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1. Introduction

This paper focuses on algorithms for mining nonhomogeneous data involving
attribute-valued descriptors over objects from different domains and connected
through a relationship. Consider, for instance, the schematic in Figure 1 (top)
that reveals many-many relationships between companies and countries. Each
company is characterized by a vector indicating stock values, profit margins,
earnings ratios, and other financial indicators. Similarly, countries are charac-
terized by vectors in a different space, denoting budget deficits, inflation ratio,
unemployment rate, etc. Each company is also related to the countries that it
conducts business in.

Since Figure 1 (top) has two different vector spaces and one relation, there
can be diverse objectives for clustering such a nonhomogeneous dataset. We
study two broad objectives here, which correspond to what we term dependent
and disparate clustering. In Figure 1 (bottom left), we seek to cluster com-
panies (by their financial indicators) and cluster countries (by their economic
indicators) such that the relationships between individual entities are preserved
at the cluster level. In other words, companies within a cluster tend to do busi-
ness exclusively with countries in a corresponding cluster. In Figure 1 (bottom
right), we identify clusters of companies and clusters of countries where the
original relationships between companies and countries are actually violated at
the cluster level. In other words, clusters in the company space tend to do busi-
ness with (almost) all clusters in the country space. These two conflicting goals
of clustering are meant to reflect two competing hypotheses about companies
and their economic performances:

1. Dependent clustering: Fortunes/troubles of individual companies are
intertwined with the fortunes and woes of the countries they do business
in. This school of thought would support the contention that General
Motors’ (GM) financial troubles began with the collapse of the mortgage
industry in the United States.

2. Disparate clustering: Diversification helps prepare companies for bad
economic times, and hence performance of companies may not necessarily
be tied to (and is, hence, independent of) country indicators. An oft cited
example here is that Google is well positioned to weather economic storms
because its advertisers are broad based.

Observe that in either case, the clusters are still local in their respective
attribute spaces, i.e., points within a cluster are similar whereas points across
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Figure 1: Clustering nonhomogeneous data with two different crite-
ria. Here both domains are clustered into three clusters each based
on their attribute vectors. (left) Dependent clustering. (right) Dis-
parate clustering.

clusters are dissimilar. Without advocating any point of view, we posit that it
is important to design clustering algorithms that can support both the above
analysis objectives. The need for clustering nonhomogeneous data with such
conflicting criteria arises in many more contexts, including bioinformatics (stud-
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ied here), hypertext modeling, social networks [1], recommender systems, pale-
ontology, and epidemiology.

The chief contributions of this paper are:

• An integrated framework for clustering that unifies dependent clustering
and disparate clustering for nonhomogeneous datasets. Unlike prior work
that views constraints as Boolean criteria, we present a formulation that
allows constraints to be satisfied or violated in a smooth manner.

• While the idea of dependent clustering through a relation has been stud-
ied previously [2], the idea of disparate clustering where the objects are
of different spaces has not been studied before. We propose this prob-
lem here and, moreover, show how we can view dependent clustering and
disparate clustering as two sides of the same coin. We propose an inte-
grated objective function whose minimization or maximization leads us
to disparate or dependent clustering (respectively).

• The idea of disparate clustering through a relation is closely connected to
the current topic of mining multiple, alternative, clusterings [3, 4]. Alter-
native clusterings are to be expected in high dimensional datasets where
different explanations of the data may involve using distinct subspaces of
the data. For instance, Figure 1 (right) can be viewed as finding alterna-
tive clusterings for different types of objects (companies and countries).
The clusterings of (i) the companies and (ii) the countries are alterna-
tive in the sense that we cannot use the relational information to recover
one from the other and hence they are alternatives with respect to the
relational information. To our knowledge, the literature on alternative
clustering has not explored this scenario of alternative clustering of ob-
jects of different types.

• In addition, a novel approach for studying the intermediate clusterings
present along the transition between clusterings, clustering via tracking a
continuous homotopy between alternates, is presented and examples are
given to show the value of this approach to mining multiple clusterings
from a single dataset.

