337

3145727 ‘ 4195835
3145727

10501080
9437181

10638990
9437181

12018090
9437181

25809090

PP??°772°7

Figure 2. Computing Coe’s ratio using long divi-
sion and decimal arithmetic. The first four signifi-
cant digits of the quotient have been found. What

comes next?

q+ 1.0000002?
g- = —0.1111110?

1.13333333332 ‘ 1.00000113323
1.13333333332

~133332200030
-113333333332

—-133322000320
—113333333332

—133220003220
—-113333333332

—-132200032220
—113333333332

-122000322220
—113333333332

—-020003222220
-113333333332

© 333301111120
233333333330

333011111300

piededrielele bl b o ¥l

Figure 3. Computing Coe’s ratio using the radix 4 SRT algorithm. The
divisor, dividend, and partial remainders are represented in base 4, with
digits 0 through 3. But the quotient has a nonunique representation
with positive digits in g+ and negative digits in g—. The first eight steps
are shown. What is the next quotient digit? This is where the Pentium

goes wrong.

22

five digits with radix 4 leads to a nonunique
representation, but allows the digits to be cho-
sen quickly. Figure 3 shows the first eight
steps of the algorithm. Even though the nor-
malized numerator is less than the denomina-
tor, the algorithm chooses +1 as the first digit.
This leads to a negative remainder and a
choice of -1 as the second digit. This is re-
peated five more times. Then the remainder
becomes positive and +2 is chosen as the
eighth digit in the quotient. It is now time to
choose the ninth digit. The correct choice
would be another +2, but this is where the
Pentium makes the error.

The bug: A fauity lookup table

The quotient digits are obtained by table
lookup in a two-dimensional array. One index
into the table, obtained from the first five bits in
the divisor, is fixed throughout the division. For
this example, the quotient index, in binary, is
1.0111. The first bit, which is always 1, is
skipped. The other four bits indicate that the
seventh column in the table should be used.
The other index changes at each step and is
generated by the first seven bits of the carry-save
representation of the remainder. This is a
nonunique representation of the remainder as
the sum of two quantities, the sum word and the
carry word, which reduces the dme required by
the carry operations generated during addition.
In the SRT algorithm, the absolute value of the
remainder is bounded by 8/3 of the divisor. For
this example, the maximum remainder would be
represented in radix 4 by a long string of 3’s.
This maximum was nearly reached on the
eighth step in the example, but it turns out that
the first seven bits of the carry-save representa-
tion are only 0011110. At the ninth step, the re-
mainder is actually slightly smaller, but the first
seven bits of its carry-save representation are
0011111, which is the maximum value. The table
entry associated with this extreme case is missing.
The last active entry in five columns of the SRT
quotient digit table was omitted when the table
was implemented in the Programmable Lookup
Array on the chip. In effect, a zero is used in-
stead of the +2. Nothing is subtracted from the
remainder. The subsequent multiplication by 4
overflows the register and, although the algo-
rithm proceeds to generate several more digits,
it cannot recover.

The quotient digit table has 16 columns in-
dexed by the first four bits after the leading bit
in the divisor. The bound on the size of the re-
mainder implies that the active portions of these
columns are not all the same length. The last

IEEE COMPUTATIONAL SCIENCE & ENGINEERING

active entry in columns 1, 4, 7, 10, and 13 is
missing. In hexadecimal notation, the indices of
these defective columns are 1, 4, 7, a, and d.
We call a floating-point number an at-risk divi-
sor if it contains a sequence of bits that might
lead to referencing one of the missing entries in
the SRT quotient digit table. A precise charac-
terization of at-risk divisors is hard, but there is
a necessary condition that is easy to test. The
first eleven bits, including the leading bit, must
be one of these five sequences:

.0001111111
.0100111111
.0111111111
.1010111111
.1101111111

N

In other words, the first eleven bits must be a
one, followed by one of the five hexadecimal
characters associated with the defective
columns, followed by six more ones. Having an
at-risk divisor certainly does not guarantee that
there will be an FDIV error; the actual occur-
rence requires conspiring bit patterns in the nu-
merator and denominator. But we can say that if
the denominator does 7ot contain one of these
five bit patterns, an FDIV error will not occur.
A picture of the floating-point numbers be-
tween any two powers of two looks something

like this:

There are five small subintervals, corresponding
to the five defective columns in the quotient
digit table. The length of each subinterval is
1/1024 of the overall length. Any division in-
volving a divisor outside these subintervals is
OK. And, only a small fraction of divisions in-
volving divisors inside the subintervals produce
erroneous results. For example, the hexadecimal
representation of the denominator in Coe’s ra-
o, 3145727, is

1.7f£££8000000 - 22!

