
Accelerator-Oriented Algorithm Transformation for Temporal Data Mining

Debprakash Patnaik, Sean P. Ponce, Yong Cao, Naren Ramakrishnan
Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA

Email: {patnaik, ponce, yongcao, naren} @vt.edu

Abstract—Temporal data mining algorithms are becoming
increasingly important in many application domains including
computational neuroscience, especially the analysis of spike
train data. While application scientists have been able to
readily gather multi-neuronal datasets, analysis capabilities
have lagged behind, due to both lack of powerful algorithms
and inaccessibility to powerful hardware platforms. The advent
of GPU architectures such as Nvidia’s GTX 280 offers a cost-
effective option to bring these capabilities to the neuroscien-
tist’s desktop. Rather than port existing algorithms onto this
architecture, we advocate the need for algorithm transformation,
i.e., rethinking the design of the algorithm in a way that need
not necessarily mirror its serial implementation strictly. We
present a novel implementation of a frequent episode discovery
algorithm by revisiting “in-the-large” issues such as problem
decomposition as well as “in-the-small” issues such as data
layouts and memory access patterns. This is non-trivial because
frequent episode discovery does not lend itself to GPU-friendly
data-parallel mapping strategies. Applications to many datasets
and comparisons to CPU as well as prior GPU implementations
showcase the advantages of our approach.

Keywords-GPGPU; Temporal data mining; Frequent
episodes; Spike train analysis; Computational neuroscience;
CUDA

I. INTRODUCTION

Discovering frequently repeating patterns in event se-
quences is an important data mining problem that finds
application in domains such as industrial plants/assembly
lines, medical diagnostics, and computational neuroscience.
Algorithms such as frequent episode discovery [1], [2], in
particular, are adept at discovering patterns in neuronal spike
train data using multi-electrode arrays (MEAs; shown in
Fig. 1). They bring us one step closer to reverse-engineering
the temporal connectivity map of neuronal circuits and
yield insights into the network level activity of brain tissue.
However, there is a combinatorial cost to exploring spike
train datasets within the memory and processing power
constraints of the single CPU.

In recent years, the peak-performance of a GPU has
exceeded that of the CPU by several orders of magnitude.
Intel’s latest quad-core processors have a theoretical peak
of 51.20 GFLOPS. Nvidia’s latest single GPU card, the
GeForce GTX 285, has a theoretical peak of 1062.72
GFLOPS. Application speedups up to 431x have been
reported [3]. The demand for graphics applications like
gaming have made GPUs widely available and inexpen-
sive. In this paper we explore how this massively parallel

MEA

N
eu

ro
n

s

A

B

C

D

Time (in sec)

Time (in sec)

N
eu

ro
n

s

A

B

C

D

Figure 1. left: Illustration of a micro electrode array (MEA) used to record
spiking activity of neurons in tissue cultures; top right: a raw spike train
recorded by the MEA; and bottom right: a recurring pattern/cascade of
neuronal activity.

computing platform can be used effectively to solve the
challenges posed by temporal data mining. Although we
focus on a specific algorithm, the issues encountered here are
symptomatic of many temporal mining algorithms that must
use state machines to monitor and process event streams.
Hence the lessons learned from this effort will likely seed
similar research efforts.

One major challenge in utilizing the GPU lies in trans-
forming algorithms to operate efficiently on the GPU. An-
other challenge is understanding how to harness the GPU
architecture to achieve superior performance. Data-parallel
algorithms require relatively less work to map computations
onto the GPU architecture. For algorithms with complex
data dependencies, such as dynamic programming, it is
difficult to achieve significant speedup. The nature of the
temporal data mining problem addressed in this work limits
the performance gain of standard hardware-oriented opti-
mizations applied to direct ports of existing algorithms (due
to their sequential dependencies implicit in processing event
streams).

In this paper, we adopt the concept of Accelerator-
Oriented Algorithm Transformation and introduce a new
algorithm for counting occurrences of frequent episodes with
temporal constraints (a key analysis task for event stream
analysis) on the GPU. Here an episode is a sequential
dependency of the form ‘event A followed by event B
followed by event C...’ where there could be “don’t care”
or “junk” events interspersed between the pattern events.
(The frequency of such episodes is defined as the maximum
number of non-overlapped occurrences of the episodes in
the event stream.)

