
CS 5614: Transaction Processing 121

Module 3: Transaction Processing

� Transaction = Unit of Work
� Recall ACID Properties (from Module 1)

� Requirements of Transactions in a DBMS
� 7-by-24 access
� Concurrency Control
� Recovery

� Example: Transfer $50 from Account A to Account B
� Pseudocode:

Transaction 1:
A.balance = Read(A);
A.balance = A.balance - 50;
Write(A, A.balance)
B.balance = Read(B);
B.balance = B.balance + 50;
Write(B, B.balance);

� Result of a Transaction
� Commit (Success)
� Rollback (Abort)

CS 5614: Transaction Processing 122

Concurrency Control

� When is it applicable?
� Not for A,C or D

� Comes into effect when Isolation is considered
� Example:

Transaction 2:
A.balance = Read(A);
B.balance = Read(B);
Print(A.balance+B.balance);

� What happens if Transaction 2 starts before 1 finishes?

� How do you enforce “isolation”?
� Serializability: The property that a group of transactions has the

same effect and output as some serial execution of the transactions

CS 5614: Transaction Processing 123

Example

� Consider Transactions 1 and 2
� Form a “schedule” of operations

� Schedule for Transaction 1
� r1[A], w1[A], r1[B], w1[B]

� Schedule for Transaction 2
� r2[A], r2[B]

� Correct Way to Interleave them
� r1[A], w1[A], r2[A], r1[B], w1[B], r2[B]

� Also correct (but really it is only serial)
� r1[A], w1[A], r1[B], w1[B], r2[A], r2[B]

� Wrong Way to Interleave them
� r1[A], w1[A], r2[A], r2[B], r1[B], w1[B]
� Why?: because $50 is lost from the report

CS 5614: Transaction Processing 124

Back to Basics

� What is a Schedule?
� Time-Ordered Sequence of Important Actions taken by 1 or more Txs

� What is a Serial Schedule?
� One which consists of all actions of one Tx, followed by all actions

of another, and so on.

� What is a Serializable Schedule?
� One whose effect on the DB “state” is the same

as that of some serial schedule
� Notice the word “some”
� All serial schedules are serializable, but not necessarily the reverse!

� In general, serializability is a good property, but
� difficult to achieve due to lack of effective algorithms

� Compromise: Conflict-Serializability
� A restricted notion of serializability
� A sufficient but not necessary condition for serializability

CS 5614: Transaction Processing 125

What is Conflict-Serializability?

� Basic Idea: Start with a given schedule
� Swap neighboring entries, if they don’t conflict
� See if you obtain a serial schedule, continuing in this manner

� When can Neighboring Entries be Swapped?
� Almost always, except when they involve the same DB element

 and one of them is a write

� Example
� r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B)
� r1(A) w1(A) r2(A) r1(B) w2(A) w1(B) r2(B) w2(B)
� r1(A) w1(A) r1(B) r2(A) w2(A) w1(B) r2(B) w2(B)
� r1(A) w1(A) r1(B) r2(A) w1(B) w2(A) r2(B) w2(B)
� r1(A) w1(A) r1(A) w1(B) r2(A) w2(A) r2(B) w2(B)

� Can Conflict-Serializability determine all Serializable Schedules?
� Answer: No! (see previous slide)
� Example, the two schedules are equivalent according to serializability

 but not according to conflict-serializability
� w1(B) w1(A) w2(B) w2(A) w3(A)
� w1(B) w2(B) w2(A) w1(A) w3(A)

CS 5614: Transaction Processing 126

A Calculation Example

� Consider
� T1: READ(A,t); t=t+2; WRITE(A,t); READ(B,t); t=t*3; WRITE(B,t)
� T2: READ(B,s); s=s*2; WRITE(B,s); READ(A,s); s=s+3; WRITE(A,s)

� Considering Reads and Writes Only
� T1: r1(A) w1(A) r1(B) w1(B)
� T2: r2(B) w2(B) r2(A) w2(A)

� Calculations

� Schedules (all possible interleavings) = 8C4
� Serial Schedules: 2

� Serializable Schedules: 2 + 4C2*4C2
� Conflict-Serializable Schedules: 2

� Notice that..
� we have taken advantage of the information from the first bullet
� even though it isn’t represented in the second bullet

� Assumption
� Operations on “A” are commutative (+)
� Operations on “B” are commutative (*)

CS 5614: Transaction Processing 127

What we know so far

� Conflict-Serializability is not a test for Serializability

� Is there a test for Conflict-Serializability?
� Answer: Yes

� A Graph-Theoretic Construction
� Add a node for every Tx
� Add a directed edge from Tx to Ty if there is some operation in Tx that

takes precedence over some action in Ty
� Ask: Is the graph cyclic?
� Yes?: Schedule is not Conflict-Serializable

� In other words, a topological sort
� Can be achieved by doing a DFS
� Or removing nodes (and edges) that have least indegree repeatedly

� How is Conflict-Serializability Enforced?
� Answer: Locks

CS 5614: Transaction Processing 128

Locking

� Assumptions
� Consistency of Transactions: Tx should get a lock before reading

or writing an element; should release lock when done
� Legality of Schedules: No two Txs can have locked the same element

� Notation
� l1(A) : for locking
� u1(A) : for unlocking

� Two-approaches to insert “l” and “u”: Consider
� T1: r1(A) w1(A) r1(B) w1(B)
� T2: r2(A) w2(A) r2(B) w2(B)

� A “Nice” Approach”: Unlock as soon as possible
� T1: l1(A) r1(A) w1(A) u1(A) l1(B) r1(B) w1(B) u1(B)
� T2: l2(A) r2(A) w2(A) u2(A) l2(B) r2(B) w2(B) u2(B)

� A “Greedy” Approach”: Acquire all locks first, then unlock
� T1: l1(A) r1(A) w1(A) l1(B) u1(A) r1(B) w1(B) u1(B)
� T2: l2(A) r2(A) w2(A) l2(B) u2(A) r2(B) w2(B) u2(B)
� Problem: T2 has to wait for T1

CS 5614: Transaction Processing 129

Which Approach is Preferable?

