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Abstract

We describe the design and implementation of GAUSS — an online algorithm selection system for numerical quadrature. Given a
quadrature problem and performance constraints on its solution, GAUSS selects the best (or nearly best) algorithm. GAUSS uses inductive
logic programming to generalize a database of performance data; this produces high-level rules that correlate problem features with
algorithm performance. Such rules then serve as the basis for recommending algorithms for new problem instances. GAUSS functions
online (new data and information can be incrementally incorporated) and can also provide phenomenological explanations of algorithm

recommendations. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The subject of this paper is GAUSS — an automatic
algorithm recommender system for numerical quadrature.
Given a quadrature problem and performance constraints
on its solution, GAUSS selects the best (or nearly best)
algorithm. The approach we take is to organize a database
of test problems and quadrature algorithms, and to accumu-
late performance data for the given population. This
database of performance data is then mined (generalized)
to arrive at high-level rules that can form the basis for a
recommendation (for future problems).

GAUSS demonstrates a novel approach to the design and
implementation of algorithm recommender systems. Tradi-
tionally, recommender systems generalize performance data
offline and have been restrictive in their coverage of the
application domain (e.g. the use of weak learning methods
such as neural network training). GAUSS however uses
relational descriptions for domain modeling and interacts
dynamically with its environment to gather the data needed
to mine for recommendations. It is thus an online recom-
mender system. New information about problems and
algorithms can be easily incorporated without having to
retrain on the old data. In addition, the end-user of the
recommender system can query the system for the basis of
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the recommendations (relational rules that correlate the
effect of problem features on algorithm performance).
Two ideas are critical in our presentation below:

e GAUSS does not evaluate integrals (symbolically or
numerically). In addition, it does not require a symbolic
form of the integrand, though it can make use of symbolic
information if available. The goal of recommender
systems is to help novice users or to be used in a comple-
tely automatic environment (such as problem solving
environments [10]).

e Systems like GAUSS typically have two phases of
development and operation. The first is the collection
and generalization of performance information (to yield
rules, decision procedures, etc.) while the second is the
actual process of algorithm recommendation (and
incorporating any feedback/changes). The first phase is
time consuming but needs to be done only once. The
second phase is comparatively fast, inexpensive, and
can be performed as many times as desired.

1.1. Reader’s guide

Section 2 provides a quick overview of the application
domain considered in this study and identifies the difficulties
in algorithm recommendation. The design of the GAUSS
system is detailed in Section 3. Complexity and various
practical implementation considerations are described
here. Section 4 presents a careful experimental evaluation
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of the system. Section 5 identifies several important future
research directions.

2. Numerical quadrature

The algorithm recommendation problem addressed by
GAUSS is to:

Select an algorithm to evaluate I = fﬁ f(x) dx
so that relative error €, < 6 and N is minimized

where 6 is an user-specified error requirement and N is the
number of times f{x) is evaluated in [a,b] to yield the
desired accuracy. Most quadrature algorithms evaluate [
as [6]:

b
j OO dx = wif () + waf(62) + - + waf G,

—o=g=b=+x

We choose €, and N as performance criteria because:

e For most software implementations of integration
routines, an absolute error €, and a relative error €, are
input. For the integral [ = IZ f(x) dx, these routines
compute {R,, E,} where R, is the estimate of the integral
using n values of f{x) while E, is the relevant error
estimate for R,. Typically automatic quadrature routines
terminate when the error condition

|Rn — ]| =E, = max(ea, €r|Rn|)

is satisfied. In most of the literature (on performance
evaluation of numerical integration software; see, for
example, [7]) and in a majority of the implementations,
the routines are made to impose a strictly relative
accuracy by setting €, = 0. Thus, €, is chosen as the
main accuracy criterion in this study.

e The time required (excluding the time to evaluate f(x;), by
a numerical quadrature rule varies quite widely from one
implementation to another, even for the same generic
technique (method) with the same number of nodes.
Moreover, most efficient quadrature routines are of the
adaptive nature so that the weights (w;) and nodes (x;) are
chosen dynamically during the computation. Finally, in
most applications the computing time is dominated by
the time to do function evaluations. Thus, a more uniform
metric is the number of function evaluations (N) required
to evaluate an integral.

