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Michael Narayan

1. Represent the “cute word puzzle” as a boolean satisfiability problem.

For simplicity I choose to use five variables l1, l2, l3, l4, l5 each of which is true iff the letter at the given
position is a vowel (you can define each of them using a CNF expression if you desire). Hence, there
is then one clause which denotes that there must be one letter which is not a vowel: ¬l1 ∨ ¬l2 ∨ ¬l3 ∨
¬l4 ∨¬l5. If we only have this clause, it can get satisfied by making all letters to be consonants! There
are also 5!

3!2! = 10 constraints denoting that there are at least four vowels in the word. These can be
stated by observing that, in any two letters, there must be a vowel: (l1 ∨ l2)∧ (l1 ∨ l3)∧ (l1 ∨ l4)∧ (l1 ∨
l5) ∧ (l2 ∨ l3) ∧ (l2 ∨ l4) ∧ (l2 ∨ l5) ∧ (l3 ∨ l4) ∧ (l3 ∨ l5) ∧ (l4 ∨ l5).

2. “If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If
the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.”

Propositional logic statements of the given facts:

(1) Mythical → ¬Mortal
(2) ¬Mythical → Mortal ∧Mammal
(3) ¬Mortal ∨Mammal → Horned
(4) Horned → Magical

We show how inference is done by direct application, rather than refutation (which would have been
the safer thing to do). We also show a variety of inference rules, for practice (although resolution itself
would have been sufficient):

(5) ¬Mythical ∨ ¬Mortal From (1)
(6a) (Mythical ∨Mortal) From (2)
(6b) (Mythical ∨Mammal) From (2)
(7) ¬Mortal ∨Mammal Resolution on (5) and (6b)
(8) Horned Modus Ponens on (3) and (7)
(9) Magical Modus Ponens on (4) and (8)

Thus the unicorn is both magical and horned.

3. Is P ∧Q |= P ↔ Q true?

Intuitively this seems true. On any model for which P and Q are true P will be true iff Q is. Let us
use resolution-refutation to prove this. First convert the given statement to clauses: P and Q. Then
negate the goal:

¬(P ↔ Q) = ¬((P ∧Q) ∨ (¬P ∧ ¬Q))
= (¬P ∨ ¬Q) ∧ (P ∨Q)

Thus we have the following clauses:

(1) P
(2) Q
(3) ¬P ∨ ¬Q
(4) P ∨Q

Now we just perform resolution:

(5) ¬Q Resolution on (1) and (3)
(6) φ Resolution on (2) and (5)

Thus our intuition is correct.
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4. Problem 7.11

a. (¬x1,2 ∨ ¬x2,1 ∨ ¬x2,2) ∧ (x1,2 ∨ x2,1) ∧ (x1,2 ∨ x2,2) ∧ (x2,1 ∨ x2,2)

b. In order to denote that k of the n neighbors of a particular spot contain mines, create clauses which
indicate that there are at least k mines and clauses that indicate that there are not k + 1 mines
around it (obviously one of these two is not needed if k = 0 or k = n). To indicate that there
are at least k mines, create n!

k!(n−k)! clauses which have the various combinations of k variables
(e.g., if (4,4) has 3 mines surrounding it, one clause would be x2,2 ∨ x3,2 ∨ x4,2). To indicate that
there are not k + 1 mines around it, create n!

(k+1)!(n−k−1)! similar clauses except now containing
the negation of the various variables.

c. In order to use DPLL to prove that a given space does or does not contain a mine, it suffices to
add to the clauses that embody the current knowledge of the board the negation of what we want
to prove. Thus to prove that a given space, say (4,4), does not have a mine, simply add a clause
saying it does (i.e. x4,4) and attempt to satisfy the clauses. If they are not satisfiable then that
space does not have a mine in it.

d. If there are M mines in a board with N spaces, there would need to be N !
M !(N−M)! +

N !
(M+1)!(N−M−1)!

clauses (again excluding M = 0 and M = N) for the same reasons as in part (b). As this is a
prohibitively large number of clauses, we could instead simply modify the DPLL algorithm to
obtain the same effect. To do this we can simply keep track of how many variables have been
assigned the truth value in the model, and once M variables have been, simply assign every
unassigned variable the false value and determine if the model is consistent.

e. The conclusions for part (c) are not invalidated when the global constraint is taken into account
since the additional information does not invalidate any of the original information. The only
difference is that now we may be able to make conclusions about spots which before we did not
know enough to make conclusive statements about.

f. A fairly simple example of a long-range dependency would be to consider a 1×N board which is
known to contain only 1 mine. If the first spot we probe reveals that it has one mine surrounding
it, then all nonadjacent spaces do not have any mines in them.

5. Show that an arbitrary CNF clause can be written as (P1 ∧ ... ∧ Pm) → (Q1 ∨ ...Qn)

First note that the order of operations does not matter, so we can write any clause as (¬P1 ∨ ... ∨
¬Pm)∨ (Q1∨ ...∨Qn). Now simply convert this to an implication ¬(¬P1∨ ...∨¬Pm) → (Q1∨ ...∨Qn),
which can be simplified to (P1 ∧ ... ∧ Pm) → (Q1 ∨ ...Qn).
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