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Abstract
Illegal logging poses a significant threat to global biodiversity, cli-
mate stability, and depresses international prices for legal wood har-
vesting and responsible forest products trade, affecting livelihoods
and communities across the globe. Stable isotope ratio analysis
(SIRA) is rapidly becoming an important tool for determining the
harvest location of traded, organic, products. The spatial pattern in
stable isotope ratio values depends on factors such as atmospheric
and environmental conditions and can thus be used for geographic
origin identification. We present here the results of a deployed
machine learning pipeline where we leverage both isotope values
and atmospheric variables to determine timber harvest location.
Additionally, the pipeline incorporates uncertainty estimation to
facilitate the interpretation of harvest location determination for an-
alysts. We present our experiments on a collection of oak (Quercus
spp.) tree samples from its global range. Our pipeline outperforms
comparable state-of-the-art models determining geographic har-
vest origin of commercially traded wood products, and has been
used by European enforcement agencies to identify harvest location
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misrepresentation. We also identify opportunities for further ad-
vancement of our framework and how it can be generalized to help
identify the origin of falsely labeled organic products throughout
the supply chain.
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1 Introduction
Illegal logging is a global problem with serious economic, social,
and ecological impacts. It is the most profitable natural resource

https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.1145/3711896.3737201
https://doi.org/10.1145/3711896.3737201
https://doi.org/10.1145/3711896.3737201


KDD ’25, August 3–7, 2025, Toronto, ON, Canada Sarkar et al.

crime with an estimated annual value between $52 billion and
$157 billion, as well as the third largest transnational crime, after
counterfeiting and drug trafficking [9]. Illegal logging causes de-
struction to forest ecosystems, the local flora and fauna, and the
people whose livelihoods depend upon forests for goods and ser-
vices. The effects of illegal logging are not only felt in the area
where the illicit activity takes place but also impact associated trade
and international markets. Two decades ago it was determined that
the value of US-harvested hardwoods (e.g., maple, oak, ash, poplar)
had been depressed by 7-16% due to the amount of illegal timber
in global trade [19]. Given the complexity of global supply chains
and the environmental and societal harm that practices such as
illegal resource harvesting present, it is increasingly difficult for
stakeholders (e.g., consumers, businesses involved in international
trade, and governments seeking to enforce regulations) to ensure
that products do not contribute to such environmental and social
ills.

Knowing whether illegal logging has taken place starts with
identifying where and when the specific trees in question were
harvested, and continues to other key data elements along the sup-
ply chain. The complexity of global supply chains and the lack
of key data passing through the supply chain makes it near im-
possible to track and trace a product from consumer back to its
harvest origin. Supply chain actors may try to misrepresent the
harvest location of timber products for a variety of reasons, some
of which may be deliberate (e.g., illegal logging or other type of
illicit or fraudulent activity such as sanctions evasion), or honest
mistakes in the reported geographic harvest origin (e.g., at a fine
scale spatial resolution, misrepresentation due to inaccuracies in
GPS signal). Examples of deliberate misrepresentation of harvest
location include:

• In 2015, US flooring importer Lumber Liquidators plead
guilty to environmental crimes related to importing illegally
harvested Russian wood, which included felony misdeclara-
tions on its US import documentation, claiming the species
of oak used was harvested in Germany, even though that
specific species only grows in Northeast Asia [17];

• Due to Russia’s 2022 war in Ukraine and the sanctions regime
put in place by many countries, there has been increased
scrutiny on sanctions evasion of Russian timber entering
Europe by misdeclaring the harvest origin [5, 22].

What is now possible, due to global efforts including the effort
described here, is to use stable isotope ratio analysis (SIRA) to
validate the claimed geographic harvest origins from finished forest
products such as furniture or flooring. Stable isotopes are chemical
variants of elements that do not go through radioactive decay. By
measuring stable isotope values through mass spectrometry [1]
and comparing it to a location-referenced database, we can help
understand the origin of organic products. Previouswork has shown
how it can be used to trace the origin of items such as wood, seafood,
agricultural products, and cotton [4, 12, 14, 23, 25, 28].

We focus on wood and forest products, which play a critical role
in the fight against climate change and, as mentioned earlier, the
illegal harvesting of trees is the most profitable natural resource
crime [9, 13]. The use of stable isotope testing as a tool to determine
the origin of such products is seen as a critical mechanism to identify

instances of false or misrepresented harvest location claims of wood
and forest products, thus assisting in uncovering instances of illegal
logging and sanctions evasion.

Our key contributions are:
(1) We present a comprehensive multi-task Gaussian process

modeling framework that supports the incorporation of aux-
iliary data such as climate layers to support origin deter-
mination. This enables the incorporation of environmental
factors, imputing uncertainty to predictions, and multimodal
feature integration.