2.1. Difficulties in algorithm selection

Any introductory text on integral calculus provides
readymade ‘recipes’ for tackling difficult integrands, and
for transforming them to more tractable and traditional
forms. In other words, it is easier to reformulate (change)

the problem so that a general purpose algorithm will not be
inefficient [1]. A simple example can be obtained from the
integral

2 cos x

0 WX

which has a non-polynomial behavior, whereas most
quadrature algorithms assume that the curve to be integrated
can be approximated (piecewise, if necessary) accurately by
a polynomial of a certain degree, such as a straight line,
parabola, or cubic (a simple example is the composite trape-
zoidal rule). Thus, general purpose algorithms encounter
difficulties near the origin when integrating I, because at
the lower limit, the value of the integrand approaches
infinity. The traditional solution in textbooks is to make
the substitution

1= dx,

x =17, dx = 2t dt,

which removes the singularity and produces the more well-
behaved

NEY
I = 2J’ cos(r) dt
0

which is amenable to even the most naive algorithms. The
current lack of algorithm selection systems [1] forces one to
think of altering troublesome problems in this manner rather
than choosing from the multitude of algorithms that can
handle integrands with special properties such as vertical
and/or horizontal asymptotes, removable singularities, and
unimportant factors. While not every such problematic
integrand can be altered to remove the trouble, the above
example reveals that the way a problem instance is (re)pre-
sented is critical for the success of an algorithm selection
methodology.

Even if such representational features are taken into
account, more difficulties arise because the overall factors
influencing the applicability (or lack thereof) of an
algorithm in a certain context are not very well understood.
The way problem features affect methods is complex and
algorithm selection might depend in an unstable way on the
features actually used. While a simple structure might exist,
the feature coordinate system might not reflect the simpli-
city properly. Consider the case when a particular feature
system imposes the following methodology:

Method 1 is best if x> + y* = 1
Method 2 is best otherwise.

If we now choose new coordinates (x/, y' ) such that

(x’) (1 1.0001)(x)
y') \1 1.0000/\y

then Method 1 is best in a very long, very thin area (in (x’, y')



N. Ramakrishnan et al. / Advances in Engineering Software 33 (2002) 27-36 29

coordinates). If the following features are now chosen,
fl=x" f2=y"  f3=x"+ysinx' +zl1

fa=x =y +1x+e +22

where z1 and z2 are irrelevant, or random, it will then take a
lot of data and effort to recover the original simple selection
methodology. Thus, the methodology might depend in an
unstable manner on the features actually used (f1, /2, f3, f4)
and no reasonable amount of brute force computing can
provide a robust selection methodology in such a situation.
Moreover, the relative performances of various algorithms
should be correlated with problem features when determin-
ing the selection methodology. Any solution approach must
be able to reason about issues in performance evaluation
using relevant symbolic information from problem features
(such as the presence or absence of singularities).

2.2. Why attribute-value approaches fail

The term attribute-value techniques is used to encompass
a wide variety of machine learning approaches such as
decision tree induction, association rules, nearest neighbor
classification, neural networks, fuzzy logic, and other
approaches that reason with uncertainty. The common
factor among these varied approaches is that they can be
viewed as working at the level of propositional logic. While
these schemes are advantageous for their relative simplicity,
efficiency, ability to handle outliers (and noise), and support
for incremental training, we contend that they are ineffective
for the domain considered in this paper. In particular, since
propositional logic is more restrictive than first-order predicate
logic, attribute-value techniques are restricted to inducing
non-relational generalizations from data. An example follows.

Consider the artificial data in Fig. 1 about an algorithm and
its effect on some problems. Notice that some problems are
variants of others. For instance, they could be parameter-
izations of some generic problem, restatements of a problem
with a different constraint, etc. An attribute-value learning
scheme would try to associate the ranking of the algorithm
with feature information, and as is obvious from Fig. 1, will be
in error by at least one entry. (This rule corresponds to rating

Problem Feature Method m1
Information (Rank) Problem | Variant

pl 9 1

pl p2
p2 f 1

p2 pl
p3 f 2

p4 p5
pi / 1 5 4
pb g 1

Fig. 1. A relational database with two tables containing performance infor-
mation about six problems and one method. A ‘1’ in an entry indicates that
method m1 is best for that particular problem while a ‘2’ indicates that it is
second best. Some of the problems are reformulations of others, which are
also reflected in the database. Notice also that the second table models a
symmetric relationship — every tuple (a, b) in the table implies that (b, a)
is also present. Such a relationship is an inverse of itself.

