
Contrastive Graph Convolutional Networks for
Hardware Trojan Detection in Third Party IP Cores

Nikhil Muralidhar∗§, Abdullah Zubair†, Nathanael Weidler‡, Ryan Gerdes† and Naren Ramakrishnan∗

∗Department of Computer Science, Virginia Tech, Arlington, VA
†Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA

‡Space Dynamics Laboratory, Logan, UT

Abstract—The availability of wide-ranging third-party intel-
lectual property (3PIP) cores enables integrated circuit (IC)
designers to focus on designing high-level features in ASICs/SoCs.
The massive proliferation of ICs brings with it an increased
number of bad actors seeking to exploit those circuits for various
nefarious reasons. This is not surprising as integrated circuits
affect every aspect of society. Thus, malicious logic (Hardware
Trojans, HT) being surreptitiously injected by untrusted vendors
into 3PIP cores used in IC design is an ever present threat. In this
paper, we explore methods for identification of trigger-based HT
in designs containing synthesizable IP cores without a golden
model. Specifically, we develop methods to detect hardware
trojans by detecting triggers embedded in ICs purely based
on netlists acquired from the vendor. We propose GATE-Net ,
a deep learning model based on graph-convolutional networks
(GCN) trained using supervised contrastive learning, for flagging
designs containing randomly-inserted triggers using only the
corresponding netlist. Our proposed architecture achieves signifi-
cant improvements over state-of-the-art learning models yielding
an average 46.99% improvement in detection performance for
combinatorial triggers and 21.91% improvement for sequential
triggers across a variety of circuit types. Through rigorous experi-
mentation, qualitative and quantitative performance evaluations,
we demonstrate effectiveness of GATE-Net and the supervised
contrastive training of GATE-Net for HT detection. Code and
data are publicly available*.

Index Terms—hardware trojan, machine learning, graph con-
volutional network, deep learning, contrastive learning

I. INTRODUCTION

Hardware Trojans (HTs) are malicious modifications to
an integrated circuit (IC), which can change their intended
functionality or cause them to malfunction. Parametric Trojans
modify the existing logic of the circuit while functional
Trojans are realized by adding transistors and gates to the
circuit. HTs are also classified as always-on or triggered based
on the mechanism of activation. Once activated, the Trojans
alter the reliability, leak confidential information such as secret
keys, or cause an IC to malfunction. They can cause an IC chip
to become disabled or compromised, allowing an adversary to
gain access to highly protected data [1].

The demand for high performance, low cost and multi-
functional ICs continues to rise worldwide. To keep up with
these demands, and to stand-out in the highly competitive
market, chip designers, big corporations, and small start-ups

§Corresponding Author Email: nik90@vt.edu
*https://tinyurl.com/ysvzy7h7

alike either seek third-party intellectual property (3PIP) cores
or employ third-party design houses to outsource standard and
commonly used logic designs. Although this helps them focus
on the novel features of their design, it significantly increases
risk of a HT being implanted in the chip, as untrusted 3PIP
vendors, or third party contractors working on the design,
could surreptitiously insert a Trojan into the design. Even if the
vendors and contractors are trustworthy, compromised design
tools could implant HTs into a circuit without their knowledge
[2]. A golden IC, that is, a verified Trojan-free version of
an IC, is often used as a reference to detect Trojans using
comparative analysis [3]–[7], e.g., ensuring that side-channels
are consistent between the golden model and a chip for which
we wish to establish the presence or absence of a HT. By
their very nature 3PIP cores preclude the existence of golden
models (as 3PIP is opaque to the user and its integrity can only
be attested to by the potentially untrustworthy/compromised
vendor), thus preventing the use of HT detection approaches
based on golden models.

We present a methodology for applying machine learn-
ing (ML) models (specifically graph-convolutional networks,
GCN) trained with supervised contrastive learning [8] for
improved representation learning on the task of HT detection,
without relying on a golden model, with the goal of detecting
Trojans in ICs inserted prior to chip fabrication. We are
interested in HT that are stealthy (i.e., do not affect IC
operation until called upon by the attacker to do so) and
may be easily activated by the attacker. To this end we focus
on detecting HT that are triggered based upon input to the
IC. We show promising results applying learning strategies
to detect combinatorial and sequential HT triggers comprised
of standard cells such as logic gates and flip-flops. We find
that GCN models trained on circuit netlists with cell types as
features are surprisingly effective at identifying circuits with
embedded Trojan triggers. We find that GCN models perform
significantly better than state-of-the-art baseline classifiers.

A. Contributions

We propose Graph-Aware Trigger Detection Network
(GATE-Net), a novel GCN-based supervised contrastive rep-
resentation learning model for learning salient features of HT-
embedded vs. HT-free circuits using only the gate-level netlist
of the design.

1) GATE-Net does not rely on a golden model for trigger-
based HT detection.

2) We are the first to employ Graph Convolutional Net-
works as a methodology to model hardware trigger
detection using unstructured circuit data.

3) We present a rigorous analysis of the performance
of GATE-Net and compare it with several state-of-the-art
classification models for trigger-based HT detection.

4) We present a novel methodology to create datasets for
HT detection research. Our dataset, with combinatorial
and sequential trigger inserted circuits, in adjacency
matrix form will be made publicly available along with
our source code for the proposed GATE-Net model,
trigger generation and embedding.

B. Related Work

Side-channel analysis has been used to detect HTs at the
circuit level by analyzing the power characteristics or timing
delays in the infected circuit and comparing with that of a
golden model [1]. The HT detection methods based on boolean
function analysis on the circuit has also been proposed [9]
[10]. These methods rely on the combinatorial logic of the
circuits and therefore have limitations against the sequential
HTs and become computationally expensive with increase in
circuit size.

Recently, ML and deep learning models have shown
promise in various fields like computer vision, natural lan-
guage processing (NLP) and time series analysis and are
increasingly being applied to HT detection. The structural and
functional features derived from the gate-level representation
of the circuits provide crucial data for learning models in
detecting HTs. Yao et al. [11], in their proposed method
FASTrust, performed structural feature analysis on the flow
graphs created from the flipflops in the gate-level representa-
tion and Chen et al. [12] proposed ML-FASTrust by including
the functional features of the combinatorial logic in addition
to the structural features. In [13]–[15], the authors develop
specific structural features, based on proximity to specific
circuit components like flip-flops and also the count of nets
(connection between two logic components) k-hops away from
a particular net, in order to classify each net in a netlist
as either a Trojan-net or a normal-net using support-vector
machines (SVM) and Random Forest (RF) for classification.
A gradient boosting classifier for HT detection is proposed
in [16]. The classifier operates on features extracted from an
abstract syntax tree (AST) derived form the netlist. In [17] a
score-based mechanism is proposed for identifying HTs using
10 circuit component specific features used to provide weak
supervision for the classification task. Shen et al. [18] propose
LMDet, an NLP based approach for detecting HTs using n-
gram sequencing. Hoque et al. [19] uses ensemble of three
different ML models, namely RF, Naive Bayes and Adaptive
Boosting over a set of structural and functional features.