The traditional approach to parallelizing existing algo-
rithms is to start with the existing sequential algorithm,



identify the data dependency patterns, and restructure the
original algorithm to achieve maximum data parallelism.
An alternate approach is to look at the problem being
solved and formulate a decomposition using known parallel
primitives. We follow the later approach and design a new
algorithm by decomposing the original problem into two
sub-problems: finding overlapped episode occurrences and
resolving overlaps to obtain non-overlapped counts. We
introduce a parallel local tracking algorithm to solve the first
sub-problem which is computationally more demanding. On
the other hand, the second sub-problem contributes only a
very small overhead to the overall computation and is hence
solved sequentially. The re-designed algorithm exhibits a
higher degree of parallelism resulting in a performance gain
over the sequential algorithm implemented on a single-
core CPU and a previously optimized GPU implementation
(MapConcat) [4] which achieves parallelism by mining
segments of the data sequence.

II. BACKGROUND

A. GPGPU Architecture

The initial purpose of specialized GPUs was to accelerate
the display of 2D and 3D graphics, much in the same
way that the FPU focused on accelerating floating-point
instructions. However, the rapid technological advances of
the GPU, coupled with extraordinary speed-ups of applica-
tion “toy” benchmarks on the specialized GPUs, led GPU
vendors to transform the GPU from a specialized processor
to a general-purpose graphics processing unit (GPGPU),
such as the NVIDIA GTX 280. To lessen the steep learning
curve, GPU vendors have also introduced programming
environments, such as the Compute Unified Device Archi-
tecture (CUDA).

Figure 2. The NVIDIA GTX280 GPU architecture.

Processing Elements: The basic execution unit on the GTX
280 is a scalar processing core, of which 8 together form a
multiprocessor. While the number of multiprocessors and
processor clock frequency depends on the make and model
of the GPU, every multiprocessor in CUDA executes in
SIMT (Single Instruction, Multiple Thread) fashion, which
is similar in nature to SIMD (Single Instruction, Multiple
Data) execution. Specifically, a group of 32 threads form a

warp and are scheduled to execute concurrently. However,
when code paths within a warp diverge, the execution of
all threads in a warp becomes serialized. This implies that
optimal performance is attained when all 32 threads do not
branch down different code paths.
Memory Hierarchy: The GTX 280 contains multiple forms
of memory. The read-write global memory and read-only
texture memory is located off-chip on the graphics card and
provides the main source of storage for the GPU, as shown
in Figure 2. Each multiprocessor on the GPU contains fast
on-chip memory, which includes cache memory and shared
memory. The texture cache is read-only memory providing
fast access to immutable data. Shared memory, on the other
hand, is user-controlled read-write space to provide each
core with fast access to the shared address space within a
multiprocessor.
Parallelism Abstractions: At the highest level, the CUDA
programming model requires the programmer to offload
functionality to the GPGPU as a compute kernel. This
kernel is evaluated as a set of thread blocks logically
arranged in a grid to facilitate organization. In turn, each
block contains a set of threads, which will be executed
on the same multiprocessor, with the threads scheduled in
warps, as mentioned above.

B. Data Mining using GPGPUs

Many researchers have harnessed the capabilities of GPG-
PUs for data mining. The key to porting a data mining
algorithm onto a GPGPU is to, in a sense, “dumb it down”;
i.e., conditionals, program branches, and complex decision
constraints are not easily parallelizable on a GPGPU and
algorithms using these constraints will require significant
reworking to fit this architecture (temporal episode mining
unfortunately falls in this category). There are many emerg-
ing publications in this area but due to space restrictions,
we survey only a few here. The SIGKDD tutorial by Guha
et al. [5] provides a gentle introduction through classical
problems such as k-means clustering. In [6], a bitmap tech-
nique is proposed to support counting and is used to design
GPGPU variants of Apriori and k-means clustering. This
work also proposes co-processing for itemset mining where
the complicated tie data structure is kept and updated in the
main memory of the CPU and only the itemset counting
is executed in parallel on the GPU. A sorting algorithm
on GPGPUs with applications to frequency counting and
histogram construction is discussed in [7] which essentially
recreates sorting networks on the GPU.