ml as the best method for all problems.) This is because such
schemes attempt to discover a pattern involving a single
relation in a relational database. However, a completely
accurate (and more expressive) scheme is given by:

best_method (ml, X):- feature (X, g).
best_method (ml, X):- feature (Y, g),
variant (X, Y).

second_method (ml, X):- feature (X, f).

where the first rule indicates that method ml is best for
problem X if it has feature ‘g’, and so on.' Notice that
these rules involve relations from more than one table in
the database and are ordered so that the first applicable rule
is ‘fired.” This is a powerful representational facility that can
be utilized effectively for algorithm selection.

The second and more serious drawback” to attribute-
value mechanisms is that they solve the algorithm selection
problem by determining a universal function approximator
from the problem space to the algorithm space without
taking into account the domain-specific background knowl-
edge. This might lead to predictions that are sometimes
invalid [23]. In most cases, the reason for this behavior is
that ordinal variables are compared and assigned measures
of cardinality, which leads to unstable models of represen-
tation and prediction. Research in reasoning and representa-
tion [14] has shown that assigning ordinal properties to
cardinal variables preserves strictly monotonic transforma-
tions while the reverse can be dangerous. For an overview of
relational approaches in comparison to attribute-value
techniques, we refer the interested reader to [5].

This problem is further complicated by the multitude of
adaptive algorithms applicable to certain problems. One
study [20] concludes that there are between 1 and 10 million
adaptive quadrature algorithms that are potentially interest-
ing and significantly different from one another! This
staggering number arises from the possible ways of permut-
ing the choice of rules, processor components, error bounds,
data structures, etc.

3. The design of GAUSS

We outline the design of the GAUSS system with an
example. Consider the effect of the QUADPACK routine
QNG [18] on the integral (Fig. 2, left)3

1
J X' log(x)dx = — i

0 9

' It should be mentioned that using predicates such as best_method,
second_method is not advisable as addition of new algorithms ‘throws’
off the ranking. We provide a more stable encoding later on in the paper.

% The first drawback can be alleviated by performing a relational join of
the two tables to construct a new bigger table but this destroys the natural
connection that exists between two different entities in a database.

3 Notice that one of the factors is not defined at one endpoint of the
integration interval. For routines such as QNG, the function value in such
cases has to be set equal to the limit value of the function, or equated to zero
if this limit does not exist or is infinite.
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Fig. 2. (left) Sample integral problem and (right) Performance of QNG for various error constraints.

When the relative error requirement is reduced from 0.1
down to 5 X 107>, the number of function evaluations (nfe)
varies as shown in (Fig. 2, right). Notice the abrupt change
in the graph at €, = 0.002. This is due to the non-adaptive
(weights and nodes are not dynamically selected during the
integration) and automatic (ability to guarantee a particular
accuracy) nature of the QNG routine. QNG is based on a
sequence of rules with increasing degrees of algebraic
precision. In addition, QNG breaks down at € =
1x107°, with an error code of 1 indicating that the
maximum number of function evaluations (87) has been
reached (in other words, the integral is probably too difficult
to be computed within the number of steps allowed). For an
adaptive algorithm, this error code would imply that the
limit on the number of integer subdivisions has been
achieved, which has been set a priori within the integrator.

The result(s) of performance evaluation and the proper-
ties of the sample problem are encoded as function-free
first-order logic formulas. For example,

nfe (P1, ONG, 0.1,43).
nfe (P1, QNG, 0.05,43).

nfe (P1, QNG, 0.002,87).
breakdown (P1, ONG, 1E-05).
errorcode (P1l, QNG, 1E-05,1).
range (P1, ‘finite’).

factors (P1, ‘log’).

models the information in (Fig. 2, right). This is repeated for
executions of various algorithms on a selected benchmark of
test problems (discussed in detail later). Additional inten-
sional rules produce consequent predicates that determine
which routine performed best for each sample problem,
example:

gvalue (P1l, QAGS, 1).
accuracy (P1, 0.1).