The digit 7 places this number in the third de-
fective column. It is followed by 17 ones, far
more than the six required to characterize it as
an at-risk divisor.

Distribution of errors

It is helpful to visualize the errors as being
laid out on the real plane, with a mark at each
point (x, y) where the Pentium miscalculates y/x.

SPRING 1995

A small portion of such a picture is shown in Fig-
ure 4, generated by Larry Hoyle of the University
of Kansas. Since the IEEE floating-point standard
employs signed-magnitude mantissas, the four
quadrants of the plane behave identically with
respect to division, allowing us to confine our
attention to the positive (upper right) quadrant.

The condition characterizing at-risk divisors
is complicated enough, but the condition char-
acterizing a conspiring dividend which actually
produces an error is hopelessly complicated.
This is because the SRT algorithm holds the di-
visor fixed, whereas the dividend, in effect,
changes each step in a nearly chaotic way. Basi-
cally, a dividend is at risk when at some point in
the process it yields a partial remainder whose
leading seven bits causes it to access the missing
table entry for the column accessed by the divi-
sor. This characterization cannot be used to de-
cide whether a given dividend is at risk without
a detailed model of the Pentium division hard-
ware (or a working Pentium), which is beyond
the scope of this article. However, it is possible
to exhaustively test all possible single-precision
quotients and to carefully sample double-preci-
sion and extended-precision quotients.

The bit patterns characterizing the at-risk di-
visors are 11 bits wide. So, for example, in the
broad band [1024, 2048), the five at-risk bands
have unit width. Furthermore, almost all of the
errors involve divisors with eight or more ones

Pentium FDIV error

1 .333840000]'
1.333820000

1.333800000-

1.333780000+

1.333760000

xfy 1.333740000-

1.333720000+

1.333700000 1 040 3145727+
1.333680000

4195835+

Figure 4. Larry Hoyle illustrated the range of numbers miscalculated by the
Pentium chip using an Excel spreadsheet. He divided 4195835 by 3145727
and then varied the numbers slightly. The bug is shown in the perfora-
tions through the upper surface, which corresponds to correct results.

23

COMPUTATIONAL ASPECTS OF THE PENTIUM AFFAIR

after the characteristic 1, 4, 7, a, or 4, so the
errors turn out to be concentrated near the
right edge of each of these bands. One experi-
ment involved all the single-precision denomi-
nators in these narrower bands, together with
all the single-precision numerators between two
successive powers of two. The results are sum-
marized in the first row of Table 1.

The first row lists the errors actually observed
for single-precision operands. The next two rows
are extrapolated from the first under the plausi-
ble hypothesis that errors occur at the same rates
at all operand precisions. The results are tabu-
lated by the size of the error in the quotient; any
error large enough to affect single precision is
classified as a single-precision error, and so on.

A total of 9,915 errors were observed for sin-
gle-precision operands. We expect this figure
understates the true amount by nearly 600 ow-
ing to the difficulty of observing errors in the
least-significant bit of extended precision. Of
the 9,915 errors, 7,863 were larger than the er-
ror attributable to working at double precision,
and hence should count as errors when per-
forming double-precision arithmetic. And 1,738
of these errors were larger than the error attrib-
utable to using single precision. (Our experi-
ments ignore the floating-point exponents and
so do not take into account the possibility of
underflow or overflow. Our table should there-
fore be interpreted as applying to the “normal
operating range” in which these extremes are
not encountered.)

The numbers on the diagonal in Table 1 are
good estimates of the number of errors that
would be counted in an experiment that in-
volved all possible numerators and denomina-
tors in the interval between two successive pow-
ers of two. It would take too long to run such an
experiment, but we have accomplished practi-
cally the same thing by looking only at single
precision, and looking only at at-risk denomina-
tors. The total number of operands in such an
experiment would be (22%)?, (252)2, and (263)?,
which are roughly

Table 1. The number of dividend/divisor pairs that cause Pentium er-
rors, by precision of operands and size of error (what level of precision
the resulting quotients failed to meet).

Operand Quotient error level:

precision Single Double Extended

Single 1,738 7,863 9,915

Double 5.009 - 1020 2.266 - 1071 2.858 - 107

Extended 2.101 - 10?7 9.502 . 10% 1.199 - 10%8
24

7.037 - 10" for single precision,
2.028 - 10°! for double precision, and
8.507 - 10*7 for extended precision.