C. Temporal Data Mining

In event sequences, the notion of frequent episodes is used
to express patterns of the form A → B → C, i.e., event A
is followed (not necessarily consecutively) by B and B is,
similarly, followed by C. It is also important to constrain
the mining problem by imposing minimum and maximum



delays between consecutive symbols in an episode, e.g.,
to look for episodes of the form (A

(2,5]−−→B
(0,6]−−→C). This

specifies that event A is to be followed by B within two
to five milliseconds, and C follows B within at most six
milliseconds. In either unconstrained or constrained episode
mining, the occurrences of an episode allow “junk” or
“don’t care” events, of arbitrary length, between the event
symbols of the episode. Many frequency measures [1], [8]
for episodes have been defined that obey anti-monotonicity
and hence search for such episodes can be structured level-
wise, ala Apriori. The first measure to be proposed was
the window based frequency measure [8]. Later the notion
of non-overlapped occurrences count was shown to have
properties that enable fast sequential counting algorithms
[1].

Definition 1: An Event Stream is denoted by a sequence
of events 〈(E1, t1), (E2, t2), . . . (En, tn)〉, where n is the
total number of events. Each event (Ei, ti) is characterized
by an event type Ei and a time of occurrence ti. The
sequence is ordered by time i.e. ti ≤ ti+1∀i = 1, . . . , n− 1
and Ei’s are drawn from a finite set ξ.

In neuroscience, a spike train is a series of discrete action
potentials from several neurons generated spontaneously or
as a response to some external stimulus. This data neatly
fits into the frequent episodes framework of analyzing event
streams.

Definition 2: An (serial) episode α is an ordered tuple of
event types Vα ⊆ ξ.
For example (A → B → C) is a 3-node serial episode,
and it captures the pattern that neuron A fires, followed
by neurons B, and C in that order, but not necessarily
consecutive.

Frequency of episodes: A frequent episode is one whose
frequency exceeds a user specified threshold. The notion of
frequency of an episode is intended to capture the repeating
nature of an episode in an event sequence. In this work we
shall focus on the measure of frequency defined as the size of
the largest set of non-overlapped occurrences of an episode
[1].

Temporal constraints: Episodes can be further specialized
by specifying constraints on the timing of the events in
episode occurrences [2]. Placing inter-event time constraints
giving rise to episodes of the form:

(A
(t1low,t

1
high]

−−−−−−−−→B
(t2low,t

2
high]

−−−−−−−−→C)

That is, in an occurrence of episode A→ B → C let tA,
tB , and tC denote the time of occurrence of corresponding
event types. A valid occurrence of the serial episode satisfies

t1low < (tB − tA) ≤ t1high, t2low < (tC − tB) ≤ t2high.
(In general, an N -node serial episode is associated with N−
1 inter-event constraints.)

Level-wise discovery procedure for frequent episodes
finds the complete set of episodes with frequency or count
greater than a user-defined threshold. At each level, N -
size candidates are generated from (N − 1)-size frequent
episodes and their count is determined by making a pass over
the event sequence. Only those candidates whose count is
greater than the threshold are retained. The event sequences
typically runs very long and hence the counting step is
computationally the most expensive step. For initial passes
of the algorithm where we have several short episodes to
count the counting task can be embarrassingly parallel by
making each thread of execution count occurrences of only
one episode. But in later stages there are relatively fewer
but longer episodes leading to severe under-utilization. We
focus our work here on the later situation and attempt to
solve this counting problem.

III. ALGORITHM

A. Episode Counting Algorithm

The algorithm presented in [2] is based on finite state
machines. This sequential algorithm for mining frequent
episodes with inter-event constraints works by maintaining
a data-structure (shown in Figure 3) as the read head moves
down the event sequence. In this example we are counting
occurrences of episode A

(5,10]→ B
(10,15]→ C.

A
(5,10]

B C
(10,15]

Events:

Times:

A A B A A C B C

1 2 5 8 10 13 15 18 20

B

list[A] list[B] list[C]

1

2

10

13

8

18

20

Data Structure:

Figure 3. Illustration of the algorithm for counting non-overlapped

occurrences of A
(5,10]→ B

(10,15]→ C. This proceeds from left-to-right of
the event steam keeping track of sufficient information required to obtain
the count of non-overlapped occurrences under the given inter-event time
constraints.

The general approach, on finding an event that belongs
to the episode, is to look up the list of occurrences of the
previous symbol (or event-type). If there exists an event of
the previous event type which together with the new event
satisfies the inter-event constraint for the pair of event-types,
then the new event is added to the data-structure under its
corresponding symbol. An occurrence is said to be complete
when we can add an event for the last symbol in the episode.
Then the count is incremented and the data-structure is
cleared. For example when (B, 18) arrives, it is found that
the pair (A, 10) and (B, 18) satisfy the inter-event constraint
(5, 10] (i.e. 18 − 10 = 8 and 5 < 8 ≤ 10). And therefore



the t = 18 is recorded in list[B]. On arrival of (C, 20) we
are able to complete one occurrence of the episode under
consideration.