(2) Our work is a deployed machine learning pipeline [16]
wherein physical samples are collected, subject to tests, and
injected into our model to help European enforcement agen-
cies in combating illegal timber trade by demonstrating that
a claimed harvest location other than Russia is not viable.

(3) While (due to confidentiality reasons) we are unable to show-
case specific instances of mislabeled data in this paper, we
demonstrate accuracy profiles of our approach in a con-
trolled experiment that illustrates the interplay between
SIRA values and atmospheric variables and how they af-
fect our ability to reveal harvest location misrepresentation.
This goes beyond traditional ML pipelines that only predict
isotope values into an end-to-end approach that supports
decision-making by enforcement agencies.

2 Methodology
2.1 Stable Isotope Ratios
A stable isotope ratio refers to the ratio of two stable isotopes of a
single element [3]. The natural variation observed for this ratio is
determined by underlying mechanisms that are affected by a range
of different factors including but not limited to environmental, at-
mospheric, soil, metabolic fraction, or other characteristics specific
to a species [20, 24, 26]. The measurement of stable isotope ratios
is commonly expressed using delta (𝛿) notation, which represents
variations in the isotope ratio in parts per thousand (‰, per mil).
The most commonly analyzed stable isotopes include those of oxy-
gen, carbon, hydrogen, nitrogen, and sulfur, which are widely used
in various scientific fields such as geology, ecology, and climate sci-
ence. For each element, the delta notation indicates the deviation of
the sample’s isotope ratio from a standardized reference. In general,
it is defined as follows:

𝛿𝑛E =
©«

(
𝑛E
𝑛′E

)
sample(

𝑛E
𝑛′E

)
standard

− 1
ª®®¬ × 1000

where E represents the element of interest, 𝑛E is the heavier isotope,
and 𝑛

′
E is the lighter isotope. The following are the four stable

isotope ratios used in this paper:
• 𝛿13C: a measure of the ratio of two stable isotopes of Carbon
(13C and 12C).

• 𝛿18O: a measure of the ratio of two stable isotopes of Oxygen
(18O and 16O).

• 𝛿2H: a measure of the ratio of two stable isotopes of Hydro-
gen (2H and 1H).
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Figure 1: ML Pipeline for Verifying Harvest Location Claims using SIRA.

• 𝛿34S: a measure of the ratio of two stable isotopes of Sulfur
(34S and 32S).

In this paper, we propose an end-to-end ML Pipeline that lever-
ages different techniques for different stages of the workflow as
illustrated by Figure 1. The symbols used in the methodology are
listed in Table 1 for better comprehension.

2.2 Atmospheric Data Layers
Stable isotope ratios are largely dependent on various environmen-
tal factors, including but not limited to precipitation, water vapor
pressure, and reflected shortwave radiation [6, 24]. The ecological
process that facilitates enrichment, or the lack thereof, for stable
isotopes in oak trees is a lengthy process. This process can be influ-
enced by climatic patterns observed over long periods. To capture
overall climatic conditions, including regularities and anomalies,
we collect comprehensive data on 25 different atmospheric proper-
ties [2, 8, 15] spanning over 20 years across the world.

2.3 Modeling Framework
Gaussian process methods are adept at modeling spatial data but
to capture complex non-linear relationships with the atmospheric
variables, decision tree-based boosting algorithms have been shown
to be effective. We describe a combined Gaussian process-mixed
effect modeling approach motivated by [21]. Given a set of locations
𝑋 = {𝑥1, 𝑥2 ..., 𝑥𝑛} with corresponding atmospheric features 𝐴(𝑋 )
= {𝐴(𝑥1), 𝐴(𝑥1), ..., 𝐴(𝑥𝑛)}, where 𝐴(𝑥𝑖 ) is the atmospheric feature
at location 𝑥𝑖 , we first aim to configure two separate learners, as
outlined next. We first provide a description of the mixed-effects
learner, followed by an explanation of Gaussian Process Regression
(GPR).

To model the non-linear relationship between atmospheric vari-
ables and stable isotope ratios, we use mixed-effect modeling com-
prised of multiple tree-based learners. The algorithm tries to learn a
set 𝑆 of tree-based base learners 𝑓 (·) in a function space 𝐻 , defined
as the linear function span of 𝑆 . Hence, the prediction derived from
this mixed-effect model is defined as 𝑌 ′ = 𝐹 (𝐴(𝑋 )).