The probability of an FDIV error can now be
obtained by dividing the counts on the diagonal
in Table 1 by the total number of possible
operands. The error rates are the reciprocals of
the probabilities:

Probability = Rate
Single: 2.470.10711 40.10°
Double: 1.117 . 10710 9.10°
Extended: 1.409.1071° 7.10°

By coincidence the rates are all within a percent
of being an integer multiple of billions. One in
about 40 billion operand pairs delivers a single-
precision error, one in about 9 billion a double-
precision error, and one in about 7 billion an
extended-precision error.

The 9,915 errors turn out to be quite uni-
formly distributed. Table 2 gives the number
of single-precision operand pairs for a given
cycle at which an error occurs, listed by row,
and for a given divisor column, listed by col-
umn. The sum of the (34 — 8) - 5 = 130 entries
is 9,915.

From considerations of errors made by the
Pentium in failing to correctly round certain
otherwise correct quotients, we have deduced
that the Pentium’s implementation of the
SRT algorithm runs for exactly 34 cycles. In
searching for errors we set the threshold of
observed error too high to detect errors in the
34th cycle, or in the 33rd cycle in the case of
the first column of divisors, and there are
probably a few other omissions from cycle 33.
Based on the lower half of the table we would
expect cycles 33 and 34 to contribute about
410 errors each, which would bring the total
number of single-precision errors to approxi-
mately 10,490.

Distribution of residuals

The Pentium division errors have a particu-
larly simple form when viewed in terms of the
residual, y — (y/x) - x. The residual is always a
power of 2 (thatis, ..., 0.25,0.5, 1, 2, 4, ...) ex-
cept when the divisor x occurs in the first col-
umn (begins with 1.0001111111), in which case
it is three times a power of two (..., 0.75, 1.5, 3,
6, 12, ...). This empirically observed behavior
can be deduced from the values of the divisor
where the error can occur and the fact that the
missing table entries are just below the bound-

ary y = (8/3)x.

IEEE COMPUTATIONAL SCIENCE & ENGINEERING

Let’s consider the case involving the first de-
fective column with, for example, x = 18, y =
(8/3) - 18 = 48. The SRT algorithm should sub-
tract 2x from y yielding 12, and multiply by 4
yielding 48 again. Instead it skips the subtrac-
tion, and the multiplication by 4 yields 192, at a
scale that puts this quantity in an 8-bit register
and makes 128 the sign bit. Hence the algo-
rithm sees —64, an impossible value for which
the table gives the quotient the digit 0. At the
next cycle a further multiplication by 4 drives
the 192 out of the register altogether, and it dis-
appears unnoticed. Equivalently we may say
that 192 . 4, which equals 3 . 256, is mistaken
for zero two cycles after first encountering a
missing entry, making the error 768 at that
stage, equivalent to an error of 192 at the previ-
ous cycle. The total sequence of quotient digits
determined by the algorithm is identical to what
it would have been had 192 (scaled by the ap-
propriate power of two) been subtracted from
the dividend in the beginning.

When x = 21,y = 8/3 - 21 = 56. Multiplying y
by 4 yields 224, which the algorithm mistakes
for —32. This is in the permitted range for this
divisor, namely —56 to 56, and the algorithm
proceeds normally. The loss therefore is 224 -
(=32), or 256, one cycle after encountering the
missing entry.

When x =24, y = (8/3) - 24 = 64. Multiplica-
tion by 4 yields 256, which the algorithm mis-
takes for 0, well within the permitted range, and
hence we have lost 256 in the same way as for
= 21. (This is the error we saw at the ninth step
of the worked example above.) The correspond-
ing calculations for x = 27 and 30 yield the
same conclusion: the algorithm recovers in one
cycle and effectively loses 256 from the partial
remainder.

For the general case, when y is a small dis-
tance below the (8/3)x boundary, the missing
table entries permit the sampled partial remain-
der to be at most two less than the boundary
case (at a scale that makes 128 the sign bit).
(This is true whether the partial remainder is
represented in binary or, as on the Pentium, in
redundant carry-save format.) This is not
enough of a departure from the boundary case
to change the fact that the algorithm recovers in
two cycles for x in the 18 column and in one cy-
cle otherwise. In all cases the error is caused by
mistaking one multiple of 256 for another, in
the first case yielding an error of exactly 3 - 256,
in the remaining four exactly 256 (or 4 - 256
when measured in the same cycle that the 3.256
is measured in), even when the dividend is
slightly less than 8/3 the divisor.

Sering 1995

Table 2. Distribution of single-precision errors, by SRT cycle number and

defective column number. Early cycle numbers produce larger errors.