B. MapConcat

The initial idea for parallelization was to allocate one
thread to count occurrences of one episode. However, when
the number of candidate episodes is less than the number
of cores, a one-thread per-episode model suffers from under
utilization. Our first attempt to achieve a higher level of
parallelism within the counting of a single episode was to
segment the input event stream into several sub-streams and
use one thread block to count one episode [4].

Segment-pEvent sequence

α0
p

α1
p

αN−1
p

τp

τp − t(1)high

τp τp+1

τp −
∑N−1

i=1 t
(i)
high

a0
p b0pcount0p

a1
p b1p

aN−1
p

bN−1
p

count1p

countN−1
p

τp+1 +
∑N−1

i=1 t
(i)
high

Figure 4. Illustration of a Map step. Multiple state machines are needed
to track occurrences of N -size episode α in the pth-Segment of the data.
Each state machine starts at a different offset into the previous segment
and continues over into the next segment to complete the last occurrence.
The end-time of the first a and last occurrence b seen by a state machine
are recorded beside the count for the reduce/concat step.

When we divide the input stream into segments, there are
chances that some occurrences of an episode span across the
boundaries of consecutive segments. It turns out that in order
to obtain the correct count we are required to run multiple
state machines within the same data segment anticipating
all possible end states of the state machine in the previous
segment. The final count is obtained by a reduce step where
state machines for consecutive segments with matching start
and end states are concatenated. The counting step (or the
Map-step) is illustrated in Fig. 4 and the reduce step (or
Concat-step) is shown in Fig. 5.

Segment 1 Segment 2 Segment 3 Segment 4

(a0
1, count01, b

0
1) (a0

2, count02, b
0
2)

(a1
2, count12, b

1
2)

(a2
2, count22, b

2
2)

(a0
3, count03, b

0
3)

(a1
3, count13, b

1
3)

(a2
3, count23, b

2
3)

(a0
4, count04, b

0
4)

(a1
4, count14, b

1
4)

(a2
4, count24, b

2
4)

(a0
1, count01 + count22, b

2
2) (a0

3, count03 + count14, b
1
4)

(a1
3, count13 + count24, b

2
4)

(a2
3, count23 + count04, b

0
4)

Level 1:

Level 2:

Level 3: (a0
1, count01 + count22 + count23 + count04, b

0
4)

Figure 5. Illustration of a Concatenate step. As noted in Fig 4, the first
and last occurrence of each state-machine is used to stitch together the
total count for an episode. The blue arrow in this figure indicates that the
last occurrence seen by the state-machine on the left matches with the first
occurrence seen by the state-machine on the right. These state-machines
can then be merged together into the next level.

IV. REDESIGNED ALGORITHM

The original state-machine based algorithm has a lot of
data dependency. It is difficult to increase the degree of par-
allelism by optimizing this algorithm. In order to transform
the algorithm to map well onto the GPGPU architecture,
we revisit the problem and formulate a decomposition using
known parallel primitives.

A. Problem decomposition

We adopt a two phase approach. To identify the desired
non-overlapped occurrences we first find a super-set of them
that could potentially be overlapping. This can be solved
with a high degree of parallelism as we demonstrate below.
Next, we organize the episodes that discovered in the form
of a task/job assignment problem. Each occurrence of an
episode can be viewed as a job with a start time and
an end time. The problem of finding the largest set of
non-overlapped occurrences then becomes akin to a job
scheduling problem, where the goal is to maximize the
number of jobs. This can be solved with a greedy O(n)
algorithm.

We first pre-process the entire event stream noting the
positions of events of each event-type. Then for a given
episode, beginning with the list of occurrences of the start
event-type in the episode, we find occurrences satisfying
the temporal constraints in parallel. Finally we collect and
remove overlapped occurrences in one pass. The greedy
algorithm for removing overlaps requires the occurrences
to be sorted by end time and the algorithm proceeds as
shown in Algorithm 1. Here, for every set of consecutive
occurrences, if the start time is after the end time of the last
selected occurrence then we select this occurrence, otherwise
we skip it and go to the next occurrence.