The aforementioned methods do not explicitly operate on
the entirety of the original graph domain obtained from the
netlist. Functional features (and a limited set of structural

features) in general may fail to capture the rich knowledge
present in the circuit topology. GNN4TJ [20] is a recent model
that uses data-flow-graph derived from RTL code for HT de-
tection. In the semiconductor supply-chain, GATE-Net (which
works with gate-level netlists) will capture HTs injected at all
stages of design while GNN4TJ requires additional expensive
reverse-engineering for HTs injected after Logic Synthesis.
From the above-mentioned approaches, we implement the
methods proposed by Kurihara et al. [15] and Hoque et al.
[19] and evaluate GATE-Net against them in Section V.

Hardware Trojan Dataset: One of the challenges asso-
ciated with conducting research in the field of HTs is the
relative lack of publicly available Trojan-inserted circuits. This
is particularly true when attempting to apply ML strategies
which require large amounts of data for effective model
training. The Trust-Hub benchmark [21] contains 96 Trojan-
inserted circuits, sub-categorized by multiple taxonomies, such
as trojan location and activation mechanism. Our criteria for
HT selection is based on stealthiness and ease of activation;
i.e., the HT must use a trigger that is activated via common,
user-facing IC inputs. As only five of the circuits in the Trust-
Hub benchmark contain trigger-based HT that are activated
based on legitimate user input, we introduce (Section II)
a method to generate trigger-based HT using the gate-level
netlist of publicly available IP cores (Section IV-A).

C. Learning Approach Introduction

The aforementioned methods are primarily based on spe-
cific feature engineering, hence a more general representation
learning method which automatically extracts IC features is
necessary to enable a generalizable HT detection framework.
Neural networks have been effective at representation learning
without explicit feature engineering. Recently, Graph Con-
volutional Networks (GCN) [22], a variant of deep neural
networks capable of directly operating on irregular grids like
graphs, have been successfully used across various disciplines
like studying chemical compounds and molecular structure,
in computer vision for scene generation, point cloud classifi-
cation, for text classification in natural language processing.
The various successes of GCNs are detailed in a recent
comprehensive survey [23]. We employ a GCN based learning
architecture GATE-Net for effective representation learning
of hardware circuit features automatically, sans any manual
feature engineering for HT trigger detection in ICs. In order to
improve the representations learnt by GCNs we also employ a
supervised variant of a recently popular representation learning
approach called contrastive learning [24]–[26] and through
extensive experiments demonstrate the effectiveness of GCNs
combined with supervised contrastive learning for improved
performance on HT detection.

D. Threat Model

We assume that malicious actors have implanted a trigger-
based HT into an IC during the design phase. The malicious
actors can be either one (or a combination) of the following:
a) an untrusted 3PIP core vendor who implants the Trojan

Output

Input A

Input B

Input C

Input D

(a)

Output

Q

D Q

Q

D Q
Input

clock

(b)

Fig. 1: (a) A 4-input combinatorial trigger example (b) A
sequential trigger example (’101’ sequence detector)

in the IP core purchased by the designer to be used in the
IC, b) a compromised design tool, used by 3PIP vendor or
designer, c) an untrusted third party designer to whom the
design is outsourced, or d) a malicious designer on the team
from inside the organization. The 3PIP cores considered in
the threat model are the soft (synthesizable) IP cores and it is
assumed that the gate-level netlist of the final circuit design is
available to the chip designer (defender).

The proposed approach is independent of the functionality
of the HT once it is triggered, only that it is latent until
triggered. The trigger can be either combinatorial or sequen-
tial. A combinatorial trigger having N inputs is a logic cone
consisting of AND gates and NOT gates with one output net
that activates the Trojan when a particular N -bit combination
appears at its inputs. A sequential trigger is a sequence detector
consisting of logic gates and flip-flops that activates the Trojan
when a specific sequence appears on the input net of the
trigger at consecutive clock cycles. Example triggers can be
seen in Fig. 1. These trigger types form the basis of nearly all
published HT triggers. The trigger may be implanted anywhere
in the circuit.

II. GENERATION AND REPRESENTATION OF CIRCUITS

We now outline the data generation methodology adopted
for our HT trigger detection task. Each benign circuit (i.e.,
a circuit lacking a HT) is converted to a compact adjacency
matrix representation and randomly embedded with triggers.
The inverse node fanins for each node of the resulting circuit
(potentially embedded with triggers) is extracted and saved for
use by a learning model for HT detection. Data generation is
discussed below.

Circuit Adjacency Matrix: For a synthesized circuit C,
a Circuit Adjacency Matrix A ∈ B|V |×|V | is binary, with V
nodes, and represents C as a graph. A node corresponds to
a cell (logic gates and flipflops), input or output of a circuit.
The elements of A indicate which nodes in C are connected
to each other. In addition to A, we also maintain a list of
standard cell type corresponding to each node such that the

file:///C/...RF/Documents/PhD/Research/open_core_circuits/20190319_flattend_vhdl_from_vt/arithmetic_cores/too_small/am_full_adder.txt[7/18/2019 4:20:45 PM]

0000000001
1000000000
0001100000
1000000000
0000000010
0110000000
0110000000
0001100000
0000000000
0000000000
types :

or2i,an2,eo,an2,eo,input,input,input,output,output,

B

A

Cin

XOR 1

XOR 2

AND 1

AND 2

OR Cout

Sum

Fig. 2: Full adder represented as a circuit adjacency matrix.
The circuit is shown as gates on the right here as an illustration,
this is not typically included in a circuit adjacency matrix.

ith element in the list corresponds to the standard cell type of
the cell represented in ith row and ith column of A. No data
is lost in representation of a circuit adjacency matrix as the
entire circuit can be reproduced from it. An example adjacency
matrix can be seen in Fig. 2. It depicts a full adder represented
as a circuit adjacency matrix, and the gate representation of
the circuit is shown beside it for reference. The types or2i,
an2 and eo refer to the standard cells OR, AND and EXOR.