This paper extends [5] by including the additional homotopy research (in
Section 5.2) and related experimental findings. This work is the first application
of probability-one homotopy methods to clustering, and provides a mathemat-
ically rigorous and computationally efficient way to generate and explore mul-
tiple alternate clusterings. Besides being more computationally efficient than
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a standard parameter sweep, the homotopy method provides insight into the
nature of the transition between alternate clusterings.

2. Contingency table clustering

As stated in the introduction, we require our clusters to have two key properties.
First, the individual clusters must be local in the respective attribute spaces.
Second, when compared across relationships, the clusters must be either highly
dependent on each other, or highly independent of each other. We present a
uniform framework based on contingency tables that works for both dependent
and disparate clusterings.

4 0 0

0 6 0

0 0 4

2 1 1

2 1 2

1 1 3

Table 1: Contingency tables for (left) dependent clustering and
(right) disparate clustering for the scenarios from Figure 1.

Table 1 presents contingency tables for the two clusterings from Figure 1.
The tables are 3 × 3, where the rows denote the clusters from the left domain
(here, company clusters) and the columns denote the clusters from the right
domain (here, country clusters). The cells indicate the number of entries from
the corresponding clusters that are related in the original dataset. For instance,
cell (1,1) of Table 1 (left) indicates that there are four relationships between
entities in Cluster 1 of the “companies” dataset and entities in Cluster 1 of
the “countries” dataset. Observe that the actual sizes of the clusters are not
reflected in this matrix, just the number of relationships. Contrast this cell
with the corresponding entry of the disparate case, which shows the smaller
number of relationships (viz. two) obtained from a different clustering.

Thus the ideal dependent case is best modeled by a diagonal or permutation
contingency matrix. In practice, we can aim to achieve a diagonally dominant
matrix. Similarly, the disparate case is modeled by a uniform (or near uniform)
distribution over all the contingency table entries. It is important to note,
however, that we do not have direct control over the contingency table entries.
These entries are computed from the clusters, which are in turn defined by the
prototype vectors. So the only free variables are the prototype vectors p1, p2 but
the optimization criteria must be stated in terms of the resulting contingency
tables. Mathematically,
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F (c(q(d1, p1), q(d2, p2), r)) (1)

is minimized over (p1, p2) for disparate clustering or maximized for dependent
clustering, where F is the objective function that evaluates the contingency
matrix for either a dependent or a disparate clustering (more on this later), q
is the clustering (assignment) function that finds (separate) clusterings of the
two datasets using prototypes, c brings the clusterings together and prepares
the contingency table with respect to the underlying relation r, d1 and d2 are
datasets, and p1 and p2 are prototypes.

3. Formalisms

Let X and Y be two datasets, where X = {xs | s = 1, . . ., nx} is a set of
(real-valued) vectors, each of dimension lx, i.e., xs ∈ IR lx (likewise, Y = {yt,
t = 1, . . ., ny}, yt ∈ IR ly). The many-to-many relationships between X and
Y are represented by an nx × ny binary matrix B, where B(s, t) = 1 if xs is
related to yt, else B(s, t) = 0. Let C(x) and C(y) be the cluster indices, i.e.,
indicator random variables, corresponding to the datasets X and Y and let kx
and ky be the corresponding number of clusters. Thus, C(x) takes values in {1,
. . ., kx} and C(y) takes values in {1, . . ., ky}.

3.1. Assigning data vectors to clusters

Let mi,X be the prototype vector for cluster i in dataset X (similarly mj,Y).
(These are precisely the quantities we wish to estimate/optimize for, but as-

sume they are given in this section). Let v
(xs)
i (likewise v

(yt)
j ) be the cluster

membership indicator variables, i.e., the probability that data sample xs (yt) is

assigned to cluster i (j) in dataset X (Y). Thus,
∑kx

i=1 v
(xs)
i =

∑ky
j=1 v

(yt)
j = 1.

The traditional K-means hard assignment is given by

v
(xs)
i =

{

1, ‖xs −mi,X‖ ≤ ‖xs −mi′,X‖, i
′ = 1, . . . , kx,

0, otherwise.