Errors, by divisor column

Division cycle 18 21 24 27 30 Total
9 | 9% 35 16 12 16 | 175
10 | 128 43 95 28 26 | 320
11 1 108 52 9 56 102 | 414
12 1 46 88 45 94 | 394
13 1 139 51 99 51 95 | 435
14 1 140 54 91 45 95 | 425
15 | 128 54 109 52 97 | 440
16 1 139 52 99 50 8 | 426
177 | 136 54 104 47 98 | 439
18 1 138 54 102 47 91 | 432
19 1 134 57 104 37 8 | 417
20 | 140 46 103 44 83 | 416
21 1 127 50 101 38 89 | 405
22 1 132 54 100 45 68 | 399
23 1 140 49 95 43 92 | 419
24 | 138 53 101 49 89 | 430
25 | 134 50 99 46 91 | 420
26 | 13 53+ 95 42 82 | 403
27 1 132 48 94 41 94 1 409
28 1 134 51 95 40 8 | 406
29 | 137 50 92 46 93 | 418
30 | 134 55 100 39 85 | 413
31 1 128 54 102 41 80 | 405
32 1 135 53 96 40 83 | 407
33 | 0 48 8 46 73 | 248
34 | 0 0 0 0 o | 0

Total 3,149 1,266 2357 1,070 2073 | 9915

Bruised integers

Computations that divide only integers
having together at most nine digits are free of
errors, as far as we have been able to tell. The
shortest integer examples of the error we
have seen are 7/402651871, 7/805303742,
57/50331637, 383/3145725, 383/6291450,
861/4718589, and 861/9437178.

At the other extreme, small bruised integers
are at far greater risk. Choose two integers from
1 to 100 at random and bruise them by subtract-
ing one millionth from each. For example, the
quotient 5/15 becomes

4.999999
14.999999

The correct quotient starts with six 3’s,
0.33333329, but the Pentium’s value has only
four 3’s, 0.33332922.

If one of these bruised integers is divided by
the other, the chances of encountering a cycle

25

10 error (the second largest possible) is .08 per-

a COMPUTATIONAL ASPECTS OF THE PENTIUM AFFAIR

26

cent. For a cycle 11 error it is .15 percent, and
for cycle 12, .17 percent. Compare these figures
with those for random data. The chance of a cy-
cle 10 error for operands with uniformly dis-
tributed mantissas is one in 218 billion, a tiny
fraction of the one in 9 billion double-precision
errors. The error rate for small bruised integers
is more than eight orders of magnitude higher!

Even worse rates are possible under certain
circumstances. Suppose that before performing
the division one multiplies the first number by
the second and the second by 3. For example if
the bruised integers were 6.999999 and
1.999999, their product would be 13.999991
and the second times 3 would be 5.999997, and
in this example 13.999991/5.999997 happens to
produce a cycle 10 error, corresponding to a rel-
ative error of a little under one in a hundred
thousand. With this procedure the error rate in-
creases to .21 percent, 1.13 percent, and .68 per-
cent for cycles 10 through 12 respectively. So
more than one in a hundred divisions of
operands produced in this way have a relative
error larger than one in a million.

Slightly larger bruising can produce cycle 9
errors, the maximum possible. If instead of
bruising by subtracting a millionth we subtract
one over a hundred thousand, the procedure of
the preceding paragraph has a .1 percent chance
of producing a cycle 9 error, corresponding to
10 such errors out of 10,000 possible pairs of
operands.

The FDIV bug'’s effect on other
instructions

In addition to the floating-point division in-
structions, the Pentium’s faulty division cir-
cuitry affects three other groups of instructions:
remainder, tangent, and arctangent. The re-
mainder function is defined by

rem(y, x) =y — nx

where # is the integer part of y/x. If the quotient
y/x is inaccurate and so large that the error oc-
curs to the left of the decimal point, then » and
hence the final result will be incorrect. An ex-
ample can be obtained by scaling the numerator
of Coe’s ratio:

= rem(2"° - 4195835, 3145727)
rem(137489121280, 3145727)

~
1

The correct value is » = 1977018, but the Pen-
tium-computed value is » = 11414199.

"The Pentium has instructions for evaluating a
number of transcendental mathematical func-
tions. Because division is the slowest arithmetic
operation, many of the algorithms were de-
signed to avoid divisions altogether. So the
computation of functions like exp(x), sin(x), and
cos(x) does not use the defective division cir-
cuitry. The computation of the logarithm, In(x),
does involve a division, but only of numbers
that avoid the at-risk denominators. Of all the
transcendental functions, only tangent and arc-
tangent are affected by the faulty division.