Trigger Generation: Combinatorial and sequential triggers
are generated as follows. For a combinatorial trigger, we
specify the number of inputs desired. Then we create a
tree structure starting with a single gate as the root node
and continuing until the desired number of inputs has been
achieved. Each node is randomly selected as either an AND
gate, a NOT gate or an INPUT. AND gates have two child
nodes, while NOT gates have one, and INPUTS are leaf nodes.
When each leaf node is an INPUT the trigger structure is
complete. Trees with incorrect number of INPUT nodes or
ones where not all leaf nodes are INPUT, are discarded. In
order to generate sequential triggers, we compile a script,
which for a given sequence, generates a Verilog HDL code
for a non-overlapping Mealy sequence. This HDL code is then
synthesized to a gate-level netlist and then converted to circuit
adjacency matrix.

Triggers thus generated are structurally and functionally
representative of different types of combinatorial and sequen-
tial triggers that can be used in trigger-based HT [27]. For a
combinatorial trigger, trigger size is equal to the number of
inputs of the trigger and for a sequential trigger, it refers to the
number of flipflops in the trigger circuit (equivalent to base-2
logarithm of input sequence length).

Trigger Embedding: Circuit adjacency matrices are then
embedded with triggers by appropriately adding rows and
columns equivalent to number of trigger nodes and creating
appropriate connections between trigger inputs and randomly
selected insertion nodes of the benign circuit adjacency matrix.
In this way, each adjacency matrix is embedded with each
trigger to yield multiple HT embedded adjacency matrices.

Inverse Node Fanin: These trigger-embedded circuit adja-
cency matrices are used as the starting point to extract inverse
node fanins (INF). The INF of a node i in A is a subgraph
consisting of all paths starting at a circuit input and terminating
at i. The INF for a node is an effective representation of its
neighborhood. An entire circuit can be described by specifying
the INF for each node in the circuit. INFs for all circuit
nodes are generated in a straight-forward manner from circuit
adjacency matrices. For a graph of an HT-embedded circuit,
we define trigger INF as the INF of the node corresponding
to the output of the trigger and benign INFs as the INFs of all
the other nodes in the graph. Note that some benign INFs may
contain a few trigger nodes but never the complete trigger.

III. HT TRIGGER DETECTION WITH GATE-NET

A synthesized circuit can be viewed as a directed acyclic
graph, hence we exploit GCN models which have demon-
strated effectiveness in the context of unstructured data for
effective HT trigger detection. Details about the GCN learning
mechanism are provided in [22].

Let us consider a dataset C = {C1, C2, ..., CN} of hardware
circuits, with each circuit potentially having a HT with a
trigger and a payload embedded. Let us consider a circuit
Cp ∈ C; an HT embedded in Cp comprises the trigger tp
connected at one or more nets in Cp. Trigger tp is activated
by a specific input pattern. Upon activation, tp activates the
attached payload. We wish to detect the presence of HT in
Cp by training a learning model to detect tp. Our learning
model is trained only on the circuit’s netlist and we do not
use any other features other than the gate-types of each gate
in Cp. This deliberate restriction of our approach (i.e., to only
use information available from the circuit netlist) is to ensure
avoidance of cost associated with rich feature engineering
pipelines that have been employed by previously proposed HT
detection methods [12], [13], [15], [19], [28], preventing these
methods from scaling to large circuit databases.

Fig. 3 depicts the full classification pipeline for HT trig-
ger detection that we employ. We first extract INF for all
nodes from the adjacency matrix representation of Cp as
outlined in Section II. Let Gp

i be the INF of node i for
circuit p. Gp

i is now considered a graph where each node
(a cell in the original Cp) is enriched (tagged) with a
one-hot vector indicating its cell-type. INF extraction and
node-enrichment for each circuit in C results in a dataset
D = {G1

1, .., G
1
|V1|, .., G

p
1, .., G

p
|Vp|, .., G

N
|VN |}. Here, |Vi| is

the number of cells in Ci (or nodes in Ai). Without loss
of generality we can consider D to be a dataset of m
INFs D = {G1, ..., Gm} extracted from all circuits in C. In
this work, we consider each Gi to be an undirected graph.
Our GATE-Net model is trained in a supervised manner to
classify each graph Gi as a benign or a trigger INF.

We can define the binary cross-entropy loss function to
train GATE-Net for the task of HT detection as

L = − 1

m

m∑
i=1

yiln(ŷi) + (1− yi)ln(1− ŷi)

ŷi = fΘ(xi,Ai)

(1)

where fΘ represents the GATE-Net learning model comprised
of a set of parameters Θ = {θ(1), θ(2), .., θ(L)} where each
θ(r) represents parameters for layer r. fΘ is a function of
Ai ∈ Bl×l the adjacency matrix of Gi (assume Gi has l
nodes) and xi ∈ Rl×1, a vector of node features (indicating
cell-type) for each node in Gi. Note, although we employ only
one-hot encoding of cell-types in this work, xi can quite easily
be augmented to include richer features if available, thereby
making GATE-Net , a generic framework for representation
learning for hardware circuits useful for various detection
tasks.

A. Supervised Contrastive Pretraining

Our GATE-Net model consists of two parts (i) a contrastive
encoder (ENC) (inspired from the supervised contrastive
learning model proposed by Khosla et al. in [8] for image
classification) followed by (ii) multiple fully connected layers
(FCN).

Embedding: The first part of ENC, consists of learning a
latent embedding for the input graph Gi which is achieved
through three Graph Convolutional Network (GCN) layers
interleaved with ReLU activation functions [29]. Each GCN
layer involves a topology-aware representation learning mech-
anism.

H(r+1) = ReLU(D
1
2
i AiD

1
2
i H

(r)θ(r)) (2)

In Eq. 2, H(r) corresponds to the latent representation in the
rth layer. H(0) = Xi ∈ Rl×l (i.e., one-hot encodings for all
nodes in Gi). Di is the degree matrix of Gi and θ(r) is the set
of weights corresponding to layer r. The term D

1
2
i AiD

1
2
i in-

dicates the symmetric normalized Laplacian matrix of Ai and
encodes the rich connectedness structure of the graph which is
useful for propagating the node representations appropriately
from one GCN layer to the next while also being employed in
the message passing of node representations (details in [22]).
Intuitively, the rth GCN layer learns node embeddings (for all
nodes in Gi) influenced by neighbors up to r-hops away.