Algorithm 1 Obtaining the largest set of non-overlapped
occurrences
Input: List C of occurrences with start and end times (si, ei)

sorted by end time, ei.
Output: Size of the largest set of non-overlapped occur-

rences
Initialize count = 0
preve = 0
for all (si, ei) ∈ C do

if preve < si then
preve = ei; count = count+ 1

return count

B. Finding occurrences in parallel

The aim here is to find a super-set of non-overlapped
occurrences in parallel. The basic idea is to start with all
events of the first event-type in parallel for a given episode
and find occurrences of the episode starting at each of these
events. There can be several different ways in which this



can be done. We shall present two approaches that gave
us the most performance improvement. We shall use the
episode A

(5−10]−→ B
(5−10]−→ C as our running example and

explain each of the counting strategies using this example.
This example episode specifies event occurrences where an
event A is to be followed by an event B within 5-10 ms
and event B is to be followed by an event C within 5-10 ms
delay. Note again that the delays have both a lower and an
upper bound.

C. Parallel Local Tracking

In the pre-processing step, we have noted the locations
of each of the event-types in the data. In the counting step,
we launch as many threads as there are events in the event
stream of the start event-type (of the episode). In our running
example these are all events of type A. Each thread searches
the event stream starting at one of these events of type A
and looks for an event of type B that satisfies the inter-event
time constraint (5− 10] i.e., 5 < tBj − tAi ≤ 10 where i, j
are the indices of the events of type A and B. One thread
can find multiple B’s for the same A. These are recorded
in a preallocated array assigned to each thread. Once all
the events of type B (with an A before them) have been
collected by the threads (in parallel), we need to compact
these newfound events into a contiguous array/list. This is
necessary as in the next kernel launch we will find all the
events of type C that satisfy the inter-event constraints with
this set of B’s. This is illustrated in Figure 6.

A

B

CEv
en

ts

Time (in sec)

Thead-1 Thead-2 Thead-3 Thead-4 Thead-5

A

B

CE
ve

n
ts

Time (in sec)

Thead-1
Thead-2

Thead-3 Thead-4

Iteration# 1

Iteration# 2

Figure 6. Illustration of Parallel local tracking algorithm (See Algo-
rithm 2), showing 2 iterations for the episode A→ B → C with implicit
inter-event constraints. Note that each thread can find multiple next-events.
Further, a thread stops scanning the event sequence when event-times go
past the upper bound of the inter-event constraint.

Algorithm 2 presents the overall work done in each kernel
launch. In order to obtain the complete set of occurrences
of an episode, we need to launch the kernel N − 1 times
where N is the size of an episode. The list of qualifying
events found in the ith iteration is passed as input to the
next iteration. Some amount of book-keeping is also done
to keep track of the start and end times of an occurrence.
After this phase of parallel local tracking is completed the
non-overlapped count is obtained using Algorithm 1. The

Algorithm 2 Kernel for Parallel Local Tracking
Input: Iteration number i, Episode α, α[i]: ith event-type in
α, Index list Iα[i], Data sequence S.

Output: Iα[i+1]: Indices of events of type α[i+ 1].
for all threads with distinct identifiers tid do

Scan S starting at event Iα[i][tid] for event-type α[i+1]
satisfying inter-event constraint (t(i)low, t

(i)
high].

Record all such events of type α[i+ 1].
Compact all found events into the list Iα[i+1].
return Iα[i+1]

compaction step in Algorithm 2 presents a challenge as it
requires concurrent updates into a global array.

D. Lock-based compaction

Nvidia graphics cards with CUDA compute capability 1.3
support atomic operations on shared and global memory.
Here we use atomic operations to perform compaction of
the output array into the global memory. After the counting
step each thread has a list of next-events. Subsequently each
thread adds the size of its next-events list to the block-level
counter using an atomic add operation and in return obtains
a local offset (which is the previous value of the block-level
counter). After all threads in a block have updated the block-
level counter, one thread from a block updates the global-
counter by adding the value of the block-level counter to it
and, as before, obtains the offset into global memory. Now
all threads in the block can collaboratively write into the
correct position in the global memory (resulting in overall
compaction). A schematic for this operation is shown for
2-blocks in Figure 7. In the results section, we refer to this
method as AtomicCompact.

Block-1 Block-2

Global Memory

Block-1

Shared Memory

Block-2
Atomic-Counter Atomic-Counter

Atomic-Counter

Thread-1

Thread-N

…

Thread-1

Thread-N

…

Figure 7. Illustration of output compaction using AtomicAdd operations.
Note that we use atomic operations at both block and global level. These
operations return the correct offset into global memory for each thread to
write its next-event list into.