Tangent. The tangent function, tan(x), is
evaluated by first safely computing sin(x) and
cos(x). But then, the final division, tan(x) =
sin(x)/cos(x), can fail. The failure is extremely
rare because x must be a value for which cos(x)
is an at-risk denominator and sin(x) is a conspir-
ing numerator. But such values do exist. One
example is

x=10.8549592142878324
The correct value of tan{x) is
tan(x) = 1.149782816566037
The Pentium-computed value is
tan(x) = 1.149782816388642

The relative error is about 1.5 - 1071%, In hexa-
decimal,

cos(x)=1.4fffe80161df7 - 27}
shows an at-risk pattern.

Arctangent. The Pentum’s FPATAN instruc-
tion evaluates the four-quadrant arctangent
function, which adds multiples of m to
arctan(y/x) to reflect the Cartesian quadrant of
the point (x, y). We don’t know all the details of
the Intel proprietary algorithm, but it is proba-
bly based on an identity like

arctan (y/x) = arctan ¢ + arctan (MJ
X +ty
The first term on the right could be obtained
from a table, stored on the chip, of a few dozen
values of arctan(z). The second term is a small
correction, which can be computed quickly. For
each x and y the value of t closest to y/x is cho-
sen, but the computed value of y/x is not actu-
ally used. The only division that affects the final
accuracy is the computation of the argument of

|EEE COMPUTATIONAL SCIENCE & ENGINEERING

the correction term. But an inaccurate division
is possible here. For example, with y =
0.9333324451392881 and x = 1 the correct

value is
arctan(y/x) = 0.7509285877097011
But the Pentium computes
arctan(y/x) = 0.7509285896965135

"This can be explained by taking ¢ to be 15/16 =
0.9375. The crucial division would be

(y-1) _ =0.0041675548607119
(I+ty) 1.874999167318082

In hexadecimal, the denominator,
1.df£££207a88ch, shows an at-risk pattern.

How will the errors affect technical
computations?

The simplest model of the FDIV bug assumes
that mantissas are uniformly distributed, in
which case the above-mentioned error rates of
one in 40, 9, and 7 billion divisions for respec-
tively single, double, and extended precision
hold. This is the only case considered by the
Intel white paper describing the bug and as-
sessing its impact. The most widely quoted
conclusion reached in this paper was the
following:

In fact, extensive engineering tests demonstrated

that an average spreadsheet user could en-

counter this subtle flaw of reduced precision
once in every 27,000 years of use.

The 27,000 year figure follows from the nine
billion double-precision error rate and a claim
that a typical spreadsheet user does roughly
1,000 divisions per day, or about 1/3 million di-
visions per year.

If the erroneous operand pairs had been dis-
tributed at random, this model would be a reli-
able indicator for almost all applications, even
those with far from random data. But as we
have seen, the at-risk divisors cluster just below
integers that are multiples of three, scaled by
powers of two. This distinctly nonrandom be-
havior reduces the risk for certain applications,
and increases it for certain others.

On December 12, IBM Corporation an-
nounced that they were suspending sales of any
Pentium-based models of their personal com-
puters. The IBM press release included the fol-
lowing paragraph:

SPRING 1995

Intel has said that in purely random situations
the likelihood of a customer encountering an er-
ror is only once in 27,000 years and that off-the-
shelf software is not affected. However, IBM
tests indicate that common spreadsheet pro-
grams, recalculating for 15 minutes a day, could
produce Pentium-related errors as often as
once every 24 days. For a customer with 500
Pentium-based PCs, this could result in as many
as 20 mistakes a day.

The IBM study substantiating this claim is
available from their World Wide Web site.
Their analysis questions the assumption of uni-
formly distributed operand pairs and points out
that certain types of operations on numbers ex-
pressed in decimal notation with two digits after
the decimal point are likely to produce what we
have called bruised integers. They claim it is rea-
sonable to assume the probability of encounter-
ing an error-producing denominator and numer-
ator is 1 in 1,000 and 1 in 100,000, respectively,
and hence that the FDIV error rate is "typically”
1 in 100 million. A separate argument, based on

(1) the Pentium’s speed,

(2) a claim that I out of every 16,000 operations
is probably a division, and

(3) an assumption that a typical spreadsheet
user does 15 minutes of intensive computa-
tion per day

leads to an estimate of 4.2 million divisions per
day. This is combined with their 1 in 100 mil-
lion error rate to obtain the 24 days figure.