Our GATE-Net model consists of three GCN layers and
hence considers effects of nodes up to 3-hops away.
These GCN layers yield a set of 3 latent representations
{H(1), ..,H(3)}. The latent representation H3 ∈ Rl×q where
q represents the latent dimension and l the number of nodes in
Gi. H3 is hence a matrix consisting of a q-dimensional latent
representation for each node in Gi. A readout step is employed
to transform these individual node-representations present in
H3 into a single representation Hi ∈ Rq×1 for the entire graph
Gi. In GATE-Net , we employ mean pooling as the choice of
readout layer and hence our final graph representation Hi is an
element-wise mean of all the individual node representations
present in H3.

Projection: The second part of ENC comprises a linear
transformation of Hi (normalized to lie on the unit hyper-
sphere) to obtain a projected representation zi ∈ Rq′×1, in our
case q′ is the latent projection dimension set to 256. Hence,
for each INF graph Gi with l nodes, the ENC yields a latent
representation zi ∈ Rq′×1 projected onto the unit hypersphere.

Fig. 3: GATE-Net : Graph-Aware Trigger Detection Network . Here, we illustrate the classification pipeline with the help of
an example circuit. A circuit p with k cells in it’s netlist is broken down into k INFs. Each INF is enriched with cell-types
(one-hot encoding). Enriched INFs are represented as INF database D. Each INF in D is passed into the classification model
(orange box), wherein a latent representation z̄i is obtained from the pretrained contrastive encoder (ENC). z̄i is then supplied
to a fully connected network (FCN) to obtain the final classification ŷi for Gi. The classification model consists of a contrastive
encoder (ENC) (detailed in section. III-A) and a set of fully connected layers. The proposed classification pipeline is hence
dependent ONLY on information available in the netlist and no further feature engineering is required.

Contrastive Loss Formulation: Most contrastive learning
approaches proposed thus far [24], [25], have been unsuper-
vised (or more specifically “self-supervised”) and due to the
absence of explicit instance labels, rely on manipulating the
input instance i.e., (cropping in case of images; adding or
deleting nodes/edges in the case of graphs), and ensuring sim-
ilar representations obtained for the original and manipulated
instance. Overall, it has been found that contrastive learning
approaches influence the learned representation (and improve
model prediction quality) by lending greater structure to the
latent space learned by the model.

In Fig. 4, an illustrative example of the effect of contrastive
learning is presented. Let us consider a scenario with C
comprising only of two circuits. Each circuit is broken down
into its INFs and each node in every INF is enriched with
its cell-type, as described previously in section III to obtain a
dataset D of input graphs. Let us consider D = {G1, ..., Gk}
to comprise of k INFs from circuits in C. Since each of the
two circuits in C, has a trigger embedded, each circuit has a
single INF which is labeled a trigger INF while the rest are
benign INFs.

Each Gi ∈ D is operated on by the contrastive
encoder (ENC) in GATE-Net , to obtain a set
Z = {z1, z2, .., zk|zi ∈ Rq′×1} of projected representation
vectors on the unit hypersphere. Owing to our supervised
problem context, there also exist a set of corresponding labels
Y = {y1, .., yk} such that yi ∈ {0, 1}. Given, D,Z,Y, our
supervised contrastive loss is described in Eq. 3

∑
Gi∈D

−1
|P (i)|

∑
p∈P (i)

log
exp(zi · zp/τ)∑

Gj∈D′(i)
exp(zi · zj/τ)

(3)

Here, for each graph Gi ∈ D (note Gi is referred to as
the anchor graph), the set P (i) includes all instances in
D that have the same class label as Gi. Each member of
P (i) is considered a positive instance (in contrastive learning
parlance) w.r.t the anchor instance Gi. The numerator of the
logarithm in Eq. 3, calculates the dot product between the ENC
generated latent representation of Gi and ENC generated latent
representation obtained for positive graph Gp ∈ P (i). The
denominator is a normalizing constant and is a summation of
similar dot-products between Gi and all other instances in D
excluding Gi (i.e., with all members in set D′(i) = D \ {Gi}).
Intuitively, Eq. 3 encourages representations zi belonging to
the same class to be closer together while actively separating
representations of different classes to be far apart. Hence, the
goal of supervised contrastive learning coincides well with the
general goal of classification pipelines which is to learn latent
representations easily separable by a hyperplane between the
various classes.

Pretraining: Hence, we employ the aforementioned super-
vised contrastive learning procedure as a pretraining step in
our classification pipeline. Essentially this means, that the ENC
model is first trained using the contrastive loss function in
Eq. 3 after which the trained layers in ENC are frozen (i.e.,
the weights are unaffected by backpropagation).

Classification: This frozen ENC module is then combined
with a 3-layer fully-connected network (FCN) which finally

Fig. 4: We illustrate the contrastive learning pipeline with an example scenario wherein C consists of only two circuits, each
circuit broken down into INFs and corresponding enriched graphs to yield a total of k INFs D = {G1, .., Gk}. Specifically, we
consider the effect of contrastive learning for the fanin G2 i.e., the trigger fanin from circuit 1 (which is called the anchor (a)
in contrastive learning parlance). Here, fanin Gk (positive (p) in contrastive learning parlance) has the same label (i.e., belongs
to the same class) as G2, hence the contrastive loss (Eq. 3) constrains z2 and zk to be similar while causing z1 (representation
for G1; called negative (n) instance in contrastive learning parlance) to be dissimilar to both z2 and zk.

transforms zi (i.e., each output of ENC) to predict the proba-
bility of Gi containing a trigger.

IV. EXPERIMENTAL SETUP AND EVALUATION

We now detail the data used for training and evaluation
of GATE-Net and also outline the evaluation procedure.