The gvalue predicate indicates some figure of merit for a

given algorithm on a given problem (in this case, QAGS on
P1). It could denote the relative ranking of the algorithm for
the given problem or some other computed function of
performance data. A particular definition of the Q-value
we used is given later in the paper. In the above example,
the Q-value of algorithm QAGS for problem P1 with error
requirement €. = 0.1 is 1 (meaning that it is best). Notice
that this representation also captures the various error codes
possible from the routines, they could mean occurrence of
excessive round off error, too small an interval to be sub-
divided (by an adaptive routine), difficulties encountered in
integrand behavior, divergent (or slowly convergent)
results, or a limiting number of cycles obtained. The model-
ing of error codes aids in the generalization of results across
the feature space of problem instances.

The next step in GAUSS is to generalize from perfor-
mance data encoded in this manner. Generalization is
benefited if we provide ‘wrong’ instances of performance
data (so that the system can address the extent to which a
particular performance information is indicative of a larger
set of problems). It is also aided by the provision of any
background knowledge we might have about the problem
domain (such as the fact that some algorithms are not
applicable for all integrands).

Given this information, GAUSS attempts to construct a
predicate logic formula so that all the positive examples can
be logically derived from the background knowledge and no
negative example can be logically derived. The advantages
of such an inductive logic programming system (ILP) lie in
the generality of representation of background knowledge.
The ILP system used by GAUSS is PROGOL [16], that
inverts the resolution operator used in first-order predicate
logic. An example rule induced by GAUSS is given by:

gvalue (X, QAGS, 1) :- accuracy (X, Acc),
sing (X), endptsing(X), noderivsing (X),
range (X, finite) .

which indicates that QAGS is appropriate for any integrand
with any error criterion if the function has end point
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singularities. Detailed accuracy results and interpretations
of the induction process are provided later in the paper.

3.1. Controlling the complexity

The above process of relational induction is computation-
ally expensive in the general case. In fact, for the general
setting of first-order logic, the problem is undecidable.

A first restriction to function-free horn clauses results in
decidability (this is the form of programs used in the
programming language PROLOG). Decidability here is
with respect to induction; for deduction, first-order logic is
semi-decidable. However, ILP is often prohibitively
expensive and the standard practice is to restrict the hypoth-
esis space to a proper subset of first-order predicate logic.
Most commercial systems (like Golem and PROGOL)
further require that background knowledge be ground,
meaning that only base facts can be provided as opposed
to intensional information (rules). This renders the overall
complexity polynomial in the space of the database but
pseudo-polynomial (and sometimes exponential) in the
space of the modifiable parameters that describe the length
of the rules and the types of variables allowed in the rules.
GAUSS makes use of several techniques to control the
complexity:

e The use of domain specific restrictions for the manage-
ment of the recommendation spaces; GAUSS makes use
of syntactic and semantic restrictions on the nature of the
induced rules. An example of a syntactic restriction is
that both the properties of a problem as well as the
accuracy constraints need to be taken into account in
the construction of a rule. Another example of a syntactic
restriction is that one algorithm can obtain only one
Q-value for a given problem. An example of a semantic
restriction is consistency checks between algorithms and
their inputs. For example, routine QDAWO requires that
its input be in a certain form, so inducing a more general
rule will not be fruitful.

e We incorporate a generality ordering to guide the
induction of rules. This ordering is used to prune the
search space for generating plausible hypotheses and to
aid in abduction (which is the process of constructing a
rule that needs to be justified further).

e Since the software architecture of the recommender
system is augmented with a natural database query inter-
face, we utilize this aspect to provide meta-level patterns
for rule generation. Consider the meta rule

gvalue (X,Y,#z):- f1(X,_),

£3(X,_), £4(X,_), £5(X,_)
which indicates that the second parameter Y should not
occur in the antecedent part of a rule, nor should the
parameter Z from the consequent. These correspond to
the algorithm and its Q-value for a given set of problems.
This rule ensures that the antecedents are based purely on
features (f1, 2, f3,...) of the problem X. The # before the

f2(x,_),

third parameter indicates that this symbol can only be
instantiated with a constant value, meaning that we are
interested in rules that help us to compute Q-values, not
generalize across the space of Q-values.

e In our implementation of the software system for
GAUSS, we utilize the Postgres database management
system [21] which is an extension of a relational database
management system that handles complex objects and
rules. In addition, it provides a storage manager which
supports transaction processing by archiving the history
of a simulation into a spooling mechanism. This facility
is central to the efficient organization of performance
data and helps in integration where a simple query-
memoization technique can be used to provide positive
and negative instances for modeling.