GPR is particularly popular in this context as it naturally aids
in uncertainty estimation. The observed values are viewed as the
realization of a random process defined as 𝑃 (𝑓 |𝑋 ) = N(𝑓 |𝜇, 𝐾)
where 𝜇 = [𝑚(𝑥1),𝑚(𝑥2)...𝑚(𝑥𝑛)] is the mean estimate and 𝐾
is the parameterized covariance matrix where 𝐾𝑖 𝑗 is the kernel
covariance function of 𝑥𝑖 and 𝑥 𝑗 . Traditionally, the Gaussian process
is assumed to be zero mean. However, we combine the output of
the base decision tree learner by modifying the probability density
function in the following way:

𝑃 (𝑓 |𝑋 ) = N(𝑓 |𝑌 ′, 𝐾) (1)

In this work, the Gaussian process takes an input𝑋 = {𝑥1, 𝑥2, 𝑥3 ...𝑥𝑛}
where 𝑥𝑖 denotes the location of ith sample in the training set. The
target variable 𝑌 is a single isotope ratio. GPR fits the following
kernel coefficient:

𝑤 = [𝐾𝑛𝑛 + Σ]−1𝑌 (2)

where Σ is the error term that corresponds to the uncertainty es-
timation and 𝐾𝑛𝑛 is the covariance matrix of dimension (𝑛 × 𝑛)
where 𝑛 is the number of samples in the training set.In our case,
𝐾𝑛𝑛 is the kernel function of our choosing. We use a combination
of radial basis function, periodic, and rational quadratic function as
the covariance function. Therefore the learned covariance matrix
can be defined as 𝐾 = 𝑤𝑇 [𝐾𝑛𝑛 + Σ]
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Table 1: Summary of Symbols used in our framework.

Symbol Meaning Symbol Meaning

𝛿𝑛E Delta isotope ratio notation 𝑛E Heavier stable isotope
𝑛′E Lighter stable isotope 𝑋 = {𝑥𝑖 } Sample location set
𝐴(𝑥 ) Atmospheric vector at 𝑥 𝐴(𝑋 ) Atmospheric data for𝑋
𝑌 Observed isotope values 𝑌 ′ Prediction from 𝐹 (𝐴(𝑋 ) )
𝐹 (𝐴(𝑋 ) ) Mixed-effect learner 𝑓 ( ·) Base tree learner
𝑃 (𝑓 |𝑋 ) Posterior over GP function 𝜇 GP mean vector
𝐾 GP covariance matrix 𝐾𝑖 𝑗 Covariance between 𝑥𝑖 and 𝑥 𝑗
𝐾𝑛𝑛 Covariance of training data Σ Noise/error matrix
𝑤 GP weight vector 𝑋 ∗ Test locations
𝑌 Final prediction 𝐿 GP loss (log-likelihood)
𝑅 (𝐹, 𝑤 ) Joint risk functional H Space of base learners
Θ Parameter space for 𝑤 𝑓𝑇𝑖 (𝐴(𝑥 ) ) Output for task𝑇𝑖
𝐾𝑚 Multitask kernel 𝐾𝑇 Task covariance matrix
𝐾𝐴 Feature covariance matrix 𝜆1, 𝜆2 Kernel weight scalars
𝐾RBF , 𝐾Matérn RBF / Matérn kernels ℓ𝑇𝑖,𝑑

ARD lengthscale for task𝑇𝑖 , feature 𝑑
FI𝑇𝑖 (𝑑 ) Feature importance for𝑇𝑖 L Cholesky factor of 𝐾𝑇
𝑌true Claimed isotope values 𝑥mod Claimed origin location
𝜇mod GP mean at 𝑥mod Kmod Covariance matrix at 𝑥mod
𝜒2 Chi-squared statistic 𝑝mod P-value of hypothesis test
𝛼 Significance level – –

Now, for a new set of unseen samples 𝑋 ∗, the prediction is cal-
culated as:

𝑌 = 𝑌 ′ +𝑤𝑇𝐾
(
𝑋,𝑋 ∗) (3)

2.4 Joint Optimization
As described in [21] we aim to combine the two learners through
a joint optimization goal. Here the loss function is the negative
log-likelihood function as described below:

𝐿 =
1
2
(𝑌 − 𝑌 )𝑇𝐾−1 (𝑌 − 𝑌 ) + 1

2
log det(𝐾) (4)

If w is the parameter of the Gaussian Process co-efficient kernel K
and 𝐹 (·) is the mixed-effect learner 𝐹 (𝐴(𝑋 )), the goal is to find the
joint minimizer:

(𝐹 (·), ŵ) = argmin
(𝐹 ( ·),w) ∈ (H,Θ)

𝑅(𝐹 (·),w) (5)

Here, H is the superset of all base learners and Θ is the parameter
space for w. 𝑅(𝐹 (·),w) is a risk functional defined as:

𝑅(𝐹 (·),w) : (𝐹 (·),w) ↦→ 𝐿 (6)