A. Dataset Description

In order to train GATE-Net to recognize trigger-based HTs,
we required a database of circuits to be embedded with
the triggers we generated. For this purpose, we use the
open-source IP cores from Opencores.org [30]. The cores
are compiled and synthesized to flattenned gate-level netlists
using a standard CMOS cell library [31]. Of all the available
standard cells in the library, we use only the basic set of cells,
comprising of logic gates: AND, OR and NOT and flipflops: D-
Flipflop, D-Flipflop with asynchronous reset and D-Flipflop
with asynchronous set and asynchronous reset. The restriction
to a limited set of cells is done to have structural similarity
with the HT triggers discussed in Section II, thereby, not
making the detection easier. We used IP cores written in
Verilog HDL and Synopsys DC compiler [32] as synthesis
tools. GATE-Net only requires synthesized flattened netlist
Generally, our approach can be applied for netlist synthesis
from any standard cell library and is independent of synthesis
tools and HDL (Verilog/VHDL). The set of IP cores used in
evaluation and their size in terms of number of cells is shown
in Table I. Each IP core is a benign circuit, synthesized and
converted to the adjacency matrix representation and a HT
trigger is inserted at a random insertion point. For each benign

TABLE I: Evaluation dataset: Types of IP cores and total cell
count

No. IP Core description Total Num. cells
1 Antilogarithm function 912
2 Logarithm function 441
3 Cellular automata pseudo random num-

ber generator
931

4 Simple serial peripheral interface (SPI) 968
5 Fixed point arithmetic module 2362
6 Wishbone to LPC bridge 723
7 Simon block cipher 1443
8 Wishbone controlled FM transmission 1445
9 Wishbone to AXI 1355

10 Digital phased lock loop 503
11 I2C slave 908
12 Random number generator 587
13 SPI-3 interface 709
14 Vedic mathermatics 827
15 USB host controller 10781
16 Hight block cipher 4534
17 Context adaptive variable length coding 5407
18 Signed division 4691

circuit, multiple instances of trigger-embedded circuits are
generated with a distinct trigger and at distinct insertion points.
We further divide the dataset for our HT detection experiments
into: a) a dataset consisting of benign circuits embedded with
combinatorial triggers and b) a dataset consisting of benign
circuits embedded with sequential triggers. The procedure
outlined in Section II is used to embed triggers of sizes 15–35
for combinatorial and 3–5 for sequential triggers. The INFs for
both datasets are then extracted. Table II details the distribution
of benign and trigger INFs in each dataset. We retain the
imbalanced distribution of benign and trigger INFs to maintain

TABLE II: Dataset Statistics

Dataset Experiment Type Benign Fanins Trigger Fanins

Comb. Triggers Train 2161 1485
Test 2222 232

Seq. Triggers Train 1145 723
Test 2977 2470

a realistic, challenging classification setting.
We plan to publicly release a larger dataset, comprising

of 58 IP cores, and comprehensive in terms of a) circuit
sizes: the number of cells in synthesized gate-level netlists
ranges from 200 to 200000; and b) application area: arithmetic,
communication, and encryption, among others.

B. Testing Environments

We use the following two environments to test and compare
GATE-Net with existing state of the art (SOTA) approaches:

Random-Shuffle Testing: In this type of testing, we ran-
domly assign INFs to the training and testing sets. This would
imply the possibility of benign INFs from the same circuit
present in both training and testing sets. However, the actual
INFs are NOT identical as each node has a unique INF and
the INF for each node in a circuit is used ONLY once either
in training or testing (never both). By the same reasoning, the
trigger INFs will also be distinct in both the sets, where at
best, the same trigger embedded in a different benign circuit
can be encountered in both the sets.

Extrapolation-Based Testing: We also create a signifi-
cantly more challenging testing scenario to gauge the power of
strict extrapolation of the models considered. Here, we ensure
that INFs in training and testing sets arise from disjoint sets
of circuits. Furthermore, a trigger seen during training is never
encountered during testing (not even embedded in a different
circuit); in particular, triggers of different sizes are employed
for training and test to ensure this. The circuits #1–#5 and
#12–#18 of Table I are used in the training and the rest are
used for testing. The circuits in training are embedded with
combinatorial triggers of sizes 20–35 and sequential triggers
of sizes 4,5 and circuits in testing with combinatorial triggers
of sizes 10,15 and sequential triggers of size 3.

C. Evaluation

To inspect representation learning capability of GATE-Net , we
compare it’s performance on the task of HT detection with
standard SOTA classifiers presented by Kurihara et al. [15]
and Hoque et al. [19]. For this purpose, we use the dataset
comprising of IP cores numbered 1–7 from Table I, each
embedded with 21 combinatorial triggers and 30 sequential
triggers, thereby generating a total of 357 instances of trigger-
embedded circuits (INF statistics in Table III). For each of
these instances, we extract various structural and functional
features presented in [15] and [19], shown in Table IV.

Kurihara et al. [15]: This approach uses 11 structural
features to classify whether a net is a HT net or a normal
net. We have extracted these features for each net in our gate-
level netlists. The exceptions being feature #9, as the output
of the trigger in our representation does not connect to the

TABLE III: Dataset statistics for comparison against state-of-
the-art approaches. Due to the expensive feature engineering
required for Hoque et al. [19] and Kurihara et al. [15], models,
it was intractable to evaluate them on the full dataset (Table II)
and we hence employ a smaller subset for SOTA comparison.

Dataset Experiment Type Benign Fanins Trigger Fanins

Comb. Triggers Train 3138 126
Test 768 29

Seq. Triggers Train 3211 163
Test 788 47

TABLE IV: Structurual and Functional Features used in the
State of the Art approaches

No. Kurihara et al. [15] Hoque et al. [19]
1 No. of immediate fan-in upto 4-

level away from input side of net
No. of immediate fan-in
of net

2 No. of immediate fan-in upto 5-
level away from input side of net

No. of immediate fan-
out of net

3 No. of flipflops upto 4-level away
from input side of net

Cell type driving the net

4 No. of flipflops upto 3-level away
from output side of net

Min. distance from pri-
mary input

5 No. of flipflops upto 4-level away
from output side of net

Min. distance from pri-
mary output

6 No. of 4-level loops on the input
side of net

Static probability

7 No. of 5-level loops on the output
side of net

Signal rate

8 Min. levels to primary input Toggle rate
9 Min. distance to primary output Min. toggle rate
10 Min. levels to nearest flipflop Entropy of the driver

function
11 Min. levels to nearest multiplexer Lowest controllability of

inputs
12–14 – Highest, average and

standard deviation of
controllability of inputs

circuit, and feature #11 because we do not use multiplexers in
our synthesized gate-level netlist.

Hoque et al. [19]: This approach uses 5 structural features
and 9 functional features to classify whether a net is a HT net
or a normal net. The structural features, #1–#4 are extracted
from the gate-level netlist for each net and feature #5 is
not used for the reason discussed above. The functional fea-
tures, #6–#9 are extracted by synthesizing the HT-embedded
circuits in the Xilinx Vivado tool by using the command
report_switching_activity for each net. As only 2-
input logic gates and D-flipflops are used in our approach,
feature #10 is set to 1 for all nets. The controllability-based
features, #11–#14 are not considered because the control value
based identification, derived from boolean functional analysis,
has limitations against HTs with sequential triggers as they
are triggered by an input stream over a period of time [9].