Since there is no guarantee for the order of atomic
operations, this procedure requires sorting. The complete
occurrences need to be sorted by end time for Algorithm 1
to produce the correct result.



E. Lock-free compaction
Prefix-scan is known to be a general-purpose data-parallel

primitive that is a useful building block for algorithms
in a broad range of applications. Given a vector of data
elements [x0, x1, x2, . . .], an associative binary function ⊕
and an identity element i, exclusive prefix-scan returns
[i, x0, x0 ⊕ x1, x0 ⊕ x1 ⊕ x2, . . .]. Although the problem is
seemingly sequential the first parallel prefix-scan algorithm
was proposed in 1962 [9]. With recently increasing interest
is GPGPU, several implementations of scan have been
proposed for GPU, the most recent ones being [10] and
[11]. This later implementation is available as the CUDPP:
CUDA Data Parallel Primitives Library and forms part of
the CUDA SDK distribution.

Our lock-free compaction is based on prefix-sum and
we reuse the implementation from CUDPP library. Since
the scan based operation guarantees ordering we modify
our counting procedure to count occurrences backwards
starting from the last event. This results in the final set of
occurrences to be automatically ordered by end-time and
therefore completely eliminates the need for sorting (as
required by atomic operations based approach).

0 2 3 4 4 7

B B B B B B B B B

2 1 1 0 3 2

C C C C C

Prefix-Sum

C
Count-Phase

Write-Phase

Thread-1 Thread-2 Thread-3 Thread-4 Thread-5 Thread-6

Figure 8. Illustration of output compaction using Scan primitive. Each
iteration is broken into 3 kernel calls: Counting the number of next events,
Using scan to compute offset into global memory, finally launching count-
procedure again but this time allowing write operations to the global
memory

The CUDPP library provides a compact function which
takes an array din, an array of 1/0 flags and returns a
compacted array dout of corresponding only the “valid”
values from din (it internally uses cudppScan). In order to
use this, our counting kernel is now split into three kernel
calls. Each thread is allocated a fixed portion of a larger
array in global memory for its next-events list. In the first
kernel, each thread finds its events and fills up its next-
events list in global memory. The cudppCompact function
(implemented as two GPU kernel calls) compacts the large
array to obtain the global list of next-events. A difficulty of
this approach is that the array on which cudppCompact
operates is very large resulting in a scattered memory access
pattern. We refer to this method as CudppCompact.

In order to further improve performance, we adopt a
counter-intuitive approach. We again divide the counting
process into three parts. First, each thread looks up the event
sequence for suitable next-events but instead of recording

the events found, it merely counts and writes the count to
global memory. Then an exclusive scan is performed on
the recorded counts. This gives the offset into the global
memory where each thread can write its next-events list.
The actual writing is done as the third step. Although each
thread looks up the event sequence twice (first to count, and
second to write) we show that we nevertheless obtain better
performance. This entire procedure is illustrated in Figure 8.
We refer to this method of compaction as CountScanWrite
in the ensuing results section.

Note that prefix-scan is essentially a sequential operator
applied from left-to-right to an array. Hence the memory
write operations into memory locations generated by prefix
scan preserve order. The sorting step (i.e. sorting occurrences
by end time,) required in the lock-based compaction can
be completely avoided by counting occurrences backwards
starting from the last event-type in the episode.

V. RESULTS

The hardware used for obtaining the performance results
are given in Table I:

Table I
HARDWARE USED FOR PERFORMANCE ANALYSIS

GPU Nvidia GTX 280
Memory (MB) 1024
Memory Bandwidth (GBps) 141.7
Multiprocessors, Cores 30, 240
Processor Clock (GHz) 1.3
CPU Intel Core 2 Quad Q8200
Processors 4 (only 1 used)
Processor Clock (GHz) 2.33
Memory (MB) 4096

A. Test datasets and algorithm implementations

The datasets used here are generated from the non-
homogeneous Poisson process model for inter-connected
neurons described in [2]. This simulation model generates
fairly realistic spike train data. For the datasets in this
paper, a network of 64 artificial neurons was used. The
random firing rate of each neuron was set at 20 spikes/sec to
generate sufficient noise in the data. Four 9-node episodes
were embedded into the network by suitably increasing the
connection strengths for pairs of neurons. Spike train data
was generated by running the simulation model for different
durations of time. Table II gives the duration and number of
events in each dataset.