Who is right, Intel or IBM? We agree with
William Kahan, a professor at Berkeley and pri-
mary architect of the IEEE floating-point stan-
dard. The original New York Times story on the
FDIV bug quoted Kahan:

These kind of statistics have to cause some wonder-

ment. They are based on assertions about the prob-
ability of events whose probability we don’t know.

Kahan is right. We don’t know how the float-
ing-point numbers involved in serious technical
computations are distributed, we don’t know
what fraction of them trigger the FDIV bug, we
don’t know the distribution of the magnitude of
the errors that would result and, as both the In-
tel and IBM documents make clear, we don’t
have any idea how frequently divisions occur in
practice.

Even if we did know all these distributions
and probabilities, it is our opinion that these
simple probabilistic models are missing the
point. Numerical analytic round-off error
analysis, the IEEE floating-point standard, and
everyone’s confidence in the results of technical
computation are all based on a model of float-

27

4

COMPUTATIONAL ASPECTS OF THE PENTIUM AFFAIR

ing-point arithmetic which simply fails to hold
on the Pentium.

The software workaround

One of the first ideas for a software replacement
of the division instruction was to use the chip to
compute an approximate reciprocal, 1/x. This
would be followed by a couple steps of New-

/‘\ Slow, Division Ahead

\Q' 2 The widely-publicized flaw in Intel's Pentium micro-
processor affects some operations involving the chip's
floating point unit, which speeds up calculations that
must be very precise. A piece of computer code called
a software patch is being written to work around the
problem. This patch will have to be added to popular software
programs, like Microsoft Excel, and in some cases will slow down
the performance of the computer.

The errors occur when the processor performs some division
calculations. Computers use the binary system — 1's and 0's —
instead of decimal numbers, so, for example, 22 is represented

as 10110. In division problems where the result is not a whole
number, the floating point unit consults a "look-up table" to find
the closest binary equivalent. In most microprocessors the look-up
tables are accurate to 16 digits, but some parts of the Pentium's
look-up table are accurate to only 5 digits, far less precise than
other chips.

USUALLY, TOP SPEED Most of the computer's
operations using the floating point unit will
be unaffected by the software patch.
The patch is only activated when the
computer performs a calculation
involving division.

RUBBERNECKING The patch slows the computer
down a bit to inspect all division problems for
a certain kind of number, containing the
binary equivalent of the numbers 1,
4, 7,10 or 13, followed by several
binary 1's, in a certain location. If
none are present, the computer
resumes normal speed.

ALTERNATE ROUTE If the potentially trouble-
some numbers are present, the patch
multiplies both parts of the division
problem by 15/16. Adding this step
will always force the computer to
use an accurate part of the look-up
table instead of the flawed part.

But it makes the calculation take twice as long.

Courtesy Dylan McClain and Patrick J. Lyon of The New York Times

28

ton’s method to improve the accuracy and then
a multiplication by y to obtain the final result.
There are two things wrong with this idea. It
would be unnecessarily slow, and it would not
be as accurate as we would like. Even if the
Newton iteration generated the correctly
rounded value of 1/x, the multiplication of y by
1/x would not have the same round-off proper-
ties as a correct division, y/x.

Another suggestion would have followed each
division z = y/x by a residual calculation » = y -
xz. If the residual were too large, the division
could be redone in software by Newton’s
method. Again, this would be slow and not fully
accurate. The software workaround we eventu-
ally adopted doesn’t compute the residual and
doesn’t do any divisions in software.

Three authors of this article (Moler, Coe, and”
Mathisen) have been working with a group of
hardware and software engineers from Intel,
and Peter Tang, who is from Argonne National
Laboratory but is on sabbatical in Hong Kong.
We have developed, implemented, and tested
software (and proved the algorithms correct) to
work around the FDIV bug and also around the
related bugs in the Pentium’s on-chip tangent,
arctangent, and remainder instructions.

The general approach to our FDIV
workaround was presented in one of three arti-
cles in the New York Times on December 14,
1994. We've reproduced the Times’ sidebar here
because it is a rare example of the accurate ex-
position of mathematical algorithms in the pop-
ular press. The key to our workaround is the
fact that the chip does a perfectly good job with
division almost all the time. All we need to do is
avoid the operands that lead to errors. In our
workaround, the denominator is quickly tested
before each FDIV is done; if it is not an at-risk
denominator, the FDIV can be done safely. If it
is, the workaround multiplies both numerator
and denominator by 15/16. This does not
change the quotient, but it takes the denomina-
tor out of the unsafe region and insures that the
subsequent FDIV will be accurate.