The features, thus extracted, are assigned to each node in the
adjacency matrix representation and the INFs are generated.
Each node in the INFs is then passed on to the classifiers (used
in [15] and [19] respectively). If more than 5% of the nodes in
an INF are classified as trigger nodes, then the INF is detected
as trigger INF.

Evaluation Metrics: We employ standard classification

Fig. 5: Evaluation Metrics.

metrics precision (Prec), recall (Rec), F1 score [33] for eval-
uating model performance. Intuitively, precision penalizes the
models for false positive classifications, i.e., classifying benign
fanins as trigger fanins, while recall represents the proportion
of all trigger fanins correctly identified by the model. The
F1 score (range [0,1]) is the harmonic mean of precision and
recall and a good indication of overall accuracy. In Fig. 5, TP,
FP, FN indicate true-positive (i.e., trigger INF that is correctly
identified), false-positive (benign INF falsely identified as
trigger INF) and false-negative (trigger INF falsely identified
as benign INF) classifications respectively.

V. RESULTS AND DISCUSSION

To evaluate the representation learning capability of GATE-
Net , we conduct a performance comparison on a downstream
task of HT detection for a variety of hardware circuits em-
bedded with combinatorial and sequential triggers. In each
case, we compare GATE-Net with state-of-the-art classification
models, namely Kurihara et al. [15] and Hoque et al. [19].
Each of the aforementioned state-of-the-art baseline HT de-
tection approaches involve extensive feature-engineering and
extract various structural and functional features of the circuit
which are then employed in the HT detection task as described
in section IV-C. Our GATE-Net model on the other hand only
uses the graph structure of each INF (section III) enriched
with cell-types (i.e., all information available directly form
the netlist).

Specifically, we inspect three aspects to verify the effective-
ness of our proposed GATE-Net model:

1) Performance of GATE-Net compared to state-of-the-art
HT detection techniques for combinatorial and sequen-
tial triggers embedded in INFs.

2) Effectiveness of contrastive learning of GATE-
Net evaluated on a large expanded dataset comprising
multiple trigger types and multiple groups of benign
circuits, compared to a variant without contrastive
learning for combinatorial and sequential INFs.

3) Finally, we also characterize the performance of GATE-
Net on an extremely challenging extrapolation setting for
a holistic analysis of performance.

A. Comparison with State of the Art

We characterize the performance of our proposed GATE-
Net architecture relative to state of the art HT detection models
proposed by Kurihara et al. [15] in Table V. The comparison is
performed in the context of detecting combinatorial as well as
sequential triggers embedded in hardware circuits. We notice
that in both cases GATE-Net is able to outperform the model
proposed by Kurihara et al. [15] significantly. Specifically, we
notice that our model outperforms theirs by 61.11% on the
F1 score metric for combinatorial triggers and by 26.32% for

TABLE V: Comparison of GATE-Net with a state of the art
HT detection model presented by Kurihara et al. [15].

Expt. Type Model Precision Recall F1

Combinatorial
GATE-Net 0.95 0.9 0.87

GATE-Net -noCont. 0 0 0
Kurihara et al. [15] 0.83 0.4 0.54

Sequential
GATE-Net 1 0.92 0.96

GATE-Net -noCont. 1 0.5 0.67
Kurihara et al. [15] 0.68 0.87 0.76

TABLE VI: Comparison of GATE-Net with a state of the art
HT detection model presented by Hoque et al. [19]

Expt. Type Model Precision Recall F1

Combinatorial
GATE-Net 0.96 0.9 0.93

GATE-Net -noCont. 0 0 0
Hoque et al. [19] 0.94 0.55 0.7

Sequential
GATE-Net 1 0.89 0.94

GATE-Net -noCont. 0.95 0.79 0.86
Hoque et al. [19] 0.97 0.68 0.8

sequential trigger detection, in both cases yielding significant
performance improvement over the state of the art model. In
the case of combinatorial trigger detection (which from the
results may be inferred to be the harder of the two tasks),
there is a significant deterioration in the recall of the Kurihara
et al. [15] model which is the main reason for performance
degradation which indicates that this model is able to correctly
identify only about 40% of the triggers in the combinatorial
fanin dataset. There is also a drop in the precision of the
Kurihara et al. [15] model for the sequential trigger detection
task which is caused by the model detecting many false
positives and from the table it may be inferred that the model
is only correct 68% of the time where it identifies an INF
as containing a sequential trigger. Such a high false positive
rate may be costly. GATE-Net on the otherhand is able to
achieve very high precision (i.e., low false positive rates) and
recall (i.e., able to identify all the variety of triggers) for both
combinatorial and sequential trigger datasets.

In Table VI, we compare the GATE-Net model with another
state-of-the-art HT detection model proposed by Hoque et
al. [19], once again evaluating all models in the context of
detecting combinatorial and sequential trigger INFs. We once
again observe that GATE-Net is able to outperform the state-
of-the-art model by Hoque et al. [19] on both combinato-
rial and sequential HT deteciton tasks. However, unlike the
Kurihara et al. model, we notice that the model proposed by
Hoque et al. [19] has high precision (i.e., low false positive
rates) in both combinatorial and sequential HT detection cases.
This may be attributed to the fact that the classification model
in this case is actually an ensemble of three classifiers (i.e.,
Random Forest, Gradient Boosting, Naive Bayes) which is
provably superior than the individual Random Forest model
employed by Kurihara et al. [15]. However, we notice that
even in this case, the GATE-Net model outperforms the state
of the art HT detection model by Hoque et al. [19] by 32.86%
for combinatorial HT detection and by 17.5% for sequential
HT detection. Once again the deterioration in performance of

TABLE VII: Effectiveness of Contrastive Learning in GATE-
Net . We notice that GATE-Net outperforms variant without
contrastive learning GATE-Net -noCont. in detection of both
sequential and combinatorial triggers.

Expt. Type Model Precision Recall F1

Combinatorial GATE-Net 0.99 0.98 0.99
GATE-Net -noCont. 0.93 0.72 0.81

Sequential GATE-Net 0.96 0.94 0.95
GATE-Net -noCont. 0.9 0.95 0.92

Hoque et al. [19] may be attributed to its inability to identify
the variety of triggers resulting in the low recall value in both
combinatorial and sequential HT detection contexts.