Here, 𝐿 is the loss function described earlier. R is determined by
evaluating 𝐹 (𝐴(𝑋 )), 𝑌 and then calculating the loss function 𝐿.
The risk factor 𝑅 is minimized using the Gaussian Process boosting
algorithm. First, for iteration 𝑖 we determine𝑤𝑖 as the following:

w𝑖 = argminw∈Θ 𝐿 (𝑦, 𝐹𝑖−1,w) (7)

where 𝐿 is the loss function denoted in equation 5. Then, we update
base learner 𝐹𝑖 through a Newton step:

𝐹𝑖 = 𝐹𝑖−1 −
𝑅′ (𝐹𝑖−1)
𝑅′′ (𝐹𝑖−1)

(8)

where 𝑅′ and 𝑅′′ denote first and second-order derivatives of the
reward function for the (𝑖 − 1)th iteration of F.

2.5 Modeling Dependencies between Isotopes
Although multivariate Gaussian Processes in the form of co-kriging
have been explored for stable isotope prediction, the idea of inter-
task dependencies has not been explored yet and is novel to our
approach. Due to the strong correlations that stable isotope ra-
tios often exhibit, we hypothesize that using a Gaussian process
to leverage both the spatial correlation of atmospheric variables
and the inter-task dependencies of different stable isotopes could
greatly benefit SIRA prediction. Further, we aim to leverage auto-
matic relevance judgments from amongst the multivariate input
of atmospheric variables. Similar to the GPR model, the Gaussian
Process for the multi-task model defines a distribution over the
function f defined over the space spanned by atmospheric vector
A(X):

f (𝐴(𝑋 )) =
[
𝑓𝑇1 (𝐴(𝑋 )), . . . , 𝑓𝑇𝑀 (𝐴(𝑋 ))

]𝑇
∼ GP

(
𝑚𝑚 (𝐴(𝑋 )), 𝐾𝑚

) (9)

where 𝑓𝑇𝑖 (𝐴(𝑥)) can be viewed as the objective function for task i,
with the task corresponding to one of the four stable isotope ratio
beingmodeled.𝑚𝑚 (𝐴(𝑋 )) is themean function for the atmospheric
features of locations X and 𝐾𝑚 is the multitask covariance kernel.
Given two locations 𝑥 and 𝑥 ′, the covariance between the feature
vector A(𝑥 ) and A(𝑥 ′) across multiple tasks is given by a Kronecker
product structure:

𝑘𝑀𝑇 ((𝐴(𝑥),𝑇𝑖 ), (𝐴(𝑥 ′),𝑇𝑗 )) = 𝐾 (𝐴(𝑥), 𝐴(𝑥 ′)) ⊗ 𝐾𝑇𝑖 ,𝑇𝑗 (10)

where 𝐾 (𝐴(𝑥), 𝐴(𝑥 ′)) represents the covariance function for the
atmospheric vector corresponding to location x and x’ and 𝐾𝑇𝑖 ,𝑇𝑗 is
the task covariance matrix between two tasks 𝑇𝑖 and 𝑇𝑗 .

2.6 Interpretability via the Covariance Matrix
The feature covariance matrix, i.e., K(A(x), A(x’)), is parameterized
by automatic relevance determination of the length scale for the
chosen covariance matrix. As Matern kernels have been proven to
be effective in leveraging the sudden change in the latent feature
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space, and an RBF kernel is effective in capturing a smoother cor-
relation in the feature space, we use a combination of these two
kernels to constitute our covariance matrix:

𝐾 (𝐴(𝑥), 𝐴(𝑥 ′)) = 𝜆1𝐾RBF (𝐴(𝑥), 𝐴(𝑥 ′)) + 𝜆2𝐾Matérn (𝐴(𝑥), 𝐴(𝑥 ′))
(11)

𝐾RBF (𝐴(𝑥), 𝐴(𝑥 ′)) = 𝜎2 exp
(
−1
2

𝐷∑︁
𝑑=1

(𝐴𝑑 (𝑥) −𝐴𝑑 (𝑥 ′))2

ℓ2
𝑇𝑖,𝑑

)
(12)

𝐾Matérn (𝐴(𝑥), 𝐴(𝑥 ′)) = 𝜎2
𝐷∏
𝑑=1

(
1 +

√
3|𝐴𝑑 (𝑥) −𝐴𝑑 (𝑥 ′) |

ℓ𝑇𝑖,𝑑

)

exp
(
−
√
3|𝐴𝑑 (𝑥) −𝐴𝑑 (𝑥 ′) |

ℓ𝑇𝑖,𝑑

)
(13)

In the above, 𝜎2 is the variance, ℓ𝑇𝑖,𝑑 is the ARD lengthscale for task 𝑖
and atmospheric variable at dimension𝑑 , and |𝐴(𝑥)−𝐴(𝑥 ′) | denotes
the Euclidean distance between the feature vector at location 𝑥 and
𝑥 ′. Through optimizing the objective function we learn the ARD
lengthscale value for each dimension of the feature space which is
used to extract feature importance:

Feature Importance 𝑇𝑖 (𝑑) =
1
ℓ𝑇𝑖,𝑑

(14)

In addition to feature-based interpretability, we also leverage task-
specific insights through factorization of the task covariance matrix
𝐾𝑇 :

K𝑇 = LL𝑇 (15)

where L is a lower triangular matrix.