3.2. Extending GAUSS for online recommendation

We now address the aspect of computation of Q-values,
incremental learning of rules, and scaling up the methodol-
ogy to domains of greater complexity.

3.2.1. Relational reinforcement

Consider the case when a new algorithm is added to the
suite of quadrature routines. How can the generalization
process be updated to take this into account? This issue of
a system having to continually interact with its environment
to obtain relevant data and to update the basis for recom-
mendations (the rule bank) dynamically is termed reinforce-
ment learning [13] in the Al literature.

The standard model of reinforcement supposes a discrete
set of environment states S (which could provide informa-
tion about the problem, its constraints, the error codes
observed etc.), a discrete set of actions A (in this case,
recommendations) that affect the environment, and a set
of reinforcement signals (in this case, whether the particular
algorithm indeed achieved the desired constraints or what, if
anything, went wrong). On each step of interaction, GAUSS
receives as input some indication of the current state (such
as problem features) and it chooses an action (a recommen-
dation) to generate as output. This recommendation changes
the state of the environment (leading to an overflow in
computation, for example) and the value of this state transi-
tion is communicated to GAUSS through the reinforcement
signal. GAUSS then chooses recommendations that will
tend to increase the long-run sum of values of the reinforce-
ment signal. Thus, GAUSS can learn to do this over time,
guided by a variety of learning algorithms available in the
literature; the learning model, in our case, is the rule-bank
already detailed in Section 3.1. Since we use relational
learning for the rules and reinforcement from the environ-
ment, this paradigm is known as relational reinforcement
learning, first introduced in Ref. [9].

There are two main themes of reinforcement learning and
the GAUSS system utilizes the Q-learning paradigm for
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model-free learning. The goal of this approach is to abstract
the utility of taking actions (algorithms) in specific states
(problem instances). Relating utilities to (state, action) pairs
is a more natural model for the numerical quadrature
application because of a lack of states. The online algorithm
is presented in Fig. 3. The basic idea of the algorithm is to
learn a bank of rules for algorithm selection. This set of
rules is induced via the TILDE-RT logical regression tree
algorithm [8]. The logical tree — called a Q-tree — can
then be considered to be an abstraction of the bank of rules
that describe the Q-values. Initially, all algorithms are
assigned a Q-value of O for all the problem instances. As
each experiment unfolds, the Q-value for a particular
(algorithm, problem) combination is updated and the regres-
sion tree is refined to reflect this fact. The induction process
described in Section 2.2 guarantees generalization with
respect to the problem space. There is also a discount
parameter y that models the relative importance of future
experiments with respect to earlier ones. The penalty ratio k
models the effect of negative feedback from bad algorithm
selections. The theory of machine learning [15] shows that
this algorithm converges to the optimal Q-values in the
limit. In other words, the performance of GAUSS improves
over time.

An alternative to reinforcement learning is presented in
Ref. [17] wherein the author visualizes a space of possible
algorithms and algorithm selection is then viewed as

Initialize the bank of rules (Q-Tree) to be empty

For each a, p do
Initialize the Q-values Q(p,a) =0

While true
For each p; from the problem database

Set state s = “unsolved”

Select an algorithm a; using the bank of rules

Run it for problem p; and examine the result

If (performance constraints satisfied) set reward r; = 1
else if (no error codes) set reward r; = 0
else set reward r; = —k * ¢ where c is the error code

If (problem solved), set state s = “solved”
else set s = “unsolved”

Generate example (p;, a;, gi;)
where g;; = r; + v * mazy Q(pi, a') if s = “unsolved”
where g;; = r; if s = “solved”

Update the Q-Tree using this example

Fig. 3. The GAUSS relational Q-learning algorithm, abstracted from Ref.
[9]. (a,p) refers to an (algorithm, problem) combination. vy is the discount
factor for reinforcement learning and k is a penalty ratio for negative
selections. In the test study described in Section 4, we utilized the QUAD-
PACK assignment of error codes to conditions as our primary means of
modeling the variable c.

performing an optimization within this space without
learning an evaluation function directly. In our work, we
explicitly learn an evaluation function (the Q-value) for
assessing the efficacies of algorithms.