Finally, we also compared the GATE-Net -noCont. model
which is a variant of the GATE-Net without the supervised
contrastive pretraining phase. We observe some interesting
trends consistent across Table V and Table VI. In both
cases, we notice that the model is unable to recognize ANY
combinatorial triggers. This may be attribured to the drastic
data imbalance between the benign and trigger INFs during
the training context of all models. It is interesting to note
that contrastive learning in addition to allowing the model
to learn better quality representations is also able to perform
effectively in data imbalance contexts which is apparent from
the results in both these tables by comparing performances
of GATE-Net with GATE-Net -noCont. However, we also no-
tice that GATE-Net -noCont. is able to yield a somewhat
improved performance for the sequential HT detection task
although still inferior to GATE-Net . We further investigate
this comparative behavior between GATE-Net and its variant
without contrastive learning in sec. V-B. Note that although
both Table V and Table VI use datasets derived from the
one detailed in Table III, due to the stochasticity in sampling
of benign INFs for very large circuits (i.e., only INFs from
a subset of benign nodes are sampled to make the INF
extraction process tractable), the specific subsets of data may
be slightly different although the overall data characteristics
and experimental settings are identical across the two settings.

B. Effectiveness of Contrastive Learning

In order to test the effect of contrastive learning, we
evaluate the GATE-Net and GATE-Net -noCont. models on
much larger datasets for combinatorial and sequential HT
detection. To simulate data paucity, we use only 40% of the
available data for training and the rest of the data is used
for performance evaluation in this experiment. In Table VII,
we notice that GATE-Net i.e., the model with constrastive
learning (pre-training) outperforms the variant without con-
stastive learning i.e., GATE-Net -noCont. We also notice that
the performance of the variant of GATE-Net without constas-
tive learning deteriorates significantly for the combinatorial
trigger detection task while the performance of GATE-Net with
constrastive learning remains relatively consistent for both the
trigger types, indicating that contrastive learning helps GATE-
Net learn generalizable, robust representations of INFs for HT
detection. We also notice that in the case of combinatorial

TABLE VIII: Effectiveness of GATE-Net for out-of-
distribution generalization compared with GATE-Net -noCont.

Expt. Type Model Precision Recall F1

Combinatorial GATE-Net 0.38 0.67 0.48
GATE-Net -noCont. 0.3 0.66 0.42

Sequential GATE-Net 0.54 0.78 0.64
GATE-Net -noCont. 0.51 0.82 0.63

trigger detection, the variant of GATE-Net without contrastive
learning has low recall which implies that it is unable to
recognize many of the variety of triggers present in the dataset
while GATE-Net (i.e., with constrastive learning) is able to
recall (i.e., correctly identify) 98% of the triggers in the
dataset further showcasing the power of contrastive learning
to enable models to learn highly generalizable representations.
We see that GATE-Net outperforms its variant without con-
trastive learning by 22.22% for combinatorial HT detection
and by 3.26% for the sequential HT detection. Fig. 6a–
6d qualitatively demonstrate the effect supervised contrastive
pretraining has on the GATE-Net model representation thereby
leading to superior performance over GATE-Net -noCont.

C. Extrapolation Performance

We now evaluate the out-of-distribution generalization per-
formance of GATE-Net , without explicitly training GATE-
Net for this challenging experimental setting to understand
out of the box behavior in this context and also to evaluate
the effectiveness of contrastive learning in this context. To
simulate out-of-distribution evaluation, we train our models
only on a subset of the benign circuits and trigger sizes
and evaluate model performance on triggers of different sizes
embedded in completely different benign circuits. We notice
from Table VIII that both GATE-Net and GATE-Net -noCont.
experience significant performance deterioration in the out-
of-distribution extrapolation context. Specifically, the most
significant deterioration occurs in the context of combinatorial
HT detection which has been previously established to be
the harder of the two detection tasks evaluated in this work.
However, we still notice that in both cases, the F1 score
of GATE-Net is higher than the variant without contrastive
learning although the performance difference observed pre-
viously between the two models dwindled in the extrapolation
setting inspected here. Our goal of evaluating GATE-Net in
this challenging extrapolation context is not to display state-
of-the-art performance results but rather to establish a baseline
of performance of an out of the box model (GATE-Net) which
has not been explicitly trained to excel in out-of-distribution
generalization tasks so future efforts may build upon our
pipeline to improve performance.
Results Summary: GATE-Net outperforms all SOTA clas-
sification models compared for HT detection. Hence, our
results demonstrate superior representation learning capacity
of GATE-Net , for HT detection. Overall, we achieve an
average 46.99% performance improvement in F1 score over
the two SOTA baselines for detection of combinatorial triggers
and 21.91% improvement for detecting sequential triggers. We

(a) Epoch 0 (b) Epoch 50 (c) Epoch 100 (d) Epoch 150

Fig. 6: Principal Component Analysis (PCA) reduced 2D embeddings of the representations zi incrementally learnt by GATE-
Net ENC model during contrastive pretraining over the course of 150 epochs. We notice that embeddings of benign INFs (green)
and trigger INFs (red), start from a random projection setup before training at Epoch 0 (a), and are increasingly separated
ultimately leading to the maximally separated representation seen in (d). This illustrates the effect of contrastive learning in the
GATE-Net pipeline. Such explicitly separable embeddings are absent in GATE-Net -noCont. leading to inferior performance.

0 1000 2000 3000 4000 5000 6000

INF Lengths

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175 Benign INF Lengths

Trigger INF Lengths

(a) (b) (c)

Fig. 7: (a) INF length distribution random trigger insertion on synthetic data consisting only of AND,OR,NOT gates and
combinatorial triggers. (b) INF length distribution on real circuit data embedded with comb. triggers with shallow trigger
embedding (c) INF length distribution on real circuit data embedded with seq. triggers with shallow trigger embedding.

also inferred from the results that contrastive learning is very
effective in allowing GATE-Net to learn robust, generalizable
representations even in the context of data paucity. As apparent
from Table. VII, GATE-Net achieves average performance
improvement of 12.74% in F1 score across combinatorial and
sequential HT detection.

Security Analysis: We now evaluate effects of various trigger
embedding procedures and their effect on the degree of diffi-
culty in HT detection. One approach is to randomly embed
triggers, wherein a trigger with k inputs has k randomly
chosen circuit nets connected to it. An experiment on a simple
dataset of circuits (consisting only of AND,OR and NOT gates)
with randomly embedded triggers reveals interesting insights
about the resulting INFs. In Fig. 7a, We observe a noticeable
difference in the models of INF length distributions for both
benign and trigger INFs. Also, INF lengths of size 2500
and above may be safely be regarded as benign (a trivial
but effective detection strategy in this case). To avoid such
biases in INF length, we assume a sophisticated attacker who
has control over the trigger embedding process and adopts a
shallow embedding strategy wherein the trigger is embedded
at most k-hops (k = 2 in our case) away from circuit inputs.
This strategy alleviates discrepancy in INF length distributions
between trigger and benign INFs, see Fig. 7b and Fig. 7c
which both show much better agreement between INF length
densities between trigger and benign INFs for combinatorial
and sequential triggers respectively. Triggers so embedded are
harder to detect with trivial features like INF lengths.

