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Abstract

Public school boundaries are redrawn from time to time to
ensure effective functioning of school systems. This process,
also called school redistricting, is non-trivial due to (1) the
presence of multiple design criteria such as capacity utiliza-
tion, proximity and travel time which are hard for planners to
consider simultaneously, (2) the fixed locations of schools with
widely differing capacities that need to be balanced, (3) the
spatial nature of the data and the need to preserve contiguity in
school zones, and (4) the difficulty in quantifying local factors
that may arise. Motivated by these challenges and the intricacy
of the process, we propose a geospatial clustering algorithm
called GeoKmeans for assisting planners in designing school
boundaries such that students are assigned to proximal schools
while ensuring effective utilization of school capacities. The al-
gorithm operates on polygonal geometries and connects them
into geographically contiguous school boundaries while bal-
ancing problem-specific constraints. We evaluate our approach
on real-world data of two rapidly growing school districts in
the US. Results indicate the efficacy of our approach in de-
signing boundaries. Additionally, a case study is included to
demonstrate the potential of GeoKmeans to assist planners in
drawing boundaries.

Introduction
The last decade has seen rapid advancement in geographi-
cal information systems (GIS) frameworks for dealing with
geospatial data. They are integral to the operation of modern
economies and play a key role in urban planning, transporta-
tion, logistics, distribution services, policy making and policy
implementation (Burrough et al. 2015). Complementary GIS
data can provide a rich source of information for researchers,
planners and policymakers to study, analyze and make de-
cisions upon. Despite its ubiquity and utility, GIS has seen
slow adoption among school planners. Recent works have
highlighted the promise of using geospatial context for study-
ing school district boundaries (Yoon and Lubienski 2018). In
fact, the operation of a school district generates a vast amount
of geospatial data that can be analyzed to answer important
questions regarding the long-term planning and design of
school boundaries (Kelly 2019).
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In the US, public schools operate through school districts,
geographical units for the local administration of schools,
which are usually demarcated by the boundaries of a city
or a county. Within a district, school boundaries are formed
around each school property by aggregating smaller areas,
called student planning areas (SPAs), into larger regions,
called school attendance zones (SAZs), such that the areas
inside a region are geographically contiguous. To delineate
the SAZs, school planners consider factors such as population
balance, compactness, proximity, stability, spatial contiguity
and demographics, among others. These criteria are often
conflicting in nature so finding the right balance between
them becomes crucial to the planning process. An objective
treatment of the school redistricting problem by a data-driven
model can assist school planners by providing them with
automated plans, from which planners can adapt their own
plans in the way they see fit for equitable distribution of
educational resources.

Motivated by this, we view the process of school redis-
tricting through the lens of spatially-constrained clustering
(Miller and Han 2009), also called regionalization (Duque,
Ramos, and Suriñach 2007), and devise a geospatial cluster-
ing algorithm called GeoKmeans for solving it. The proposed
method is based on theK-means approach (MacQueen 1967)
but differs in the following aspects: (1) Geospatial data: Con-
ventional point-based modeling does not apply to school
boundaries since the data consists of polygonal (areal) spatial
objects which have richer representations. Our method lever-
ages the structural and topological information contained
within these geospatial features. (2) Constrained assignment.
Unlike K-means, which assigns data points to the nearest
cluster, our method performs a series of checks to ensure
that problem-specific constraints, such as capacity balance,
compactness and spatial contiguity, are satisfied during as-
signment. (3) Restrictive search and weighing. The need to
ensure the presence of one school per cluster induces restric-
tion on feasible clustering configurations. Additionally, since
the boundary of the cluster will form the SAZ of the school it
contains, its centroid cannot deviate too far from the school’s
location. Otherwise students may have to travel unaccept-
ably far to reach their assigned schools. To ensure this, we
incorporate an adaptive weighing mechanism.



Background

School Redistricting as a Regionalization Problem

Regionalization, or spatially-constrained clustering, aims to
aggregate a set of N areal units into K spatially contiguous
regions while optimizing on a predefined criteria (Duque,
Ramos, and Suriñach 2007). As an NP-hard problem, the
number of potential solutions can be enormous and it is
difficult to find the global optimum (Megiddo and Supowit
1984). As such, different heuristic approaches have been
proposed for solving regionalization problems, including
classical clustering (Openshaw 1995), hierarchical clustering
(Guo 2008), optimization on regional attributes (Bacao, Lobo,
and Painho 2005), and graph-based techniques (Assunção,
Neves, and others 2006).