2.7 Multitask Loss Function
Unlike traditional GPR we formulate a joint likelihood function
over all the response variables defined as:

𝑝 (Y|𝐴(𝑋 )) = N
(
Y

��� m(𝐴(𝑋 )), 𝐾𝐴 (𝐴(𝑋 ), 𝐴(𝑋 )) ⊗ 𝐾𝑇 + Σ
)

(16)

and the marginal log-likelihood derived as:

log𝑝 (Y|𝐴(𝑋 )) = −1
2

Y𝑇 (𝐾𝐴 ⊗ 𝐾𝑇 + Σ)−1Y

− 1
2
log |𝐾𝐴 ⊗ 𝐾𝑇 + Σ| +𝐶 (17)

where C is a normalization constant.

2.8 Location Verification
Given 𝑌𝑡𝑟𝑢𝑒 , the given value of the isotope ratio, our objective is to
determine whether the claim about the origin being 𝑥𝑚𝑜𝑑 is true or
not. First, we compute the likelihood of observing 𝑌𝑡𝑟𝑢𝑒 for 𝑥𝑚𝑜𝑑 :

log 𝑝 (𝑌true |𝐴mod) = −1
2
(𝑌true − 𝜇mod)𝑇K−1

mod (𝑌true − 𝜇mod)

− 1
2
log |Kmod | −

𝑀

2
log 2𝜋 (18)

Here, M is the number of isotope ratios or length of the 𝑌𝑡𝑟𝑢𝑒
vector which is also the degrees of freedom for the subsequent
hypothesis test; 𝜇mod is the predicted mean for the location 𝑥𝑚𝑜𝑑
given atmospheric variable 𝐴𝑚𝑜𝑑 ; and Kmod is the corresponding
covariance matrix.

We can now determine the veracity of the claim by the following
hypothesis test:

• 𝐻0: The test sample 𝑌𝑡𝑟𝑢𝑒 comes from the location 𝑥𝑚𝑜𝑑
• 𝐻1: The test sample 𝑌𝑡𝑟𝑢𝑒 does not come from the location
𝑥𝑚𝑜𝑑

Leveraging the trained GP model we formulate:

𝜒2 = (𝑌true − 𝜇mod)𝑇K−1
mod (𝑌true − 𝜇mod) (19)

According to the null hypothesis, 𝜒2 follows a chi-squared distri-
bution with M degrees of freedom which is the number of stable
isotope ratios being modeled. The p-value can be expressed as :

𝑝mod = 𝑃 (𝜒2 > 𝜒2obs) (20)

Finally, the decision rule for classifying a claim as false is upper
bound by a significance threshold 𝛼 :

Decision: 𝑝mod < 𝛼 ⇒ Location Claim False (21)

3 Experimental Results
3.1 Datasets
As described earlier, while our system is deployed, we are unable
to present results due to confidentiality constraints. We describe
results on a different dataset gathered from samples of the genus
Quercus from countries such as China, the United States, Ukraine,
and Russia. Stable isotope ratio measurements for each sample were
calculated and aggregated as described in [27]. Each entry contained
stable isotope ratio measurements of oxygen, hydrogen, sulfur,
and carbon (along with their GPS coordinates). Our atmospheric
data includes isotopic composition of precipitation, water vapour,
shortwave radiation, temperature, and many more factors [2, 8, 15].
In overall, we use 25 atmospheric variables for 20 years. In mapping
the atmospheric variables to the sampled location of the Quercus
spp. values, we found six of the atmospheric variables to have more
than 50% missing values due to the sparse nature of the data; these
variables are discarded. This retains 19 atmospheric variables, each
having 12 months of data for every year, for 20 years.

3.2 Research Questions
Our goals in this study are to characterize the effectiveness of our
methodology for modeling stable isotope values and subsequent
location claim verification:

• RQ1:Howdoes the proposed framework compare to existing
approaches to stable isotope ratio prediction?

• RQ2: How do different architectural choices (such as, com-
bining tree boosting with Gaussian processes, multivariate
GP modeling, or modeling inter-task correlation) benefit
the outcome compared with using any of these techniques
individually?