VI. CONCLUSION

In this paper we proposed GATE-Net , a novel machine
learning model based on supervised contrastive pre-training
and graph convolutional networks for HT detection employing
only data available from the circuit netlist. Through rigorous
experimentation and comparison with several state-of-the-art
baseline models we show that GATE-Net achieves significantly
better results for HT detection over a wide variety of cir-
cuit types with randomly embedded combinatorial (46.99%
performance improvement over baselines) and sequential trig-
gers (21.91% performance improvement over baselines). We
also extensively evaluate the effect of supervised contrastive
learning in GATE-Net and compare it with a variant of
GATE-Net without contrastive learning and show qualitatively
and quantitatively that supervised contrastive learning helps
GATE-Net yield superior performance for HT detection. We
also proposed and detailed a methodology for generating and
representing circuits embedded with HT triggers and have
publicly released data and code for GATE-Net , trigger gener-
ation and embedding. We also performed analysis of out-of-
distribution generalization performance of GATE-Net to serve
as an effective baseline for future HT detection endeavors.
Finally, we performed a security analysis and detail advantages
of a shallow trigger embedding procedure for better trigger
masking in the circuits. In the future, we wish to extend our
current GATE-Net approach and characterize its performance
in the context of adversarial trigger generation models.
Acknowledgements: This work is supported in part by the
National Science Foundation via grant DGE-1545362.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE design & test of computers, vol. 27,
no. 1, 2010.

[2] Z. Huang et al., “A survey on machine learning against hardware trojan
attacks: Recent advances and challenges,” IEEE Access, vol. 8, pp.
10 796–10 826, 2020.

[3] H. Li et al., “A survey of hardware trojan detection, diagnosis and
prevention,” in IEEE CAD/Graphics, 2015, pp. 173–180.

[4] D. Agrawal et al., “Trojan detection using ic fingerprinting,” in IEEE
SP’07, 2007, pp. 296–310.

[5] R. S. Chakraborty et al., “Mero: A statistical approach for hardware
trojan detection,” in Springer CHES, 2009, pp. 396–410.

[6] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan:
Threats and emerging solutions,” in 2009 IEEE HLDVT, 2009, pp. 166–
171.

[7] F. Courbon et al., “A high efficiency hardware trojan detection technique
based on fast sem imaging,” in DATE, 2015, pp. 788–793.

[8] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” arXiv preprint arXiv:2004.11362, 2020.

[9] A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: identifica-
tion of stealthy malicious logic using boolean functional analysis,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 697–708.

[10] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “Veritrust: Verification
for hardware trust,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 7, pp. 1148–1161, 2015.

[11] S. Yao, X. Chen, J. Zhang, Q. Liu, J. Wang, Q. Xu, Y. Wang, and
H. Yang, “Fastrust: Feature analysis for third-party ip trust verification,”
in 2015 IEEE International Test Conference (ITC). IEEE, 2015, pp.
1–10.

[12] X. Chen, Q. Liu, S. Yao, J. Wang, Q. Xu, Y. Wang, Y. Liu, and H. Yang,
“Hardware trojan detection in third-party digital intellectual property
cores by multilevel feature analysis,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 7, pp.
1370–1383, 2017.

[13] K. Hasegawa et al., “Hardware trojans classification for gate-level
netlists based on machine learning,” in IEEE IOLTS, 2016.

[14] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extrac-
tion at gate-level netlists and its application to hardware-trojan detection
using random forest classifier,” in IEEE ISCAS, 2017, pp. 1–4.

[15] T. Kurihara, K. Hasegawa, and N. Togawa, “Evaluation on hardware-
trojan detection at gate-level ip cores utilizing machine learning meth-
ods,” in 2020 IEEE 26th International Symposium on On-Line Testing
and Robust System Design (IOLTS), 2020, pp. 1–4.

[16] T. Han et al., “Hardware trojans detection at register transfer level based
on machine learning,” in IEEE ISCAS, 2019, pp. 1–5.

[17] M. Oya et al., “A score-based classification method for identifying
hardware-trojans at gate-level netlists,” in IEEE DATE, 2015.

[18] H. Shen, H. Tan, H. Li, F. Zhang, and X. Li, “Lmdet: A “naturalness”
statistical method for hardware trojan detection,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 26, no. 4, pp. 720–732,
2017.

[19] T. Hoque, J. Cruz, P. Chakraborty, and S. Bhunia, “Hardware ip
trust validation: Learn (the untrustworthy), and verify,” in 2018 IEEE
International Test Conference (ITC), 2018, pp. 1–10.

[20] R. Yasaei, S.-Y. Yu, and M. A. Al Faruque, “Gnn4tj: Graph neural
networks for hardware trojan detection at register transfer level,” in 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2021, pp. 1504–1509.

[21] H. Salmani and M. Tehranipoor, “Trojan benchmarks,”
https://www.trust-hub.org/benchmarks/trojan, accessed: 2019-06-28.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[23] Z. Wu et al., “A comprehensive survey on graph neural networks,” IEEE
Transactions on Neural Networks and Learning Systems, 2020.

[24] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[25] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

[26] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon,
“A survey on contrastive self-supervised learning,” Technologies, vol. 9,
no. 1, p. 2, 2021.

[27] J. Vosatka, “Introduction to hardware trojans,” in The Hardware Trojan
War. Springer, 2018, pp. 15–51.

[28] Q. Liu, P. Zhao, and F. Chen, “A hardware trojan detection method based
on structural features of trojan and host circuits,” IEEE Access, vol. 7,
pp. 44 632–44 644, 2019.

[29] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, 2018.

[30] D. Lampret. (2019) Opencores. [Online]. Available: https://opencores.
org/

[31] J. D. Djigbenou and D. S. Ha, “Development and distribution of tsmc
0.25\mu m standard cmos library cells,” in IEEE MSE, 2007, pp. 27–28.

[32] Synopsys. Design compiler. [Online]. Available: https://www.synopsys.
com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html

[33] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” JMLR,
vol. 12, pp. 2825–2830, 2011.