In designing regionalization algorithms, spatial contiguity
and shape receive primary consideration unlike many conven-
tional redistricting approaches that fail to leverage the entire
complexity of the structural and topological information con-
tained within the geospatial features. Redistricting methods
make simplified assumptions during modeling without con-
sidering the geography inherent in the GIS data and focus
on achieving population and demographic balance even at
the cost of contiguity (Belford and Ratliff 1972; Franklin
and Koenigsberg 1973; Holloway, Wehrung, and others 1975;
Lemberg and Church 2000). Hence, we treat school redis-
tricting as a regionalization/ spatially-constrained cluster-
ing problem such that the distance of students to schools is
minimized while ensuring effective capacity utilization and
spatial contiguity. Next, we proceed to a discussion of how
the problem-specific constraints can be incorporated into a
clustering framework.

Clustering with Supervision

Clustering is an unsupervised learning problem that is often
posed as an optimization problem with an objective function.
It can be solved via exact algorithms, approximation methods
or heuristics. In some cases, a priori information, in the
form of expert opinions, domain knowledge and geometric
constraints, is incorporated in the clustering process to guide
towards better partitioning of the data. This is called semi-
supervised clustering (Chapelle, Schlkopf, and Zien 2010) or
constrained clustering (Basu, Davidson, and others 2008).

Generally, there are three ways of incorporating do-
main knowledge in the clustering process: enforcing con-
straints (Wagstaff, Cardie, and others 2001), seeding (Basu,
Banerjee, and Mooney 2002), and metric learning (Xing, Jor-
dan, and others 2003; Basu, Bilenko, and Mooney 2004). For
a regionalization problem like school redistricting, school
locations can be regarded as seeds to the clustering process
while the spatial contiguity of a region can be enforced by
checking geographical adjacency between areas. Incorporat-
ing these domain-specific constraints into a distance-based
technique like K-means, which tries to minimize a distance-
based function, aligns with our goal of keeping students close
to their assigned schools while ensuring balanced utilization
of each school’s capacity.

K-means and its Constrained Adaptations
Given a set of N data points X = {x1, . . . , xN}, xi ∈ Rd,
the K-means algorithm creates a K-partitioning {Xk}Kk=1 of
the dataset such that the mean squared distance between the
datapoints and the K partition centers {µ1, µ2, . . . , µK} is
minimized, as captured by the following objective function:

FK−means =

K∑
k=1

∑
xi∈Xk

||xi − uk||2. (1)

Each of the partition is a cluster and the membership of
each data point/instance to a cluster is updated iteratively.
The algorithm operates by executing the following steps until
there is no change in the membership of the data points to
clusters over successive iterations:
• Compute the distance of each data point xi, i = 1, . . . , N

to the center µk, k = 1, 2, . . . ,K of each partition/cluster
using some distance function d(., .).

• Assign each data point xi to the cluster Xk whose centroid
µk is closest to it, i.e., r = argmin

k
d(xi, µk).

• Recompute the centroid µr of every cluster Xr such that it
is the mean of all the data points in the cluster.
The K-means algorithm has found widespread adoption

due to its simplicity and ease of use. There are classical works
that propose constrained adaptations of it (Bradley, Ben-
nett, and Demiriz 2000; Wagstaff, Cardie, and others 2001;
Basu, Banerjee, and Mooney 2002; Basu, Bilenko, and
Mooney 2004). However, these classical variants are not
suitable for the regionalization problem as they are designed
to work with point-based data. Furthermore, they do not con-
sider important problem-specific factors including population
balance, contiguity and shape.

The Proposed Method: GeoKmeans
GeoKmeans deals with geospatial data in a constrained set-
ting by adopting a hybrid approach. It starts with a subset
of data points marked as seeds or initial clusters. Then, it
repeats the following steps iteratively. Given a data point x,
its nearest cluster Xr is selected based on geodesic distance
and then a series of constraint checks are performed before
assigning x to Xr. If one of the checks fail, the next nearest
cluster is selected and the constraints are likewise checked.
This continues until a data point is assigned to a cluster. If no
such cluster is found then x is marked as unassigned for the
present iteration. This is the E-step. In the M-step, the cluster
centroids are recomputed based on the constituent member
instances. In the subsequent sections, we provide the pre-
liminaries, quantify the constraints of the school districting
problem and show how these constraints entail modifications
in the basic K-means approach.