(Likewise for v
(yt)
j .) Ideally, we would like a continuous function that tracks

these hard assignments to a high degree of accuracy. A standard approach is to
use a Gaussian kernel to smooth out the cluster assignment probabilities. Here,
we present a novel smoothing formulation that provides tunable guarantees on
its quality of approximation and for which the Gaussian kernel is a special case.
First we define
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γ(i,i′)(xs) =
‖xs −mi′,X ‖

2 − ‖xs −mi,X ‖
2

D
, 1 ≤ i, i′ ≤ kx,

where

D = max
1≤s,s′≤nx

‖xs − xs′‖
2, 1 ≤ s, s′ ≤ nx

is the pointset diameter. We now use argmini′ γ(i,i′)(xs) for cluster assignments
so the goal is to track mini′ γi,i′(xs) with high accuracy. The approach we take
is to use the Kreisselmeier-Steinhauser envelope function [6] given by

Ei(xs) =
−1

κ
ln

[

kx
∑

i′=1

exp(−κγ(i,i′)(xs))

]

,

where κ ≫ 0. The E function is a smooth function that is infinitely differen-
tiable (second, third, . . . derivatives exist). Using this the cluster membership
indicators are redefined as

v
(xs)
i =

exp[κEi(xs)]
∑kx

i′=1 exp[κEi′(xs)]

=
exp(− κ

D
‖xs −mi,X‖

2)
∑kx

i′=1 exp (−
κ
D
‖xs −mi′,X ‖2)

.

(2)

An analogous equation holds for v
(yt)
j . The astute reader would notice that

this is really the Gaussian kernel approximation with κ/D being the width of
the kernel. However, this novel derivation helps tease out how the width must
be set in order to achieve a certain quality of approximation. Notice that D
is completely determined by the data but κ is a user-settable parameter, and
precisely what we can tune.

3.2. Preparing contingency tables

Preparing the kx × ky contingency table (to capture the relationships between
entries in clusters across X and Y) is now straightforward. We simply iter-
ate over every combination of data entities from X and Y, determine whether
they have a relationship, and suitably increment the appropriate entry in the
contingency table

wij =

nx
∑

s=1

ny
∑

t=1

B(s, t)v
(xs)
i v

(yt)
j . (3)

We also define



398 D.R. Easterling et al

wi· =

ky
∑

j=1

wij , w·j =

kx
∑

i=1

wij,

where wi· and w·j are the row-wise and column-wise counts of the cells of the
contingency table respectively.

We will find it useful to define the row-wise random variables αi, i =
1, . . . , kx and and column-wise random variables βj , j = 1, . . . , ky with prob-
ability distributions

p(αi = j) = p(C(y) = j | C(x) = i) =
wij

wi·
, (4)

p(βj = i) = p(C(x) = i | C(y) = j) =
wij

w·j
. (5)

The row-wise distributions represent the conditional distributions of the
clusters in dataset X given the clusters in Y; the column wise distributions are
also interpreted analogously.

3.3. Evaluating contingency tables

Now that we have a contingency table, we must evaluate it to see if it reflects a
dependent or disparate set of clusterings (as the requirement may be). Ideally,
we would like one criterion that when minimized leads to a disparate clustering
and when maximized leads to a dependent clustering.

For this purpose, we compare the row-wise and column-wise distributions
from the contingency table entries to the uniform distribution U(·). (In the
example from Table 1, there are three row-wise distributions and three column-
wise distributions.) For dependent clusters, the row-wise and column-wise dis-
tributions must be far from uniform, whereas for disparate clusters, they must
be close to uniform. Identify the probability density functions for the random
variables αi and βj with αi and βj, respectively, in the KL-divergences below.
We use KL-divergences to define our unified objective function

F̂ =
1

kx

kx
∑

i=1

DKL

(

αi

∥

∥

∥

∥

U

(

1

ky

))

+
1

ky

ky
∑

j=1

DKL

(

βj

∥

∥

∥

∥

U

(

1

kx

))

,

(6)

where the KL-divergence between distributions p1(x) and p2(x) over the sample
space X is given by
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DKL[p1‖p2] =
∑

x∈X

p1(x) log
p1(x)

p2(x)
.

DKL[p1‖p2] measures the inefficiency of assuming that the distribution is p2
when the true distribution is actually p1.