3.2.2. Incrementality

Incremental behavior is naturally achieved by the
reinforcement learning algorithm presented above. Notice
that there are only two possible outcomes of an experiment
— ‘solved’ (with or without satisfying the requested perfor-
mance criteria) and ‘unsolved’ (with appropriate error
conditions). This simplifies the mechanics of incrementality
further into a simple update for the Q-values. In a more
complicated scenario, the step in Fig. 3 for generating the
exemplar will involve a for-loop for accommodating
multiple states in the solution path.

4. Experimental studies

In this section, we outline the experimental framework
for the evaluation of GAUSS. We have utilized 124 routines
from the GAMS cross-index [4], where the category H2a is
for the evaluation of one dimensional integrals. In the
experiments described below, methods for principal value
integrals, interval analysis techniques, parallel methods of
numerical integration, Monte Carlo methods and number
theoretic methods are excluded. The integrand is also
assumed to be either (i) a function available in symbolic
form and for which it is possible to write a FORTRAN/C
subroutine/function or (ii) provided as a finite number of
data values {x;y;}. The latter case is particularly important
because it precludes any attempt to symbolically determine
the features of functions. Since most quadrature routines are
available in FORTRANY/C format and are run multiple times
during performance evaluation with similar values for their
parameters, we resort to partial evaluation [2,12], a
program transformation technique that uses static knowl-
edge of a program’s input to optimize the run-time over a
series of executions. Partial evaluation is a well-known
technique for compiling scientific code for several specia-
lized applications [3] and produced speedups ranging from 5
to 18.5 for the experiments conducted in this study. An
example of partial evaluation is shown in Fig. 4. Since
quadrature algorithms are heavily parameterized, partial
evaluation can help take advantage of the problem-solving
context involved in collecting performance data.

4.1. The quadrature routines

Our collection of integration routines consists of two
main flavors — (i) Type 1: 104 routines that integrate
functions defined in a symbolic form, and (ii) Type 2: 20
routines that integrate from points sampled in the domain of
integration. A more detailed description of the Type 1
routines is given in Fig. 5.

The libraries from which the routines are obtained are
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int prod = 1;

for (int i=0;i<exponent;i++)
prod = prod * base;

return (prod);

}

int pow(int base, int exponent) { |int pow2(int base) ({

return (base * base)

Fig. 4. Illustration of the partial evaluation technique. A general purpose power function written in C (left) and its specialized version (with exponent statically
set to 2) to handle squares (right). Such specializations are performed automatically by partial evaluators such as C-Mix.

QUADPACK, NAG, IMSL, PORT, SLATEC, JCAM and
the collected algorithms of the ACM (TOMS). The auto-
matic quadrature routines are those in which the user
specifies the required accuracy and the algorithm attempts
to achieve it. The non-automatic ones, on the other hand, use
a preset number of nodes and so cannot guarantee user
accuracy constraints. Most of the Type 1 routines are varia-
tions on a single family of algorithms. For example, DQAG
and QAG are both automatic adaptive integrators and
handle many non-smooth integrands using Gauss—Kronrod
formulas. The former produces double precision results
while QAG’s outputs are in single precision. Also, both of
these routines dynamically select among other routines
considered in this study, such as QKI15, QK21, QK3l,
QK41, etc. which are themselves non-automatic Kronrod
routines with a varying number of nodes. In other words,
most of the automatic routines are actually ‘polyalgorithms’
based on non-automatic routines. While most of the routines
were declared as general purpose modules, some of them
require a special integrand such as weight functions, oscil-
latory or singular integrands. For example, QAWO is an
automatic adaptive integrator for integrands with oscillatory
(sine or cosine) functions and QAWS is one for functions
with explicit algebraic and/or logarithmic endpoint singula-
rities. There are other routines that use transformations,
Newton—Cotes quadrature, Clenshaw—Curtis quadrature,
monotone stable formulas, Patterson’s quadrature formulas

and differential equation solvers. It can be seen from Fig. 5
that the number of automatic algorithms far outnumber the
non-automatic routines. Also, there are more algorithms
available for integration over finite intervals than for infinite
intervals.

Of the 20 Type 2 routines, 14 are automatic routines and 6
are non-automatic routines. Most of these routines evaluate
the integral by approximating the data points by representa-
tions such as piecewise polynomials, overlapping parabolas,
cubic splines, Hermite functions and B-splines. The quality
of the answer is therefore dependent on the efficiency of the
approximation technique.