Preliminaries
Let X = {x(1), x(2), . . . , x(N)} indicates a dataset where
each data instance x(i) corresponds to a spatial (polygonal)
unit (i.e. the SPA). Each SPA can be represented as

x(i) = (A,G, C) ,



where A is the set of coordinates (longitude and latitude)
outlining the boundary of the SPA, G = (g0, g1, . . . , g12)
is the grade-wise student population residing within A and
C = (c

ES
, c

MS
, c

HS
) is a tuple containing the capacities of

the elementary, middle and high schools contained in the
SPA. Usually, grade levels are distributed uniformly across
each level of school (elementary, middle and high) through-
out a district. Hence we can rewrite the student population
counts as G = (g

ES
, g

MS
, g

HS
)1. For brevity, we denote the

school capacity and student count of SPA x as cx
L

and gx
L

,
respectively, where L corresponds to school level (ES for
elementary school, MS for middle school and HS for high
school). These N instances will be grouped together to form
K partitions or clusters denoted by {Xk}Kk=1. Note that a
cluster Xk correspond to the boundary of the kth school, i.e.,
its SAZ.

Constraints
Given a dataset X of size N , a clustering (partitional) algo-
rithm seeks to obtain a K-partitioning {Xk}Kk=1 such that the
objective is minimized under the following conditions:

(C1) each instance is exclusively assigned to a cluster,
(C2) the number of clusters should be less than or equal to
the number of areas, i.e., K ≤ N , and
(C3) each cluster should be non-empty.

Next, some domain-specific constraints are introduced for
the school redistricting problem as stated below:

(D1) the data instances (SPAs) within a cluster should
be spatially contiguous, i.e., geographically connected by
some contiguity relation,
(D2) each cluster should contain one school,
(D3) the total student population in a cluster should be
close to the capacity of the school it contains,
(D4) each cluster should be as compact as possible, and
(D5) the centroid of the cluster should not be too far from
the location of the school it contains.
Constraints can be hard or soft. The output of the cluster-

ing algorithm should satisfy the hard constraints, (D1) and
(D2), while soft constraints, (D3), (D4) and (D5), can be re-
laxed with an associated penalty cost. These soft constraints
are used for adjusting cluster-level properties, like size or
diameter, and can be violated within a pre-specified thresh-
old. Next we show how these constraints are introduced as
semi-supervision to the algorithmic framework.

Incorporating semi-supervision via constraints
Seeding: A seed set S ⊆ X is the subset of data instances
for which supervision is available as follows: for each seed
instance x ∈ S, the cluster Xk, k = 1, 2, . . . ,K, to which
it belongs is given. Usually for each cluster Xk, there is

1If the school district has grades K(0) − 5, 6 − 8 and 9 − 12
for elementary, middle and high school, respectively, then

gES =
5∑

c=0

gc gMS =
8∑

c=6

gc gHS =
12∑
c=9

gc,

typically at least one seed point x ∈ S. In our case, the data
instances/ SPAs2 containing a school inside them form the
seed set S and each of them is assigned to a unique cluster.
The subroutine for seed set generation is shown below.

Algorithm 1: Seeding
Input :Dataset X , School level L
Output :Seed set S, Partition {Xk}Kk=1
Method:
k ← 0, S ← φ
for i = 1, 2, . . . |X | do

if x(i) contains school of level L then
k ← k + 1

S ← S
⋃
{x(i)}

Xk ← {x(i)}

return S, {Xk}Kk=1

In Algorithm 1, the school level L can take values from
ES, MS or HS, depending or whether it is elementary, mid-
dle or high school redistricting, respectively. The seed set
S is used to initiate the K-partitioning of the data. To be
considered a seed point, corresponding school-level capacity
should be positive, i.e., cL > 0. In short, seeding ensures that
constraints (C3) and (D2) are initially satisfied and helps to
guide the subsequent clustering process.