With this approach, it is not necessary to test
the magnitude of the residual resulting from a
division. We know a priori that all divisions will
produce correct results. If desired, an additional
test can compare the result of scaled and un-
scaled divisions and count the number of FDIV
errors that would occur on an unaided Pentium.
The Pentium-aware version of the Matlab soft-
ware offers this test, but it can be turned off for
maximum execution speed.

When an at-risk single- or double-precision
denominator is encountered, the floating-point

|EEE COMPUTATIONAL SCIENCE & ENGINEERING

static char fdiv_bug;

long double fdiv(long double x, long double V)

{

static char fdiv_risk{[16] = {0,1,0,0,4,0,0,7,0,0,10,0,0,13,0,0};

static float fdiv_scale =
static float one_shl_63 =

0.9375;

if (fdiv_bug) {
unsigned long t, *py =
do {
t =pyll];
if (t & 0x80000000) {
t *= 0x07e00000;

(65536.0%65536.0%65536.0%32768.0) ;

(unsigned long *) &y;

/* Invert six bits */

if (t & 0x07e00000) break; /* Does not have six 1 bits! */

if (fdiv_risk[(t >> 27)-32] ==

) break; /* Not at-risk!*/

X *= fdiv_scale; /* 15/16 */

y *= fdiv_scale; /* 15/16 */

break;
}
if ((£ | pyl[0]) == 0) break; /* divide by zero! */
X *= one_shl_63; /* Scale both operands by */
Yy *= one_shl_63 /* 1 << 63 */

} while (1);
}
return x / y;
}

unit can be switched to extended precision.
Both operands are then scaled by 15/16 exactly,
using four of the 11 extra mantissa bits available
internally. Then, when the resulting quotient is
rounded back to the working precision, it will
yield exactly the same result, down to the last
bit, as would be produced by a chip without the
FDIV bug.

We optimized the software implementation
to give minimum performance impact on chips
without the bug, while still keeping the over-
head as low as possible on Pentiums with the
bug. Figure 5 contains a C version of the com-
plete workaround for FDIV. The algorithm
works by first checking a global flag to see if the
bug has been detected. If not, we jump directly
to the FDIV instruction. Then, on a failing ma-
chine, we inspect the denominator bit pattern.
This is done in extended precision, which re-
duces the need to handle denormal numbers. (If
a program/compiler puts the floating-point unit
in double precision, no denormal number can
occur in extended precision, so those tests can
be removed.) First we check if the leading man-
tissa bit is set. If not, we have either a denormal
number or zero. If zero, we use the hardware to
do the division by zero. If denormal we scale
both operands by 263 and restart the pattern
testing. On a normal number, we first look for

SPRING 1995

/* Restart denormal numbers! */

the six consecutive one bits. We do this not by
masking and comparing, but with Xor and
Test, which leave the rest of the bits unmodi-
fied for the remaining pattern checks. If all six
bits are set, we then test the top four bits of the
fraction using a software table lookup. The
table has 16 entries, with a flag in the columns
corresponding to the five missing table entries.

Unlike FDIV, there was no way to just in-
spect the input values to determine whether a
given pair of operands for FPATAN might be
at-risk, so we had to use a complete software re-
placement for this function. The resulting code
uses extended precision for all intermediate op-
erations, while the Pentium hardware instruc-
tion has access to internal paths with a couple of
extra bits of precision. This means that while
FPATAN, on a corrected Pentium, will always
be less than 1 ULP (unit in the last place) away
from the true result, our workaround can be up
to 3 ULPs in error, in extended precision.
However, when we round the result to double
precision the replacement delivers results that
are nearly indistinguishable from the true re-
sults, with a maximum error of 0.50146 ULP,
versus FPATAN which gives about 0.50039
ULP. The software workaround gives about the
same precision as the algorithm used by previ-
ous Intel numeric coprocessors.

Figure 5. The
complete FDIV
workaround,
written in C.

29

30

COMPUTATIONAL ASPECTS OF THE PENTIUM AFFAIR

To actually use the workaround in Figure 5, it
would be necessary to modify application source
code, replacing all divisions by calls to the new
function. Most of the resulting increase in exe-
cution time would be caused by the overhead of
the calling sequence. Moreover, some C compil-
ers do not distinguish between the double-preci-
sion and extended-precision floating-point for-
mats. With these compilers, the computed result
might not be correctly rounded. To reduce the
overhead and get fully accurate results, it is
preferable to implement the workaround in as-
sembly language and to use macro expansion to
generate in-line code. Further discussion of this
approach, and more information about the soft-
ware workaround, is available with anonymous
FTP from Intel’s Internet site, ftp.intel.com, in
file /pub/pentium/IAL/patch.txt.