Table II
DETAILS OF THE DATASETS USED

Data Length # Events
-Set (in sec)

1 4000 12,840,684
2 2000 6,422,449
3 1000 3,277,130
4 500 1,636,463

Data Length # Events
-Set (in sec)

5 200 655,133
6 100 328,067
7 50 163,849
8 20 65,428



In Section V-B, we compare the performance of our
new algorithm to MapConcat and a CPU implementation
of the original algorithm described in Section II-C. The
CPU version is sequential as it is clear for our discussion
that parallelizing the the episode mining task is non-trivial
and hence runs on only one core of the CPU. In order to
analyze the lock-based and lock-free compaction strategies,
we present the performance of a lock-based method, Atom-
icCompact, and two lock-free methods, CudppCompact and
CountScanWrite, as shown in Section V-C.

B. Comparisons of performance

0

1000

2000

3000

4000

5000

6000

7000

0 5000000 10000000 15000000

C
o

u
n

ti
n

g 
Ti

m
e

 (
m

s)

Event Stream Size

CountScanWrite CPU MapConcat

Figure 9. Performance of MapConcat compared with the CPU and best
GPU implementation, counting 30 episodes in Datasets 1-8.

We compare MapConcat performance to the best CPU and
GPU versions by having each algorithm count 30 episodes.
MapConcat counts one episode per multiprocessor, and the
GTX 280 contains 30 multiprocessors, so we count 30
episodes to fully utilize the GPU to make a fair comparison.
The CPU counts the episodes in parallel by using one thread
per core, and distributing the count of 30 episodes amongst
the threads.

MapConcat is clearly a poor performer compared to the
CPU, with up to a 4x slowdown. Compared to our best
GPU method, MapConcat is up to 11x slower. This is due
to the overhead induced by the merge step of MapConcat.
Although at the multiprocessor level each episode is counted
in parallel, the logic required to obtain the correct count is
complex.

We run the CUDA Visual Profiler on MapConcat and
one of our redesigned algorithms, CountScanWrite. Dataset
2 was used for profiling each implementation. Due to its
complexity, MapConcat exhibited poor features such as large
amounts of divergent branching and a large total number of
instructions executed, as shown in Table III. Comparatively,
the CountScanWrite implementation only exhibits divergent
branching.

Table III
CUDA VISUAL PROFILER RESULTS

MapConcat CountScanWrite
Instructions 93,974,100 8,939,786
Branching 27,883,000 2,154,806
Divergent Branching 1,301,840 518,521

The best GPU implementation is compared to the CPU
by counting a single episode. This is the case where the
GPU was weakest in previous attempts, due to the lack
of parallelization when the episodes are few. In terms of

0

20

40

60

80

100

120

140

0 5000000 10000000 15000000

C
o

u
n

ti
n

g 
Ti

m
e 

(m
s)

Event Stream Size

CountScanWrite CPU

Figure 10. Performance comparison of the CPU and best GPU implemen-
tation, counting a single episode in Datasets 1 through 8.

the performance of our best GPU method, we achieve a 6x
speedup over the CPU implementation on the largest dataset,
as shown in Figure 10.

C. Analysis of the new algorithm

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10

Ti
m

e 
(m

s)

Episode Length

AtomicCompact CountScanWrite CudppCompact

Figure 11. Performance of algorithms with varying episode length in
Dataset 1.

Figure 11 presents timing information for the three com-
paction methods as a function of episode length. Compaction
using CUDPP is the slowest of the GPU implementations,
as expected. It requires each data element to be either
in or out of the final compaction, and does not allow
for compaction of groups of elements. For small episode
lengths, the CountScanWrite approach is best because sort-
ing can be completely avoided. However, at longer episode
lengths, compaction using lock-based operators shows the
best performance. This method of compaction avoids the
need to perform a scan and a write at each iteration, at the
cost of sorting the elements at the end. The execution time of
the AtomicCompact is nearly unaffected by episode length,
which seems counter-intuitive because each level requires
a kernel launch. However, each iteration also decreases the
total number of episodes to sort and schedule at the end of
the algorithm. Therefore, the cost of extra kernel invocations
is offset by the final number of potential episodes to sort and
schedule.