Constrained assignment: In K-means method, each data
point x(i), i = 1, 2, . . . , N , is associated to a cluster based on
proximity. This does not consider domain-specific constraints
which are important in context of this problem. Hence the
constrained assignment performs these checks in two groups
as outlined next.

Neighborhood checks: These checks ensure that the spa-
tial contiguity of each cluster is preserved based on the notion
of neighborhood. We consider two data instances (polygons)
to be adjacent if they share a common border of any length
between them (i.e. rook’s contiguity), as shown in Figure 1.
We can construct a matrix W which encodes the adjacency
relationship between every pair of instances, x, y ∈ X s.t.
x 6= y, as

Wx,y =

{
1 if x and y are adjacent
0 otherwise

. (2)

Adjacency check: For an instance x(i) ∈ X to be assigned
to cluster Xk it should follow: ∃y ∈ Xk s.t. Wx,y = 1. The
adjacency check ensures that spatial contiguity is maintained
when an instance is added to a cluster.

It is equally important to verify if the contiguity is pre-
served when an instance changes cluster membership (from
donor to recipient). Assume that cluster Xr in Figure 1 is
composed of polygons {A,C,D} while cluster Xd consists
of polygons {B,F,E}. Suppose at some iteration t, F was
chosen to be assigned to Xr based on proximity. If the move
happens, the contiguity in Xd will be broken even though Xr

2We shall use these terms interchangeably henceforth.
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Figure 1: By rook’s contiguity, polygon A is adjacent to all
polygons except B as A and B intersect at a single point only.

will remain spatially contiguous. This is avoided by imple-
menting the next check.

Spatial contiguity check: This is performed if an already
assigned instance changes cluster membership. Consider an
instance x moving from (donor) cluster Xd to (recipient)
cluster Xr, thereby resulting in new clusters X ′

d and X ′

r . If
W(X ′

d) is the adjacency matrix corresponding to cluster X ′

d,
we can use depth first traversal on it to determine the number
of connected components in X ′

d. If spatial contiguity is to be
preserved, it should be 1 in both X ′

d and X ′

r . Since adjacency
check has already been performed, we only check X ′

d for
contiguity so as to satisfy the hard constraint (D1).

Feasibility check: During the cluster assignment process,
we can infer the quality of the resultant cluster configuration
by using the state function defined below:

F (Xk) = w ×F1 (Xk) + (1− w)×F2 (Xk) , (3)

where w ∈ [0, 1], is a weight parameter, Xk is the cluster
under consideration, and F1 and F2 are cluster balance and
compactness functions, as elucidated below:

• The balance function, F1, measures how well a cluster Xk

balances the residing student population with respect to
the capacity of the school it contains. It is calculated as

F1 (Xk) =

∣∣∣∣∣∣∣1−
∑

x∈Xk

gx
L

+ ε1∑
x∈Xk

cx
L

+ ε2

∣∣∣∣∣∣∣ , (4)

where
∑

x∈Xk
gx
L

is the student population of school level
L residing in Xk,

∑
x∈Xk

cx
L

is the capacity of the school
contained in it, ε1 and ε2 are infinitesimally small con-
stants such that ε1/ε2 � 1. For invalid cluster configura-
tions (e.g. those with no student population or which do
not contain a school), F1 will take values ≥ 1.

• The compactness function, F2, of a cluster Xk quantifies
how tightly its area AXk

is packed into its boundary of
perimeter PXk

. It is calculated by comparing the area of
the cluster to the area of a circle with equal perimeter as

F2 (Xk) = 1− 4π · AXk

P 2
Xk

. (5)

For a perfectly compact shape like a circle, this value
will be 0 and will approach 1 asymptotically as the shape
becomes less compact.

The value of the state function indicates how close a cluster
is to its ideal state: F (Xk) = 0. We expect the value of the
state function to decrease as the cluster grows: it becomes
more compact while achieving better balance. The weight
parameter w determines the relative importance of balance
and compactness in evaluating a cluster’s state.

If an instance x moves from donor cluster Xd to recipient
cluster Xr, resulting in new clusters X ′d and X ′r, the move
is considered feasible, if it satisfies
∆Fr←d = F

(
X ′r
)
+F

(
X ′d

)
−F (Xr)−F (Xd) ≤ 0 (6)

This check is introduced for balancing the soft constraints
(D3) and (D4).