4.2. Test problems

We have used a wide variety of integrands, most of them
with special properties. The total number of integrands used
in this study was 286. The integrals were selected so that
they exhibit interesting or common features such as smooth-
ness (or its absence), singularities, discontinuities, peaks,
and oscillation. Some of the functions were selected so
that they satisfy the special considerations on which some
algorithms are designed. For example, routine QDAWO
requires that its argument contain a sine or a cosine. Most
of the functions are parameterized which generates families
of integrands with similar features and characteristics, this
aids in the generalization of the system. Examples of

Quadrature of Functions

Al
(104)

Finite Interval
(89)

N

(Semi) Infinite Interval
(15)

T

Automatic Non-Automatic Automatic Non-Automatic
(67) (22) (1)

QUADPACK - 21 QUADPACK - 20 QUADPACK - 4 QUADPACK - 2
NAG - 2 NAG -2 NAG - 4 NAG -2
IMSL - 10 IMSL 2

PORT 8 TOMS 1

SLATEC 4

TOMS 3

JCAM 1

Fig. 5. The taxonomy of the Type 1 routines in GAUSS. The numbers in parentheses denote the number of routines below each node in the tree. QUADPACK,

NAG, etc. denote the libraries from which the modules are obtained.
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Lyness’s Integral

Piessens’ integrals

1) = J? oyieerde

fol z“log(%)dz = “71+1a

foo zo—1 dz = (1—a)m

0 (1+10z)% 10%sin(ma)

0oo zze—Z“’zdz = 23a+l
2/3)(e+1) 4 (1/3)(e+1)

f01|:1:—1/3|°‘d1:=(/) a-:-(l/)

A problem with one peak is
f12 10« dz
(z—X)*F102
while one with three such peaks is
2 3 10«
D Y e

Fig. 6. Examples of test integrands.

integrands are given in Fig. 6. For each routine and each
applicable integrand, experiments were conducted with
varying requirements on the relative error accuracy e,.
The number of accuracy levels was 10 and the strictest
error requirement used was 10~*. The testbed is described
in more detail in Ref. [19].

4.3. Cost of GAUSS

One important aspect of the evaluation involves the
(automatic) determination of features necessary to drive
algorithm recommendation. Some of the more useful
features that are specially relevant to this problem domain
(and which affect the applicability of algorithms) are:
whether the integrand can be expressed as w(x)f(x) with
several desirable features (such as w(x) being one of several
weight functions and f smooth on [a,b]), whether the
integrand is smooth in [a,b], whether we know the location
of the singularities of f, whether we know the location (if
any) of singularities of f’, whether f has end-point singu-
larities, whether f exhibits an oscillatory behavior of non-
specific type, and whether the range of integration [a,b] is
finite, semi-infinite or infinite. We have explored the deter-
mination of such features by symbolic analysis (using
the transformation rules interface to packages like Mathe-
matica), by pattern recognition techniques (e.g. using
invariant moments to characterize oscillatory behavior
etc.), or using contextual information about the problem.
One of the goals of our study is to see if such information
is useful, and if it is worthwhile to explore efficient ways to
obtain this information automatically.

4.4. User interface to GAUSS

There are two interfaces to GAUSS: that of the knowl-
edge engineer and that of the end-user. The knowledge
engineer interface is modeled after the PROOGOL execu-
tion environment and is the facility by which performance
data and background knowledge are modeled in logic form.
This stage also addresses the induction of rules and their
subsequent incorporation (back) into the knowledge base.

The end-user interface is one where the rules are fired, once
the user specifies the features of his numerical integration
problem. After each recommendation, the user can inspect
the rules to obtain phenomenological explanations for why a
particular algorithm was selected. More detailed designs for
these interfaces are presented in Ref. [11].

