
Homework 6 Solutions
Michael Narayan

1. Problem 13.8 The probabilities given:

p(TestPositive|HaveDisease) = 0.99

p(¬TestPositive|¬HaveDisease) = 0.99

p(HaveDisease) = 0.0001

Now what we want to find is the probability that you have the disease. From Bayes’ rule we have

p(HaveDisease|TestPositive) =
p(TestPositive|HaveDisease)p(HaveDisease)

p(TestPositive)

From the information we have

p(TestPositive) = p(HaveDisease)p(TestPositive|HaveDisease)
+p(¬HaveDisease)p(TestPositive|¬HaveDisease)

= 0.0001 × 0.99 + 0.9999 × 0.01

Thus

p(HaveDisease|TestPositive) =
0.99 × 0.0001

0.0001 × 0.99 + 0.9999 × 0.01
= 0.0098

Which is much lower than you might initially suspect when looking at the probabilities.

2. Problem 13.10

Start with

p(A|B,C) = p(A|C)

multiply both sides by p(B|C) to get

p(A|B,C)p(B|C) = p(A|C)p(B|C)

Now using the product rule we have p(A,B|C) = p(A|B,C)p(B|C), thus

p(A,B|C) = p(A|C)p(B|C)

An isomorphic transformation can be made with the equation p(B|A,C) = p(B|C).

3. Problem 13.13

a. Which of the following sets are sufficient to calculate p(h|e1, e2) with no conditional independence
information.

i. The set p(E1, E2), p(H), p(E1|H), p(E2|H) is not sufficient. p(H|E1, E2) = p(E1,E2|H)p(H)
p(E1,E2)

.
Thus if we can calculate p(H|E1, E2) we can also calculate p(E1, E2|H). But we can not
calculate this without independence information.

ii. The set p(E1, E2), p(H), p(E1, E2|H) is sufficient. p(H|E1, E2) = p(E1,E2|H)p(H)
p(E1,E2)

.
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iii. The set p(H), p(E1|H), p(E2|H) is not sufficient. This is a subset of the insufficient set in (i).

b. Which of the following sets are sufficient to calculate p(h|e1, e2) if p(E1|H,E2) = p(E1|H).

i. The set p(E1, E2), p(H), p(E1|H), p(E2|H) is sufficient. p(H|E1, E2) = p(E1,E2|H)p(H)
p(E1,E2)

. p(E1, E2|H) =
p(E2|H)p(E1|H,E2) = p(E2|H)p(E1|H).

ii. The set p(E1, E2), p(H), p(E1, E2|H) is sufficient as in part (a).
iii. Here the book uses some somewhat tricky notation without a lot of explanation. The

expression p(A) is used to denote the probabilities of all different values of A. Thus if A had
a domain of {a, b, c} then we would have p(A = a), p(A = b), and p(A = c). As a result the
set p(H), p(E1|H), p(E2|H) is sufficient. As we have p(E1, E2|H) = p(E2|H)p(E1|H) we can
use normalization over the values of H to calculate p(E1, E2). If you do not interpret the
notation in that manner then the set is insufficient.

4. Problem 13.14

Write the joint distributions tables as:

X Y Z p(x, y, z)
false false false a
false false true b
false true false c
false true true d
true false false e
true false true f
true true false g
true true true h

Now we want to write the equation p(X = true, Y = true|Z = true) = p(X = true|Z = true)p(Y =
true|Z = true). This can be converted to the joint distribution table as follows: First, p(Z = true) =
b + d + f + g. Now we can calculate p(Y = true|Z = true) = p(Y =true,Z=true)

p(Z=true) = d+h
b+d+f+g and

p(X = true|Z = true) = p(X=true,Z=true)
p(Z=true) = f+h

b+d+f+g . Finally, p(X = true, Y = true|Z = true) =
p(X=true,Y =true,Z=true)

p(Z=true) = h
b+d+f+g . Thus we can write the final equation

h

b + d + f + h
=

d + h

b + d + f + h
× f + h

b + d + f + h

which we can then rewrite as

h =
(d + h)(f + h)
b + d + f + h

and then

h(b + d + f + h) = (df + dh + hf + h2)

and finally

bh = df

Now we want to do the same thing for

p(X = true, Y = false|Z = true) = p(X = true|Z = true)p(Y = false|Z = true),
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p(X = false, Y = true|Z = true) = p(X = false|Z = true)p(Y = true|Z = true),

p(X = false, Y = false|Z = true) = p(X = false|Z = true)p(Y = false|Z = true),

p(X = true, Y = true|Z = false) = p(X = true|Z = false)p(Y = true|Z = false),

p(X = true, Y = false|Z = false) = p(X = true|Z = false)p(Y = false|Z = false),

p(X = false, Y = true|Z = false) = p(X = false|Z = false)p(Y = true|Z = false),

and p(X = false, Y = false|Z = false) = p(X = false|Z = false)p(Y = false|Z = false).

We thus get

f

b + d + f + h
=

(f + h)(b + f)
(b + d + f + h)2

or df = bh,

d

b + d + f + h
=

(b + d)(d + h)
(b + d + f + h)2

or df = bh,

b

b + d + f + h
=

(b + d)(b + f)
(b + d + f + h)2

or bh = df ,

g

a + c + e + g
=

(e + g)(c + g)
(a + c + e + g)2

or ag = ce,

e

a + c + e + g
=

(e + g)(e + a)
(a + c + e + g)2

or ce = ag,

c

a + c + e + g
=

(a + c)(c + g)
(a + c + e + g)2

or ce = ag, and finally

a

a + c + e + g
=

(a + c)(a + e)
(a + c + e + g)2

or ag = ce for a total of two distinct equations, ag = ce and bh = df .

5. The number of possible Bayesian networks on three variables is simply the number of acyclic directed
graphs with three nodes. There is one graph with no arrows, six with one arrow, twelve with two
arrows, and six with three arrows for a total of 25 possible Bayesian networks. Now to determine
the possible distinct distributions we can simply look at the different possible graphs. Again, there
is one distribution where no variables are related to each other. There are three where two variables
are related to each other since the direction an arrow points is irrelevant. There are six with two
arrows: p(A,B)p(A,C)

p(A) , p(B)p(C)p(A,B,C)
p(B,C) ,p(A,C)p(B,C)

p(C) , p(A)p(B)p(A,B,C)
p(A,B) ,p(A,B)p(B,C)

p(B) , and p(A)p(C)p(A,B,C)
p(A,C) .

Finally there is one with three arrows, since if every variable is related to another one we have only
one distributions p(A,B, C), for a total of 11 possible distributions.
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