There are situations where no instance can be assigned to
a cluster by failing the feasibility check. This stalls conver-
gence. In such a case, we relax the condition by associating
each unassigned instance to the adjacent cluster that causes
minimum constraint violation (Equation 6) so as to minimize
the violation of these constraints.

Adaptive weighing: For ensuring each student is assigned
to a nearby school, the constraint (D5) needs to be satisfied.
To do so, we use a weighted center γXk

that lies between the
centroid µXk

of cluster Xk and the location σXk
of the school

inside it. It is calculated as
γXk

= α× σXk
+ (1− α)× µXk

, (7)
where α is the ratio of the cluster’s student population to the
capacity of the school it contains. It is calculated as

α =

∑
x∈Xk

gx

L∑
x∈Xk

cx
L
.

Assignment to cluster is performed based on γXk
. We assume

that initially when α has value near 0, the weighted center
is close to the centroid µXk

, allowing freedom for cluster
growth. As the cluster grows, the value of α tends to 1, γXk

starts approaching the school’s location σXk
.

Termination: To check for converge, we use a counter T ,
initially set at 0. T is incremented by 1 whenever the follow-
ing occurs (in order): there is (a) no decrease in the number of
unassigned data instances (given not all are assigned), (b) no
decrease in the objective criteria, i.e., MSSC, or (c) no change
in cluster membership. It is reset otherwise. We terminate the
algorithm when T exceeds some threshold Tmax.

Putting all together: The complete pseudocode of our
GeoKmeans is shown in Algorithm 2. The code is available
at https://github.com/subhodipbiswas/GeoKMeans.

Experimentation
Data
We use GIS data from two US school districts located in the
mid-Atlantic region. Both districts have recently seen rapid
growth in population and have undergone several school
boundary processes, thereby making them suitable choices.
Summary statistics for the districts are provided in Table 1.
For our study, we used the following geographic data:
• SPA: Geometric coordinates and grade-wise student count
• School: Location, capacity and level



Algorithm 2: GeoKmeans
Input :Dataset X , Adjacency matrix W, School level L
Output :Final Partition {Xk}Kk=1
Method:
S, {Xk}Kk=1 ← seeding (X )
terminate← False, t← 0

X̃ ← X − S
while not terminate do

// E-step (constrained assignment)
0← []

for x ∈ X̃ do
flag ← False, s← 0
while s < |S| do

r ← arg min
l
||x− γXl ||

2

if ∃y ∈ Xr s.t. Wx,y = 1 then
if x is unassigned ||
x :X r ← Xd preserves contiguity then

Compute ∆Fr←d

if ∆Fr→d ≤ 0 then
Assign/move x to Xr

flag ← True
break

Remove Xr fromN ∗x
s← s+ 1

if not flag && x is free then
0← 0

⋃
{x}

//
Unassigned instances

if |0| > 0 then
Repeat E-step ∀x ∈ 0

// M-step
t← t+ 1

Update the clusters {Xk}Kk=1
terminate← check termination()

if |0| > 0 then
Repeat the main-loop ∀x ∈ 0 without feasibility check

return {Xk}Kk=1

Table 1: School district data summary

District # SPA # Schools
ES MS HS

X 454 55 16 15
Y 1315 138 26 24

Metrics
Given the schools’ boundaries in a partition, we adopt three
performance metrics to evaluate their quality:

• Balance: This is a mean percentage score that tells us how
well a cluster balances it student population as compared
to the student capacity of the school it contains.

1

K

 K∑
k=1

100×

∣∣∣∣∣∣∣1−
∣∣∣∣∣∣1−

∑
x∈Xk

gx
L

/ ∑
x∈Xk

cx
L

∣∣∣∣∣∣
∣∣∣∣∣∣∣
 . (8)

A score of 100 indicates full utilization of the capacity
while scores below 100 indicate schools operating at over
capacity and/or being under-utilized.

• Compactness: This computes on an average how tightly
packed the perimeter PXk

of a cluster is with respect to the
circumference of a circle whose area is equal to the area
AXk

of the cluster.

1

K

K∑
k=1

100×
(
PXk

/(
2π
√
AXk

/π
))−1

(9)

This metric is a percentage score, with a circle (perfectly-
compact) achieving the value of 100.