• RQ3: Does the incorporation of atmospheric variables and
the feature selection methodology contribute to more accu-
rate forecasts?
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• RQ4:What implicit explainability can the architecture pro-
vide for atmospheric variables and inter-task correlation?

• RQ5: How effective is the proposed framework at success-
fully trapping false claims of timber origin?

3.3 Implementation Details
For all isotope ratios we split the dataset into an 80:20 training/test
split. The splits are stratified by geography to ensure generalization
across regions. We perform K-fold cross-validation with 𝑘 = 5 and
choose the average score on all evaluation metrics for reporting.
For the GP-Boost algorithm of GB-SIRA, we perform parameter
searching and finalize the learning rate to be 0.03, epochs at 250
and max depth to be 5. For the multitask-learning GP model, we
fix the learning rate to be 0.01 and the number of epochs to 500.
Training a full GB-SIRA model on 800+ samples completes in less
than 2 minutes on a CPU with moderate specs (16-core, 64 GB
RAM), and inference per sample takes 0.2 seconds. Training the
MTG-SIRA model on the same number of samples across 4 isotope
tasks is completed within 3 minutes on a single GPU. Inference
time per sample remains in the range of 0.2-0.5 second per task
when batched. The model is evaluated using standard metrics for
regression tasks, 𝑅2, and Root mean square error (RMSE). The 𝑅2
value is a widely used metric for evaluating regression problems
that indicates the proportion of variance in dependent variables
that can be directly explained by the independent variables. RMSE
helps understand how close the prediction is to the ground truth
across the test samples.

3.4 RQ1: Baseline Experiments
We compare our methodology (MTG-SIRA to denote the full multi-
task framework; and GB-SIRA to denote our approach minus the
multi-task formulation) against the following alternative approaches:

• Watkinson et al. [27]: This work proposes the use of ordinary
kriging for spatial interpolation of the isotope ratio values.
They were used to produce predictions for carbon, oxygen,
hydrogen, and sulfur stable isotope ratios on Quercus spp.,
similar to our problem statement but only on samples from
the United States. However, we use their methodology on
our data for comparison.

• Watkinson et al. [28]: This work uses Universal Kriging to
predict the isotope ratio values of timber in Solomon Islands.

• Truszkowski et al. [23]: This work, similar to ours, uses at-
mospheric data for stable isotope ratio prediction but the
covariance matrix is modified by using location-specific at-
mospheric variables making it analogous to a co-kriging
method.

• Support vector regression (SVR): This is a regression model
variation of SVM that has shown to be effective extensively
for a dataset of this size. This approach also serves as a
traditional ML baseline.

The experiments as detailed in Table 2 demonstrate that, in terms
of 𝑅2, our proposed frameworks GB-SIRA and MTG-SIRA outper-
form other approaches for 2 out of the 4 isotope ratio prediction
tasks. However, even for 𝛿13C and 𝛿34S, the difference with respect
to the best-performing model is negligible. For isotopes such as
𝛿2H and 𝛿18O, there is significant improvement witnessed.

In terms of RMSE, we also observe the lowest RMSE value for
MTG-SIRA for all stable isotope ratios except 𝛿34S for which GB-
SIRA performs the best. We note that Watkinson et al. [27] did
not report RMSE. The performance of both GB-SIRA and MTG-
SIRA overall compares favorably, demonstrating the effectiveness
of the proposed ML framework. In general, the performance for
𝛿34S and 𝛿13C is not high across the models, a result in line with
past related work. Finally, the overall performance improvement
on the multitask model MTG-SIRA indicates the effectiveness of
modeling inter-task dependency.

3.5 RQ2: Architectural Choices
To answer this research question we ablate each individual compo-
nent after the feature selection module to compare against the final
model. The result of this experimental setting is described in Table 3.
The framework without the Gaussian Process element becomes
a decision-tree boosting algorithm called lightGBM which takes
as input the output of the feature selection module and doesn’t
model the spatial element. On the other hand, without the boosting
algorithm combined, GB-SIRA only takes the sample longitude and
latitude as input which makes it the traditional GPR. Multivariate
GP is the variation of the model that models spatial correlation
by using the atmospheric variable as latent feature space. For the
boosting algorithm, we observe encouraging performance on 𝛿34𝑆
and 𝛿13𝐶 . However, when combined with Gaussian processes, the
performance invariably increases. Similarly, even though multivari-
ate Gaussian process modeling shows encouraging performance on
𝛿18𝑂 , the approach of incorporating a multitask-learning module
does improve the overall performance of the model. Hence, given
the importance of task-specific interpretability and uncertainty es-
timation, MTG-SIRA proves to be the best iteration of our proposed
framework. However, this is a decision to be made in consultation
with all stakeholders.

