
Homework 1 Solution Sketches
Michael Narayan

1. Problem 3.7

a.

Initial State: A map with no regions colored
Goal Test: A map with all regions colored and no adjacent regions with the same color
Successor Function: Color an uncolored region (to minimize the search space it would be best

to assign a numbering to each region and color the regions in order)
Cost Function: Since there is no cost associated with the end goal, and all solutions are at the

same depth regardless, there is no applicable cost per edge. You can assign some (the same)
nominal value to all edges.

b.

Initial State: The starting position of the monkey and each of the two boxes.
Goal Test: The position of the monkey is such that he can reach the bananas.
Successor Function: The monkey can move or climb, the crates can move, and the crates can be

stacked. Climbing, moving and stacking crates is only possible when the monkey and crate
positions allow it.

Cost Function: The time each move would take. For instance the monkey may take 1 second to
move, 10 seconds to move a crate, and 20 seconds to stack a crate.

c.

Initial State: A list containing no records.
Goal Test: A list which generates an error.
Successor Function: Add the next record to the list of records.
Cost Function: The amount of time taken to test each list of records.

d.

Initial State: All 3 jugs of water are empty.
Goal Test: One jug has one gallon of water in it.
Successor Function: Fill a jug from the faucet, fill one jug from another, empty a jug onto the

ground.
Cost Function: The amount of water which was used to fill a jug from the faucet.

2. Sudoku as a search problem

Initial State: A standard Sudoku board, with some of the boxes filled in as specified.

Goal Test: A filled in Sudoku board with every row column and 3× 3 grid having the digits 1-9.

Successor Function: Fill a box with a number. You may embody the Sudoku rules here by making
the successor option return only ‘legal’ values. Using this formulation every goal state will be at
the same level, though for other formulations this may not be true.

Heuristic: We can create a simple heuristic which embodies the fact that the more possibilities are
left open, the better the chance for the search to be successful.

h(n) = 81− number of spots filled− number of digits that can be placed in each open spot
9

Here we note that a total of 81 spots must be filled, and use as a measure of distance the number
of spots that remain to be filled. Thus we subtract the spots that have been positively filled, and
for the unfilled spots we subtract a fraction based upon how “constrained” that spot is.

1



3. Find a uniform cost state space where Graph-Search fails to find an optimal solution using iterative
deepening.

Consider a simple state space with 1 as the initial state and 4 as the goal state. Let the ‘edges’ be given
by: 1 → 2 → 3 → 4 and 1 → 3. Clearly the optimal solution is 1 → 3 → 4. Using Graph-Search
with iterative deepening, when the depth is 1 it will not reach the goal. Then when the depth is 2, if
it first expands 1 → 2, it will then expand 2 → 3. Now instead of expanding 1 → 3 as it should, it
will stop as state 3 is already in CLOSED, thus missing the shortest path. This situation will play out
exactly for the next iteration when we will reach the goal at a depth of 3.

4. Instant Insanity as a search problem.

Initial State: The four given blocks in arbitrary positions and rotations.

Goal Test: A set of orientations such that each side of the tower has all four colors.

Successor Function: Rotate one block so it has a new orientation.

Cost Function: The number of rotations that take place (thus a uniform cost space).

Heuristic: Instead of rotating a block at each step, one simple relaxation of the problem is to simply
allow (all) sides of one block to be recolored at each step. Thus we can create a heuristic which
counts the number of blocks which need to be recolored to fulfil the goal. Why is this admissible?
Notice that we allow recolorings (for multiple columns) in a single step; merely allowing one side
to be recolored is not an admissible heuristic since, in the original problem, rotating a block may
fix problems with two columns in only one move.

5. We ran 15 trials on a 3x3 board size and obtained the following results:

Algorithm BFS h1 h2 h3 h4
Nodes expanded 2188.27 94.0667 26.6 103.733 18.9333

In general the following inequality can be used to describe the relation between the heuristics: BFS is
worse than h1 is worse than h3 is worse than h2 is worse than h4. While in general these orderings
hold, for specific puzzles different heuristics might produce comparable results.

2