• Proximity: This is the geodesic distance (in miles) that
students needs to travel on average to reach their assigned
school. This weighted measure is calculated as

1

K

K∑
k=1


∑

x∈Xk

gxL × dmi(σXk
, µx)∑

x∈Xk

gxL

 . (10)

This score is a rough approximation of the travel-time of a
student in the event of such data being unavailable.

Models
We compare the performance of the following models.

Regionalization methods: These are heuristics that start
with an initial random spatially-contiguous partition of the
dataset and improve them locally. We consider the average
performance over 51 independent runs.
• AZP: Automatic Zoning Procedure is a classical regional-

ization approach initially designed for reorganizing census
geographies in the UK (Openshaw and Rao 1995).

• SARA: Simulated Annealing Redistricting Algorithm oper-
ates by partitioning a set of populated zones into spatially-
contiguous regions so as to minimize the population differ-
ence between the regions (Macmillan 2001).

To ensure these algorithms generate feasible solutions, i.e.,
one school per partition, we employed seeding technique.

GeoKmeans and its counterparts: These variations are
instantiated by selectively activating the checks in the con-
strained assignment step.
• SKM: This is identical to a K-means with seeding enabled

but constrained assignment deactivated.
• CKM: Adjacency check added to SKM.
• SCKM: Spatial-contiguity check added to CKM.
• GeoKM : Adding the feasibility check to SCKM results in

our proposed algorithm.
Since each variant starts with identical seed sets, the differ-
ence in their performance is due to the constraint checks.

Parametric Setup
Default parameter settings are used for SARA and AZP. For
GeoKmeans and its variants we set the threshold for stagna-
tion at 5. The value for weight paramter w (Equation 3) was
set to 0.9.



Table 2: Model performance for redistricting in both school districts.
District X

Models Elementary School Middle School High School
Balance Compactness Proximity Balance Compactness Proximity Balance Compactness Proximity

AZP 84.99 54.32 1.20 89.14 47.27 2.44 86.54 45.38 2.98
SARA 70.06 49.97 1.07 86.06 41.12 2.14 78.74 36.47 1.70
SKM 79.58 48.32 0.41 78.79 44.54 0.95 73.01 40.49 1.01
CKM 79.46 52.59 0.55 85.93 45.45 1.04 86.69 45.66 0.97

SCKM 79.69 52.87 0.56 89.31 44.79 0.95 87.10 42.64 1.09
GeoKM 90.26 59.02 0.68 93.94 58.10 1.19 94.85 51.79 1.27

District Y

Models Elementary School Middle School High School
Balance Compactness Proximity Balance Compactness Proximity Balance Compactness Proximity

AZP 88.28 49.03 0.77 88.98 36.77 1.80 88.88 38.13 1.84
SARA 69.53 48.88 0.67 83.12 36.65 1.58 78.74 36.47 1.70
SKM 67.44 45.42 0.26 80.54 35.94 0.69 87.79 36.50 0.81
CKM 75.59 49.31 0.48 87.35 39.41 1.08 89.08 41.32 1.76

SCKM 82.02 46.93 0.51 85.77 38.60 1.39 86.41 38.68 1.11
GeoKM 91.23 56.78 0.41 93.08 41.13 1.10 94.64 48.35 1.19

Results
All algorithms provide an approximate solution to the school
redistricting problem as it is NP-hard in nature. For elemen-
tary schools, the problem is more challenging because of the
low number of instances per cluster, i.e., N/K is 8.25 and
9.53 for Districts X and Y, respectively. Also, the arbitrary
distribution of the elementary schools (assumed centers) con-
tradicts basic clustering assumptions made by distance-based
methods. The middle and high school cases present relatively
easier problems as they are more uniform in their distribution.
Next, we proceed to discuss the performance of the baseline
algorithms for different cases, compare plans generated by
our algorithm with existing plans and discuss the utility of
automated plans to school planners.

How effective is GeoKmeans in making plans?
We independently ran simulations for every algorithm at all
school levels (ES, MS and HS) and tabulated the evaluation
metrics in Table 2. We observe that SKM outputs partitions
with proximal schools but at the cost of balance, which rarely
crosses 80 in District X. Except for District Y’s high schools,
which are distant and well-separated, the partitions generated
by SKM are highly imbalanced and therefore would not be
considered viable plan for adoption. This is expected since
SKM tries to assign SPAs to schools only based on distance
via the adaptive weighing technique. Other factors like adja-
cency, spatial contiguity and population balance are ignored.
On accounting for these factors via constraint checks, both
CKM and SCKM show an overall improvement in balance
scores at the expense of schools being farther. This is akin
to real-life boundary planning process, since adding in more
considerations constrains the set of feasible plans.