3.6 RQ3: Role of Atmospheric Variables
To address this question, we look at the two best-performing mod-
els from Table 2. Since both these models take advantage of atmo-
spheric variables, we create an experimental setting that facilitates
both the inclusion and exclusion of the feature selection module.
The result as described in Table 4 shows that the inclusion of the fea-
ture selection step before modeling produces a better prediction for
both models. Furthermore, we also show the experimental results
with and without the atmospheric variables in Table 2. There is a
noticeable improvement for the prediction of oxygen and hydrogen
stable isotope ratios.

3.7 RQ4: Explainability
As discussed in Equations 2.3 and 2.6, feature importance is in-
versely proportional to learned lengthscales corresponding to each
variable. Therefore, the trained model for MTG-SIRA can be used
to visualize the feature importance of atmospheric variables for
stable isotope prediction. As shown in Fig 2, the model is able to
identify variables such as “cloud water content”, “water vapour”,
“land surface temperature” and “precipitation” as some of the most
important features. This is consistent with existing literature [6]
on the subject that finds strong correlation between certain stable
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Table 2: Baseline comparison of predictive models based on 𝑅2 and RMSE for SIRA values.

Baseline Comparison Atmospheric Variables
𝑅2 RMSE

𝛿18O 𝛿13C 𝛿2H 𝛿34S 𝛿18O 𝛿13C 𝛿2H 𝛿34S

Watkinson et al. [27] – 0.470 0.320 0.700 0.690 – – – –
Watkinson et al. [28] – 0.856 0.301 0.730 0.601 0.673 0.779 6.112 1.233
Truszkowski et al. [23] X 0.869 0.331 0.790 0.667 0.631 0.757 6.279 1.070
SVR X 0.754 0.313 0.750 0.682 0.940 0.773 6.410 1.040
GB-SIRA X 0.878 0.322 0.840 0.689 0.742 0.768 5.911 1.011
MTG-SIRA X 0.899 0.310 0.858 0.673 0.687 0.679 5.201 1.029

Table 3: Ablation study for various model choices evaluated
using 𝑅2 and RMSE.

Model 𝛿18O 𝛿13C 𝛿2H 𝛿34S

𝑅2

Boosting 0.865 0.329 0.819 0.675
GPR 0.856 0.301 0.730 0.601
Boosting+GPR 0.878 0.322 0.840 0.689
Multivar GP 0.880 0.299 0.834 0.625
Multi-Task GP 0.899 0.310 0.858 0.673

RMSE
Boosting 0.801 0.780 5.820 1.070
GPR 0.773 0.779 6.112 1.233
Boosting+GPR 0.742 0.768 5.911 1.011
Multivar GP 0.691 0.725 5.890 1.033
Multi-Task GP 0.687 0.679 5.201 1.029

isotope values and the aforementioned atmospheric variables. The
model’s ability to identify such factors reiterates the effectiveness
of MTG-SIRA as a self-explainable mechanism for feature-level
interpretation. Similarly, we aim to factorize the inter-task depen-
dency and use the lower triangular matrix to gain insights into how
different elemental stable isotope ratios are correlated with each
other. Figure 3 shows strong indication of a positive correlation
between 𝛿18𝑂 and 𝛿2𝐻 and a negative correlation between 𝛿34𝑆
and other stable isotopes. This can inform future usage of stable
isotope measurements for location determination.

3.8 RQ5: Evaluating Claims of Timber Origin
As mentioned earlier, our approach is in use by European enforce-
ment agencies. However, because we cannot showcase results on
real data, we formulate a controlled experiment wherein we modify
the true (ground truth) location of a sample by a specified distance
𝑑 . Thus 𝑥 is modified, resulting in a modified atmospheric vector

for 𝑥 . This can be formulated as:

𝑥mod = 𝑥 + Δ𝑥, Δ𝑥 ∼ N(0, 𝜎2perturb) = 𝑑 (22)

𝐴mod = 𝐴(𝑥mod) (23)

Given 𝑌𝑡𝑟𝑢𝑒 as the true value of the isotope ratio, our objective
is to determine whether the claim about the origin being 𝑥𝑚𝑜𝑑 is
true or not. Then we calculate the accuracy in identifying the false
claims for each value of d ranging from 500 to 5000 km in geodesic
distance.

Fig 4 showcases the results. When the altered distance is within
500km, the success rate is not high (approximately 60%), consis-
tent with the fact that atmospheric variables likely do not shift
significantly unless elevation is accounted for. From this point, we
begin to see a gradual improvement in false claim detection as
the distance d increases up until 2500 km, reaching an accuracy
of over 80%. As the density of training samples is high in specific
areas, when the modified location falls outside the range of low
uncertainty estimates for the model, we see a steady decline in the
accuracy of a verification claim, ultimately becoming stable after
4000 km. This is a significant finding that can guide authorities to
the responsible use of our approach for claim verification.