� Surprise: The Latter!
� Called Two-Phase Locking (2PL)
� All lock requests precede all unlock requests
� First Phase: Growing Phase (Acquire Locks)
� Second Phase: Shrinking Phase (Release Locks)

� Why is this preferable?
� Ensures conflict-serializability

� What is the conflict-equivalent serial schedule?
� same as the ordering of the transactions acc. to their first unlocks
� why?: Each 2PL Tx can be assumed to execute in its entirety at the instant

it issues its first unlock

� Other issues in 2PL
� Foolproof?: No, possibility for Deadlock
� Types of Locks
� Granularity of Locks

CS 5614: Transaction Processing 130

Types of Locks

� Shared Locks (Read access) and Exclusive Locks (Write Access)
� sl1(A) : for shared locks
� xl1(A) : for exclusive locks
� u1(A) : for unlocking (same as previous)

� Compatibility Matrix

� Can the same Tx hold both S and X locks on one element?
� Yes!: But X takes precedence
� Notice that the compatibility matrix above is only for different Transactions!

� Problems with S and X locks
� Can cause deadlock

Table 1: Matching Locks

S X

S yes no

X no no

CS 5614: Transaction Processing 131

Solution:

� Upgrade/Update Locks (U)
� Looks like a shared lock when requested
� can be upgraded to an X lock later
� Effectively introduces asymmetry into the compatibility matrix

� Increment Locks (U)
� Commute with other increment locks

S X U

S yes no yes

X no no no

U no no no

S X I

S yes no no

X no no no

I no no yes

CS 5614: Transaction Processing 132

Who Inserts Locks and Unlocks?

� Not the requesting transactions themselves!
� Job of Transaction scheduler

� Three Aspects of a Tx Scheduler
� Scheduler 1: Insert “l” and “u” according to locking schedule (e.g. 2PL)
� Scheduler 2: See if any Txs have to wait for anybody, deny requests etc.
� Scheduler 3: Check for strange situations, deadlock, dirty reads etc.

� What is a Lock anyway?
� Modeled by a lock-table
� Hash-table for mapping database elements to locking and waiting info.

� Dominating Information from a Compatibility Matrix
� In S,X table: X dominates S
� In S,X,U table: U dominates S, X dominates both S and U
� useful for processing transaction requests

CS 5614: Transaction Processing 133

Locks with Multiple Granularities

� Example: Can Lock
� Whole relation
� Individual pages
� Tuples etc.

� Warning Locks: A Protocol for Hierarchical Structures
� Basic Idea: To read (S) deep down below,

insert IS locks all the way from root to the element of interest
� To write (X) deep down below,

insert IX locks all the way from root to the element of interest
� IS: “I intend to read something down below”
� IX: “I intend to write something down below”

� Compatibility Matrix

IS IX S X

IS yes yes yes no

IX yes yes no no

S yes no yes no

X no no no no

CS 5614: Transaction Processing 134

Problems with previous slide

� S and IX don’t dominate each other! (why?)
� Solution: Introduce a new locking mode (SIX)
� Provide the conjunction of the two modes
� Can be viewed as a mode in its own right: why? (a popular operation)

� To obtain
� IS or S -> must have on all ancestors: IS or IX
� IX or X or SIX -> must have on all ancestors: IX or SIX

� More Problems
� The Phantom Menace: Insertion of New Tuples
� Should be viewed as an X operation

IS IX S X SIX

IS yes yes yes no yes

IX yes yes no no no

S yes no yes no no

X no no no no no

SIX yes no no no no

CS 5614: Transaction Processing 135

Recovery

� When is it applicable?
� For A and D (of ACID)

� Transactions are performed in a “tentative” manner
� For ensuring A, UNDO operation
� For ensuring D, REDO operation
� provided by the buffer manager

� UNDO and Policies for implementing it
� Process of removing effects of an incomplete/aborted Tx for preserving A
� STEAL: allowing updates made by an uncommitted Tx to overwrite the most

recently committed value of a data item on nonvolatile storage
� NO-STEAL: opposite of STEAL

� REDO and Policies for implementing it
� Process of reinstating effects of an uncommitted Tx for preserving D
� FORCE: ensuring that all updates made by a Tx are reflected on nonvolatile

storage before the Tx is allowed to commit
� NO-FORCE: opposite of FORCE

� Which places fewest demands on UNDO and REDO recovery?
� NO-STEAL and FORCE

CS 5614: Transaction Processing 136

In Real Life ...

� STEAL/NO-FORCE is used! Why?
� NO-STEAL obligates the retention of temporary data in swap areas
� FORCE causes disk write overhead in the path of a committing transaction
� WAL: Write-Ahead Logging - a policy for enforcing STEAL/NO-FORCE
� Used by most commercial systems

� How is “C” achieved (in ACID)
� Active and Rule-Based Elements (Constraints, Triggers)
� Help encode application-specific constraints
� allow DBMS to be reactive

� Limitations of ACID Model
� Very restrictive; cannot model many important applications
� e.g. mobile computing, collaborative computing, workflow-process mgmt.
� too general for richer transaction semantics

