
CS 4804 Homework 3
Solution Sketches

1. (20 points) These are trivial; the easiest way to calculate them is with a truth table: (a)
true; (b) false; (c) false; and (d) false.

2. (20 points) The given entailment does hold:

1 : P

G : ¬(Q ⇒ P ) = ¬(¬Q ∨ P ) = Q ∧ ¬P

G1 : Q; G2 : ¬P

resolve 1, G2 to null

3. (20 points) Assume the following predicate terminology:

• took(x, y, z): true when student x took class y in term z.

• score(x, y, z): true when student x got a score of z in calss y.

• passed(x, y): true when student x passed class y.

Then the various statements can be asserted as:

• Some students took French in Spring 2001.
∃x : took(x,French,Spring2001).

You can also be pedantic about the plurality inherent in ‘some students’ and assert that
there must be two different people x and y, satisfying the above predicate.

• Every student who took French passes it.
∀xy : took(x,French, y) ⇒ passed(x,French)

Obviously there is some relationship between score and passed, which we do not state
explicitly (as it is not given).

• Only one student took Greek in Spring 2001.
∀xy : (took(x,Greek,Spring2001) ∧ took(y,Greek,Spring2001)) ⇒ (x = y)

• The best score in Greek is always higher than the best score in French.
∃xm : score(m,Greek, x) ∧ (∀yz : score(y,Greek, z) ⇒ (x ≥ z))

∧ (∀ab : score(a,French, b) ⇒ (x > b))

Here we are assuming that this statement is true even across terms.

4. (20 points) Assume the following predicate terminology:

Policy(x) :- x is an insurance policy

Person(x) :- x is a person

Expensive(x) :- x is expensive

Smart(x) :- x is smart

Buys(x,y) :- x buys y

Sells(x,y,z) :- x sells y to z



Insured(x) :- x is insured

e) ∀xy : Buys(x, y) ∧ Person(x) ∧ Policy(y) ⇒ Smart(x)

f) ∀xy : Buys(x, y) ∧ Person(x) ∧ Policy(y) ⇒ ¬Expensive(y)

g) ∃x ∀yz : Sells(x, y, z) ∧ Person(z) ∧ Policy(y) ⇒ ¬ Insured(z)

5. (20 points)

1 : ∀x : horse(x) ⇒ animal(x)

In clausal form, this becomes

¬horse(x) ∨ animal(x)

G : ∀xy : (horse(x) ∧ headof(x, y)) ⇒ (∃z : animal(z) ∧ headof(z, y))

In clausal form and negated, this gives:

G1 : horse(H); G2 : headof(H,E); G3 : ¬ animal(z) ∨ ¬headof(z,E)

resolve 1, G1 to animal(H)

resolve animal(H), G3 to ¬headof(H,E)

resolve ¬headof(H,E), G2 to null


