
CS/Math 3414 Assignment 5

Solution Sketches

1. For the various spacings given in the question, the number of points involved can be computed
as n = (b − a)/h. Since f(x) = |x|, we have

∫

1

−1

f(x)dx =

∫

0

−1

(−x)dx +

∫

1

0

(x)dx = 2

∫

1

0

xdx = 1.

The lower sums give a lower bound on this integral, so they will always be less than or equal
to this value. When h = 2, we have only one integration interval. The greatest lowest bound
(glb) of f(x) in this interval is 0, and so the lower sum is zero. When h = 1, there are two
integration intervals but the glb is zero in both, giving the lower sum as zero. Only when
h = 1/2 do we get a better bound (namely 1/2). The upper bounds are better for this
problem as they start with the complete rectangle that encloses f(x) and start shrinking the
area. For instance, the upper sum for h = 2 is 2. The trapezoidal rule gives values bounded
by the lower sum from below and by the upper sum from above. The complete set of answers
are given below:

h 2 1 1/2 1/4

Lower sums 0 0 1/2 3/4
Upper sums 2 2 3/2 5/4
Trapezoids 2 1 1 1

2. Since we have n + 1 equally spaced points, there are n − 1 subintervals in the integration.
The trapezoidal rule uses trapezoids to model the areas in each of these subintervals. If the
width of each subinterval is h, then the trapezoidal rule is computing:

∫

1

0

x2dx = h
n−1
∑

i=1

x2

i +
h

2
(x2

0 + x2

n)

=
1

n3
{12 + 22 + 32 + · · · + (n − 1)2} +

1

2n

=
1

6n3
n(n − 1)(2n − 1) +

1

2n

In the above, we have used the fact that x0 = 0, xn = 1, h = 1/n, and xi = i/n. As n → ∞,
the above sum converges to

lim
n→∞

(

1

3
+

1

6n2

)

=
1

3

3. There are three significant differences between how MATLAB implements the QUAD function
and the Simpson algorithm as described in your book. All of these would have been clear if
you took the trouble to look at the code listing for quad (and the function it calls, namely
quadstep). Here are the headlines.

One of the first things that quad does is embodied in the statements:

% Initialize with three unequal subintervals

h = 0.13579*(b-a);

x = [a a+h a+2*h (a+b)/2 b-2*h b-h b];

Many of you didn’t read past the comment and mistook this to mean that the algorithm is
doing a three-way recursive division, rather than a two-way division. In fact, it is not doing a
three-way recursive division but is instead dividing up the given integral into three integrals
and computing them separately (each by a recursive Simpson’s rule). If you scrolled down the
code, you would see where this happens. In other words, this is not the place where recursion
happens.

The second difference has to do with ‘safety’ code such as:

% Fudge endpoints to avoid infinities

if ~isfinite(y(1))

...

end

if ~isfinite(y(7))

...

end

This helps MATLAB overcome the problems with evaluating integrals such as

∫

1/3

0

dx

3x − 1

that have end-point singularities. If you look at the code represented above as ... you will
see what MATLAB uses in place for the end-point values.

The third difference can be seen in the quadstep function called by quad, which is really the
recursive Simpson’s algorithm. Everything is as it should be except for the lines:

...

[Qac,fcnt,warnac] = quadstep(f,a,c,fa,fd,fc,tol,trace,fcnt,hmin,varargin{:});

[Qcb,fcnt,warncb] = quadstep(f,c,b,fc,fe,fb,tol,trace,fcnt,hmin,varargin{:});

...

Notice that the same tolerance (tol) is used in both recursive calls instead of tol/2! This is
a significant deviation from what we studied in class and what is described in the book (see
page 226).

This is so because MATLAB doesn’t want to be too conservative. It is frequently the case that
one of the recursive calls can get an estimate of its subintegral to a much greater tolerance
than the other (can). In such a case, the second recursive call has more leverage in meeting
its accuracy requirement. We would thus be too stringent in requesting tol/2 from it (since
the other subintegral is picking up most of the tab). This technique is called banking and
effectively allows the second subintegral to get away with a less accurate answer. To implement
this effectively, the code should have been written as:

...

[Qac,fcnt,warnac] =

quadstep(f,a,c,fa,fd,fc,tol/2,trace,fcnt,hmin,varargin{:});

% determine an error estimate, say lefte, from this part of the problem

% and use it in the next part.

[Qcb,fcnt,warncb] =

quadstep(f,c,b,fc,fe,fb,tol-lefte,trace,fcnt,hmin,varargin{:});

...

However, the designers of MATLAB chose not to be so careful and claim that this problem
‘rarely surfaces.’ It is possible to design an integral where MATLAB will be tricked into
providing an answer that does not satisfy the requested error bound. In fact, it is always
possible to fool any adaptive integration routine!

4. Both the integrals are ways of computing π. The MATLAB code QUAD will give you ap-
proximations to π as 3.1416 (unless you requested greater significance). Please also note the
differences between QUAD’s implementation of the Simpson’s algorithm and the algorithm
as described in your book (previous question).

5. We are given that
∫

1

−1

f(x)dx = αf(
−1

2
) + βf(0) + γf(

1

2
)

holds for polynomials of degree upto 2. By substituting 1, x, and x2 for f(x), we get the
three simultaneous equations:

α + β + γ = 2

−
1

2
α +

1

2
γ = 0

1

4
α +

1

4
γ =

2

3

This gives α = 4

3
, β = −2

3
, and γ = 4

3
.

6. We are given that
∫

2

−2

|x|f(x)dx ≈ Af(−1) + Bf(0) + Cf(1)

is exact for polynomials of degree upto 2. Proceeding as in the previous question, we get:

A + B + C = 4

−A + C = 0

A + C = 8

This gives A = 4, B = −4, and C = 4. To see if the rule is exact for polynomials of degree
greater than 2, we try substituting x3, x4, · · · in the rule and determine if the equality holds.
For x3, we get 0 = −A+C which is true. For x4, we get 64

3
= A+C which is not true. Thus,

the rule is exact only for polynomials of degree ≤ 3.