Though CKM and SCKM perform better than the uncon-
strained SKM, they are not noticeably better in balancing the
elementary school population. The haphazard distribution of
elementary schools coupled with high variance of student
population in SPAs poses a challenging problem scenario for

distance-based method like K-means that implicitly assumes
uniform distribution of population across the school district.
Given the land-use patterns of a county/school district, there
are pockets of residential areas with high student popula-
tion density. Balancing the students in such areas is difficult
without explicitly accounting for them. The feasibility check
is found to be useful in such scenarios. On activating this
check, GeoKmeans improves by 12.6% (81.11 to 91.33 for
District X) and 11.23% (82.02 to 91.23 for District Y) in
balance score over its nearest-performing self-variant. Such
improvements are also noticed for middle and high school
cases, especially in District Y.

SARA and AZP operate by swapping polygons located on
the boundary of clusters to improve balance without account-
ing for proximity. In all the possible cases, we notice that AZP
outperforms SARA in terms of balance scores but at the cost
of proximity. Adopting such a final partition (plan) in real-life
would burden the school district with increased transporta-
tion costs as most of the students’ residences will lie outside
walking distance. On the other hand, with a proximity-based
assignment, GeoKmeans generates better-balanced partitions
with compact boundaries and nearby schools in all possible
cases. In comparison to AZP, GeoKmeans improves proxim-
ity in District X by 43.3% (1.20 mi to 0.68 mi) for elementary
schools, 51.2% (2.44 mi to 1.19 mi) for middle schools, and
57.4% (2.98 mi to 1.27 mi) for high schools.

Automated plans vs existing plans
School districts undergo boundary change processes when
the need arises to redraw school attendance zones in response
to present needs and the predicted forecasts. Usually these ex-
isting plans are balanced and reflective of the present scenario.
To test the utility of our approach in generating real-life plans,
we plot the balance and proximity of automated plans gener-
ated by GeoKmeans with existing plans from both districts
in Figure 2.

Compared to the existing plans, the automated plans im-
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Figure 2: Bar plots comparing the automated plans against
the existing plans in terms of capacity balance on left (higher
is better) and distance to schools on right (lower is better).
Overall, the automated plans achieve better performance.

prove the population balance in schools while enhancing
the proximity of the schools to students. Figure 2a shows
that existing and automated plans for District X are fairly
well balanced. The proximity to elementary, middle and high
schools improves by 32.2% (0.90 mi to 0.68 mi), 31% (1.71
mi to 1.19 mi) and 24.8% (1.69 mi to 1.27 mi). In Figure
2b, we observe identical trends. There is a 19.7% increase in
capacity balance (74.73 to 93.08) along with 36.9% reduction
in distance (0.65 mi to 0.41 mi) for elementary schools in
District Y. Middle and high schools see a 33.7% (1.66 mi to
1.1 mi) and 31.2% (1.73 mi to 1.19 mi) decrease in distance.

GeoKmeans in real-life planning: A case study
For the purpose of case study on District X, we highlight the
differences between the existing plan and the automated plan
for elementary and middle schools in Figure 3 via choropleth
map and distribution plots of the metrics. We notice that the
automated plans have comparatively higher balance scores
(darker is better). The distribution plots also reflect improve-
ments in balance and proximity values in the automated plans.
GeoKmeans is particularly good at balancing the growing
population in the southeastern part of District X. However,
there are occasional lighter patches in the automated plan as
well, particularly in the western part. On further analysis of
the land-use patterns of District X, we notice that the west-
ern section of the district and parts of the central section are
zoned for low density housing and agricultural uses. Planners
and politicians alike are driven to preserve the district’s rural
nature in these areas. The demographic data reveals that both
have seen a steady decline in student populations over the
years and have underutilized schools. In the southeastern part,
rapid new home sales in the area’s residential developments
have led to unprecedented overcrowding in nearby schools.