Note that the row-wise distributions take values over the columns 1, . . . , ky
and the column-wise distributions take values over the rows 1, . . . , kx. Hence
the reference distribution for row-wise variables is over the columns, and vice
versa. Also, observe that the row-wise and column-wise KL-divergences are
averaged to form F̂ . This is to mitigate the effect of lopsided contingency
tables (kx ≫ ky or ky ≫ kx) wherein it is possible to optimize F̂ by focusing
on the “longer” dimension without really ensuring that the other dimension’s
projections are close to uniform.

Finally observe that the KL-divergence of any distribution with respect
to the uniform distribution is proportional to the negative entropy (−H) of
the distribution. Thus we are essentially aiming to minimize or maximize (for
dependent or independent clusters) the entropy of the cluster conditional dis-
tributions between pairs of two datasets.

4. Algorithms

Now we are ready to formally present our data mining algorithms as optimiza-
tion over the space of prototypes.

4.1. Disparate clustering

Here the goal is to minimize F̂ , a nonlinear function of mi,X and mj,Y . For
this purpose, we adopt an augmented Lagrangian formulation with a quasi-
Newton trust region algorithm. We require a flexible formulation with equality
constraints (i.e., that mean prototypes lie on the unit hypersphere) and bound
constraints (i.e., that the prototypes are bounded by the max and min (com-
ponentwise) of the data, otherwise the optimization problem has no solution).
The LANCELOT software package [7] provides just such an implementation.

For ease of description, we “package” all the mean prototype vectors for
clusters from both datasets (there are η = kx + ky of them) into a single vector
v of length t. The problem to solve is then

min F̂(ν) subject to hi(ν) = 0, i = 1, . . . , η,

Lj ≤ νj ≤ Uj, j = 1, . . . , t,
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where ν is a t-dimensional vector and F̂ , hi are real-valued functions contin-
uously differentiable in a neighborhood of the box [L, U ]. Here the hi ensure
that the mean prototypes lie on the unit hypersphere (i.e., they are of the form
h1 = ‖m1,X ‖ − 1, h2 = ‖m2,X ‖ − 1, . . ., hη = ‖m(kx+ky),Y‖ − 1). The bound
constraints are uniformly set to [−1, 1]. The augmented Lagrangian L is defined
by

L(ν, µ, ϕ) = F̂(ν) +

η
∑

i=1

(

µihi(ν) + ϕhi(ν)
2
)

, (7)

where the µi are Lagrange multipliers and ϕ > 0 is a penalty parameter. The
augmented Lagrangian method (implemented in LANCELOT) to solve the con-
strained optimization problem above is given in OptPrototypes.

In Step 1 of OptPrototypes, we initialize the prototypes using a K-means
algorithm (i.e., one which separately finds clusters in each dataset without coor-
dination), package them into the vector v, and use this vector as starting points
for optimization. For each iteration of the augmented Lagrangian method, we
require access to F̂ and ∇F̂ which we obtain by invoking Algorithm Problem-
Setup.

This routine goes step-by-step through the framework developed in earlier
sections to link the prototypes to the objective function. There are no pa-
rameters in these stages except for κ which controls the accuracy of the KS
approximations. It is chosen so that the KS approximation error is commen-
surate with the optimization convergence tolerance. Gradients (needed by the
trust region algorithm) are mathematically straightforward but tedious, so are
not explicitly given here (see [8]).

Algorithm 1 OptPrototypes

1. Choose initial values ν(0) (e.g., via a K-means algorithm), µ(0), set
k := 0, and fix ϕ > 0.
2. For fixed µ(k), update ν(k) to ν(k+1) by using one step of a quasi-
Newton trust region algorithm for minimizing L(ν, µ(k), ϕ) subject to
the constraints on ν. Call ProblemSetup with ν as needed to obtain F
and ∇F .
3. Update µ by µ(k+1)i = µ(k)i + 2ϕhi(v(k)) for i = 1, . . . , η.

4. If (ν(k), µ(k)) has converged, stop; else, set k := k + 1 and go to (2).

5. Return ν.
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Algorithm 2 ProblemSetup

1. Unpackage ν into values for mean prototype vectors.
2. Use (2) (and its analog) to compute vxs

i and vytj .