We find that counting time is related to episode frequency
as shown in Figure 12. There is a linear trend, with episodes



0

5

10

15

20

25

30

35

40

45

50

30000 40000 50000 60000 70000 80000 90000 100000

Ti
m

e 
(m

s)

Episode Frequency

AtomicCompact CountScanWrite CudppCompact

Figure 12. Performance of algorithms with varying episode frequency in
Dataset 1.

of higher frequency requiring more counting time. The
lock-free compaction methods follow an expected trend
of slowly increasing running time because there are more
potential episodes to track. The method that exhibits an
odd trend is the lock-based compaction, AtomicCompact.
As the frequency of the episode increases, there are more
potential episodes to sort and schedule. The running time of
the method becomes dominated by the sorting time as the
episode frequency increases.

Another feature of Figure 12 that requires explanation is
the bump where the episode frequency is slightly greater
than 80,000. This is because the running time is affected, not
by the final non-overlapped count, but by the total number of
overlapped episodes found before the scheduling algorithm
is applied (to remove overlaps). The x-axis displays non-
overlapped episode frequency, where the run-time is actually
affected more by the overlapped episode frequency.

We used the CUDA Visual Profiler on the other GPU
methods. They had similar profiler results as the CountScan-
Write method. The reason is that the only bad behavior
exhibited by the method is divergent branching, which
comes from the tracking step. This tracking step is common
to all of the GPU method of the redesigned algorithm.

VI. CONCLUSION

Just as algorithms for secondary storage are quite distinct
from algorithms for main memory (e.g., two-phase merge
sort is preferable over quick-sort), we have shown similarly
that approaches for temporal data mining on a GPU must
adopt fundamentally different strategies than that on a CPU.
Through this work, we aim to have conveyed that even
with an application such as frequent episode mining that
is unequivocally ‘sequential’ in nature, it is possible to
obtain reasonable speedup by an order of magnitude using
careful redesign and algorithm-oriented transformation. A
key lesson from our efforts is the importance of investigat-
ing both “in-the-large” and “in-the-small” issues. We have
demonstrated the effectiveness of our approach to handling
large scale event stream datasets modeled by inhomogeneous
Poisson processes.

VII. FUTURE WORK

Similar to our motivations stemming from computational
neuroscience, there are a large class of data mining tasks
in bioinformatics, linguistics, and event stream analysis that
require analysis of sequential data. Our work opens up the
interesting issue of the extent to which finite state-machine
based algorithms for these tasks can be accelerated using
GPU platforms. Are there fundamental limitations to porting
such algorithms on GPUs? We believe there are and hope
to develop a theoretical framework to investigate GPU-
transformation issues for these algorithms. Second, we aim
to study the development of streaming versions of these
algorithms where approximate results are acceptable but near
real-time responsiveness is important.

REFERENCES

[1] S. Laxman et al., “Discovering frequent episodes and learning
hidden markov models: A formal connection,” IEEE TKDE,
vol. Vol 17, no. 11, pp. pages 1505–1517, Nov 2005.

[2] D. Patnaik et al., “Inferring neuronal network connectivity
from spike data: A temporal data mining approach,” Scientific
Programming, vol. 16(1), pp. 49–77, 2008.

[3] S. Ryoo et al., “Optimization principles and application
performance evaluation of a multithreaded gpu using cuda,”
in Proc. PPoPP, 2008, pp. 73–82.

[4] Y. Cao et al., “Towards chip-on-chip neuroscience: Fast
mining of frequent episodes using graphics processors,”
arXiv.org, 2009.

[5] S. Guha et al., “Data visualization and mining using the gpu,”
Tutorial at ACM SIGKDD’05, 2005.

[6] W. Fang et al., “Parallel data mining on graphics processors,”
Hong Kong University of Science and Technology, Tech. Rep.
HKUST-CS08-07, Oct 2008.

[7] N. Govindaraju et al., “Fast and approximate stream mining
of quantiles and frequencies using graphics processors,” in
Proc. SIGMOD’05, 2005, pp. 611–622.

[8] H. Mannila et al., “Discovery of frequent episodes in event
sequences,” DMKD, vol. 1, no. 3, pp. 259–289, 1997.

[9] K. E. Iverson, A Programming Language. Wiley, New York,
1962.

[10] M. Harris et al., GPU Gems 3. Addison Wesley, 2007, ch.
Parallel prefix sum (scan) with CUDA.

[11] S. Sengupta et al., “Scan primitives for gpu computing,” in
Graphics Hardware 2007. ACM, Aug. 2007, pp. 97–106.