4.5. Results

The rules obtained in the GAUSS system correspond to
accepted general knowledge about numerical integration
routines. It was observed, for example, that the adaptive
algorithms use fewer function evaluations to achieve high-
accuracy results than their non-adaptive counterparts;
conversely, they use more evaluations to meet low-accuracy
constraints. A high accuracy adaptive algorithm was recom-
mended for an oscillating integrand. This could possibly be
due to the fact that in an oscillating function, subdivisions
are spread over the entire domain of integration and hence a
smaller number of subdivisions are required to achieve a
fairly high degree of accuracy. Conversely, integrands
with singularities or peaks are more amenable to low and
medium accuracy adaptive routines. There are many more
such observations, and we have reproduced only the most
interesting here. Finally, GAUSS has helped identify
‘redundant’ algorithms, i.e. algorithms which perform
almost exactly the same for the test functions considered
in this work. For example, the rules selecting the algorithms
DPCHIA, DCSITG, and DCSPQU contained the same
antecedents. In other words, the conditions under which
these algorithms would be recommended are identical. All
of these are Type 2 routines-DPCHIA evaluates the given
integral using piecewise cubic Hermite functions, DCSITG
evaluates the integral of a cubic spline and DCSPQU also
uses spline interpolation. In addition, these routines yield
the best overall performance for problems of Type 2. One
possibility for this result is that quadrature algorithms using
fitted functions often utilize similar mechanisms for
obtaining data-dependent break points (for use in Hermite
cubics or as knots in spline-based methods).
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All selections made by GAUSS are valid (a selection is
considered invalid if the method is inappropriate for the
given problem or if any of the parameters do not apply
correctly to the method). In prior research, accuracy of
algorithm selection was measured as the fraction of the
valid selections that are also correct (a correct selection is
one where the selected method and parameters does result in
solutions satisfying the requested criteria) [23]. For a
discount factor y= 0.9 and the penalty ratio equal to 10,
GAUSS selected the best algorithm for 87% of the test
problems, selected the second best algorithm for 7% of
the cases, and was in error for only 3% of the problems
(the remaining 3% account for the cases where the system
did not make the selection of either the first or second best
algorithm).

The design of GAUSS enables both input and output
generalization. Input generalization refers to the ability to
generalize to problems not previously encountered by the
system. This facility is achieved by using relational descrip-
tions of problem features as the primary scheme of repre-
sentation. Output generalization refers to the ability to
generalize to new algorithms not previously considered.
This facility is attained as follows: Consider that a bank of
rules has been constructed with a certain set of algorithms.
When a new algorithm is added, we utilize the old rule bank
to bootstrap the Q-learning algorithm. To understand how
the bootstrapping process works, it is useful to think of the
bank of rules mined as a compaction of performance
information. When new information is obtained, the bank
of rules guides the incorporation of new performance data
using the Q-tree (which provides a structural organization of
all the rules). This serves two useful purposes: (i) reduce the
number of states to be explored by the algorithm and (ii)
faster convergence to the optimal Q-tree. Furthermore, since
the description language is sufficiently rich to abstract away
the specific details of the problems and algorithms, our
approach is inherently scalable.

5. Extensions

There are several possible extensions to the work
presented here:

e The representational formalism can be enhanced to
include so-called description logics or terminological
logics that provide more functionality than the logic
formalism employed here. In particular, this will permit
constructive induction where rules of the form °‘If two or
more of these features are present, then use algorithm X’
can be induced. The scheme presented in this paper is a
proper subset of this language.

e The study can be extended to allow different algorithms
applied to different sub-intervals in the domain of
integration. The penalty ratio, whose effect is to provide
negative feedback about the efficacy of an algorithm, aids

in this design. It also allows for fine-tuning the Q-learn-
ing step with respect to a certain set of states (and
problem features). For example, if a given integrand is
singular in a particular region but oscillatory in another,
the penalty ratio can be used to overcome the drawbacks
of selecting one single algorithm for the entire domain of
integration.

e Online recommendation of algorithms can be enhanced
to (i) first model the dynamic selection of nodes by a
general purpose adaptive code such as QAGS [18],
which can then (ii) provide insight into the relevant
features affecting (subsequent) algorithm selection.

6. Concluding remarks

The eventual success and acceptance of algorithm
recommender systems rely on the expressiveness of their
representation(s) and their ability to reason efficiently (and
accurately) with such representations. We have shown how
GAUSS achieves these objectives by (i) a direct control
over the data-generation process, (ii) a rich representation
language for recommendation rules and domain-specific
context information, and (iii) the use of ILP for generaliza-
tion. The online capability of systems like GAUSS can also
help in realizing adaptivity, exploratory behavior, and
control systems in next generation scientific software, as
envisioned in Ref. [22].
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