District X planners anticipate the opening of four new

schools in the next five years. Until each school is built and
opened, the existing plan remains obscured. As each school is
built and opened and populations fluctuate, district planners
must reassess the situation. Hence, an automated plan can
serve as an alternative suggestion from which planners can
borrow ideas during actual boundary processes. This is par-
ticularly helpful when planners have projected estimates of
future student enrollment and wish to make long-term plans
by simulating future scenarios.

Conclusion
In this article, we propose a geospatial clustering technique
called GeoKmeans which integrates the proximity-based
assignment of traditional clustering algorithms with a con-
strained assignment mechanism. Through extensive exper-
imentation on two real-world school district datasets, we
demonstrated the advantage of our approach for designing
school boundaries. Our results show the improvements of
automated plans over existing plans and how they can serve
as a guideline for planners during boundary processes. As
such GeoKmeans can be applied to a plethora of zone-design
problems where proximity plays an important role.

We have also identified some challenges and propose fu-
ture research directions. Firstly, our framework works with
fixed geometries. Having the ability to further fragment a
polygon may yield better results, especially in areas with
high population density or unbalanced schools. Secondly,
to make the algorithmic plan-making more akin to real-life
process we can incorporate other local factors/constraints
like past rezonings, geographic barriers, political boundaries,
etc. Lastly, we would like to be able to develop an interac-
tive framework that can incorporate the feedback from actual
stakeholders into the clustering process.

Acknowledgments. This research is supported in part by
National Science Foundation grants DGE-1545362 and IIS-
1633363. We acknowledge Susan Hembach, Colin Flynn,
Pranita Ranbhise, Paul Ngo and Jessica Gillis for providing
us with the data and helpful insights regarding the school
districting process. Disclaimer: The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of any school
board, NSF, or the U.S. Government.

References
Assunção, R. M.; Neves, M. C.; et al. 2006. Efficient regionalization
techniques for socio-economic geographical units using minimum
spanning trees. International Journal of Geographical Information
Science 20(7):797–811.
Bacao, F.; Lobo, V.; and Painho, M. 2005. Applying genetic
algorithms to zone design. Soft Computing 9(5):341–348.
Basu, S.; Banerjee, A.; and Mooney, R. 2002. Semi-supervised clus-
tering by seeding. In Proceedings of 19th International Conference
on Machine Learning, ICML.
Basu, S.; Bilenko, M.; and Mooney, R. J. 2004. A probabilis-
tic framework for semi-supervised clustering. In Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD.



Existing plan

Balance across ES zones

Automated plan

40

50

60

70

80

90

100

50 100
Value

0.00

0.02

0.04

0.06

0.08

Balance

Plans

Existing

Automated

0 2 4
Distance (in mi)

0.0

0.5

1.0

1.5

2.0
Proximity

Plans

Existing

Automated

(a) Elementary Schools

Existing plan

Balance across MS zones

Automated plan

65

70

75

80

85

90

95

50 75 100
Value

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Balance

Plans

Existing

Automated

0 5
Distance (in mi)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Proximity

Plans

Existing

Automated

(b) Middle Schools

Figure 3: Chloropeth maps on the left showcase the capacity balance (darker the better) for the automated plan and the existing
plan. The automated plan showcases better balance in both elementary and middle school cases. The distributional plots on the
right showcase the capacity balance and proximity scores. We see that the automated plan, shown in red, has better capacity
balance while maintaining a low commute distance.

Basu, S.; Davidson, I.; et al. 2008. Constrained clustering: Advances
in algorithms, theory, and applications. CRC Press.
Belford, P. C., and Ratliff, H. D. 1972. A network-flow model for
racially balancing schools. Operations Research 20(3):619–628.
Bradley, P.; Bennett, K.; and Demiriz, A. 2000. Constrained k-
means clustering. Technical Report MSR-TR-2000-65, Microsoft
Research, Redmond.
Burrough, P. A.; McDonnell, R.; McDonnell, R. A.; and Lloyd, C. D.
2015. Principles of geographical information systems. Oxford
University Press.
Chapelle, O.; Schlkopf, B.; and Zien, A. 2010. Semi-Supervised
Learning. The MIT Press, 1st edition.
Duque, J. C.; Ramos, R.; and Suriñach, J. 2007. Supervised region-
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