4 Description of Deployment
In practice, the system has two use-cases:

First, for a given location, the system outputs: i) the prediction
of isotope ratios, ii) a confidence interval based on predictive uncer-
tainty, and iii) feature-level interpretability via ARD kernel length
scales (e.g., precipitation, temperature, vapor pressure etc. as key
drivers).

Second, for a given sample with measured stable isotope ratio
values and a claim of the geographic harvest origin of the sample,
the system outputs: i) the probability of the sample originated from
the claimed harvest location, ii) a binary flag indicating whether
the location claim is true or false.

The system also enables triaging: low-confidence, high-risk pre-
dictions are escalated for manual reliability. Furthermore, locations
with low-confidence and high-risk predictions are also noted for
driving the future collection of samples, assisting a more effective
approach in sample collection.

Our framework is in use by European enforcement agencies to
assist in demonstrating that a claimed harvest location other than
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Table 4: Comparison of MTG-SIRA and GB-SIRA with and without Feature Selection.

Method
𝑅2 RMSE

𝛿18O 𝛿13C 𝛿2H 𝛿34S 𝛿18O 𝛿13C 𝛿2H 𝛿34S

MTG-SIRA without Feature Selection 0.860 0.271 0.816 0.632 0.683 0.801 6.350 1.210
GB-SIRA without Feature Selection 0.874 0.289 0.781 0.655 0.662 0.813 6.210 1.194
MTG-SIRA with Feature Selection 0.899 0.310 0.858 0.673 0.687 0.679 5.201 1.029
GB-SIRA with Feature Selection 0.878 0.322 0.840 0.689 0.742 0.768 5.911 1.011

Figure 2: Atmospheric Feature Importance.

Russia is not viable. See also reported coverage of our work [16].
Due to confidentiality reasons, we present results here on a different
species (Oak; Quercus spp.). For instance, see isoscape predictions
around the Russia/Ukraine border region in Fig. 5. In one ongoing
analysis, we are testing 59 samples from corporate partners, oper-
ating primarily in the UK and USA. Results indicate a 41% fail rate
for harvest claims; in other words, 41% of importer claims tested
were incorrect.

5 Conclusion
We have presented a novel ML framework that uses SIRA to deter-
mine the origin of organic products. It serves as a holistic end-to-end
predictive pipeline that can facilitate feature selection and system-
atic analysis of recorded and predicted isotope ratio values. Our
approach to multimodal feature integration also enables us to lever-
age the vast information present in atmospheric data by systematic
feature selection methods. Further, such incorporation of atmo-
spheric variables into the methodology supports interpretability
that prior methods do not support.

A key real-world implication of our methodology is that it can
create species-wide isoscapes that predict sub-national variability
even in areas without ground truth sample data. This is particularly
useful if the security context makes sample data collection challeng-
ing or impossible. Furthermore, the actionability of these species’
isoscapes can be improved by visualizing uncertainty estimations
to communicate the relative confidence of a predicted value in a
particular region. This enables real-world decision-making based
on predictions with low uncertainty values to manage legal and
financial liabilities arising from timber supply contracts and law
enforcement activities.

Using our methodology, being able to infer the origins of an
unseen sample with varying degrees of confidence has proven to
be an effective tool used to enforce timber trade regulations and
sanctions, such as the sanction on importing Russian and Belarusian
timber in the EU [14, 23].

There is promise for additional social and environmental impact
of this work, given that the application of our SIRA methods can be
applied to origin testing for a variety of organic products. Our work
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Figure 3: Inter-task Dependency.

Figure 4: Success rate of identifying false claim vs distance
from true origin.

is particularly relevant given the EU’s Regulation on Deforestation-
free Products (EUDR) which requires proving that products made
from forest-risk commodities, e.g., cattle, wood, cocoa, soy, coffee,
palm oil, and rubber, do not originate from recently deforested land
or have contributed to forest degradation [7].

Furthermore, there has been increased scrutiny on the use of
forced labor to produce products and food that enter the global sup-
ply chain. Products such as garments and apparel made from cotton
produced in the Xinjiang region of China by Uyghurs, and fish and
seafood harvested by forced labor, have particularly complex supply
chains [4, 10, 11, 18]. This work contributes to the advancement
of accurate scientific methods used to assist the determination of
origin claims for all organic products covered in policies such as the
EUDR and the US Lacey Act and Uyghur Forced Labor Prevention
Act.

Figure 5: Case Study: Isoscapes for Eastern European Region-
Ukraine/Russia Border for Timber.
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