Several compiler vendors have announced
versions of their compilers which generate code
using the workaround in place of the FDIV in-
struction, and which have math libraries incor-
porating the new algorithms for remainder, tan-
gent, and arctangent.

When the workaround involves assembly
code expanded in line, its cost in execution time
is not high. The actual timing will depend on
more factors than we want to consider here, but
we expect it to involve a factor less than two. It
should also be realized that few technical com-
putations involve divisions in the inner loop, so
the overall effect on execution time will almost
always be very small.

On December 20, Intel announced a change
of policy regarding Pentiums. It is now possible
for anyone owning a chip with the FDIV bug to
request a placement, either directly from Intel,
from the manufacturer of the computer itself, or
through specified local repair centers. The faulty
chips must be returned to Intel.

How difficult is it to replace the chip? That
varies from computer to computer. Many ma-
chines have Zero Insertion Force, or ZIF, sock-
ets, so chip replacement is easy. Other machines
have the chip permanently mounted on the
main circuit board, and it is necessary to replace
the entire board.

Should you replace your chip? In our opinion,
yes. It is very unlikely your computations will
actually encounter the bug. But, if they do, it is
usually very difficult to detect, or to completely
assess the consequences. If it is inconvenient for
you to make the replacement, then you should
at least try to use software which incorporates
our workaround. ¢

For more information

The Pentium Papers, a collection of "primary source” mate-
rial on the Pentium division bug, is available via the Internet
from the MathWorks. On the World Wide Web, connect
to http://www.mathworks.com. With anonymous FTP, ac-
cess ftp.mathworks.com, and go to directory /pub/pentium.
This archive is intended as a reasonably complete historical
record of the events associated with the Pentum floating-
point division bug. All of the documents are reproduced as
they originally appeared on the Net or elsewhere.

Both Intel and IBM have Web pages with Pentium infor-
mation: http://www.intel.com/product/pentium/fdiv.html,
and http://www.ibm.com/Features/pentium.htmi. Intel’s
phone number for Pentium replacements is 1-800-628-8686.

Tim Coe is a principal engineer at Vitesse Semiconductor
Corp. In the past, he has worked on the design of IEEE
floating-point units, cache controllers, and multi-gigahertz
multiplexors and demultiplexors. Currently, he is working
on an implementation of the Scalable Coherent Interface
(SCD). He received his BSEE and MSEE from MIT in
1986. He can be reached by e-mail to coe@vitsemi.com.

Terje W Mathisen is a systems archi-
tect in the Hydro Data division of
Norsk Hydro, where he does low-level
software development and optimiza-
tion. He is interested in computational
algorithms, and has written an unlim-
ited-precision math library. Mathisen
earned an MSc in electrical engineer-
{ ingin 1981 from the Norwegian Insti-
. L tute of Technology and is a member of
the Norwegian Society of Charted Engineers. He can be
reached by e-mail to Terje.Mathisen@hda.hydro.com.

Cleve Moler is chairman and chief sci-
entist at The MathWorks, makers of
Matlab (styled MATLAB by the com-
pany). Prior to this, he taught math and
computer science at the Universities of
Michigan and New Mexico and at
Stanford, and worked at two computer
hardware manufacturers, Intel Hyper-
cube and Ardent Computer. His pro-
/ A fessional interests center on numerical
analysis and mathematical software. In addition to being the
author of the first version of Matlab, Moler coauthored the
Linpack and Eispack scientific subroutine libraries and three
textbooks on numerical methods. He holds a BS in math
from Caltech, 1961, and a PhD in math from Stanford, 1965.
Moler may be reached at the MathWorks, 24 Prime Park
Way, Natick, MA 01760, e-mail moler@mathworks.com.

Vaughan Pratt is professor of com-
puter science at Stanford University.
From 1972 to 1982 he was on the elec-
trical engineering and computer sci-
ence faculty at MIT. He helped found
Sun Microsystems in 1982, and de-
signed Sun’s logo and the Pixrect

e graphics system. He has worked in
ﬁ ‘ natural language, analysis of algo-
rithms, program logic, concurrency

modeling, computer graphics, and digital typography; his
most recent research interest is in the foundations of mathe-
matics and quantum mechanics. He received a BSc (honors)
in 1967 and an MSc in 1970, both from Sydney University,
and a PhD in 1972 from Stanford University. He may be
reached by e-mail to pratt@cs.stanford.edu.

|EEE COMPUTATIONAL SCIENCE & ENGINEERING