3. Use (3) to obtain contingency table counts wij.
4. Use (4) and (5) to define r.v.s αi and βj .

5. Use (6) to compute F̂ and ∇F̂ (see [8]).

5. Return F̂ ,∇F̂ .

Modulo the time complexity of K-means (which is used for initializing the
prototypes), the per-iteration complexity of the various stages of our algorithm
can be given as

Step Time Complexity

Assigning vectors to clusters O(nxlxkx + nylyky)
Preparing contingency tables O(kxkynxny) (näıve)

O(kxky|β|) (replicated)
Evaluating contingency tables O(kykx)
Optimization O((η + 1)t2)

First, observe that this is a continuous, rather than discrete, optimization
algorithm, and hence the overall time complexity depends on the number of
iterations, which is an unknown function of the requested numerical accuracy.
The step of assigning vectors to clusters takes place independently in the two
datasets, so the time complexity has two components. For each vector, we
compare it to each mean prototype, and an inner loop over the dimensionality
of the vectors gives O(nxlxkx + nylyky). The straightforward way to prepare
contingency tables as suggested by (3) gives rise to a costly computation, since
for each cell of the contingency table (there are kxky of them), we will expend
O(nxny) computations. In [8] we show how we can reduce this by an order of
magnitude using a method of ‘replicating’ vectors which helps us treat the rela-
tionship matrix β as if it were one-to-one. In this case, the per-cell complexity
will simply be a linear function of the nonzero entries in β, i.e., |β|. Evaluat-
ing the contingency tables requires us to calculate KL-divergences which are
dependent on the sample space over which the distributions are compared and
the number of such comparisons. There are two terms, one for row-wise distri-
butions, and one for column-wise distributions. Finally, the time complexity of
the optimization is O((η +1)t2) per iteration, and the space complexity is also
O((η+1)t2), mostly for storage of Hessian matrix approximations of F̂ and hi.
Note that t = kxlx + kyly. In practice, to avoid sensitivity to local minima, we
perform several random restarts of our approach, with different initializations
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of the prototypes.

4.2. Dependent clustering

This proceeds exactly as above except the goal now is to min−F̂ (i.e., to
maximize F̂). Simply replacing F̂ with −F̂ in the above algorithm conducts
dependent clustering. For ease of description later, we henceforth refer to F̂ as
F̂ i (for independent) and to −F̂ as F̂d (for dependent).

1 0 0

0 1 0

0 0 14

1.5 1.5 1.5

1.5 1.5 1.5

1.5 1.5 1.5

Table 2: Degenerate contingency tables for (left) dependent clusters
and (right) disparate clusters. These are bad solutions to be avoided
because the clusters in (a) are highly imbalanced and (b) is obtained
by trivially assigning all points to all clusters.

4.3. Regularization

Degenerate situations can arise as shown in Table 2. In the dependent case, we
might obtain a diagonal contingency table but with imbalanced cluster sizes.
In the independent case, the data points are assigned with equal probability to
every cluster, resulting in a trivial solution for ensuring that the contingency
table resembles a uniform distribution. See [8] for how to add additional terms
in the objective function to alleviate both these issues.

4.4. How Many Clusters?

Selecting the number of clusters here has a direct mapping to the sufficient
statistics of contingency tables necessary to capture differences between distri-
butions. We have used the minimum discrimination information (MDI) princi-
ple (discussed later) for model selection. Since choosing the number of clusters
is a research issue all unto itself, this is not pursued further here.
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5. Experiments

We evaluate our approach using both synthetic and real datasets. The questions
answered through the experiments in this section are:

1. Can we realize classical constrained clustering and alternative clustering
scenarios (i.e., over a single dataset) using our framework? (Section 5.1)

2. Can we realize the same classical constrained clustering scenarios using
the alternative homotopy framework? (Section 5.2)

3. How much does our emphasis on clustering relations compromise locality
of clusters in the respective attribute spaces? (Section 5.4)

4. How does our approach (of defining an integrated objective function and
locally minimizing it) scale? (Section 5.4)

5. As the number of clusters increases, does it become easier or more difficult
to achieve dependent and disparate clusterings? (Section 5.4)

6. Can we pose integrated dependent and disparate clustering formulations
over nonhomogeneous data involving multiple datasets and relations? (Section
5.5)

7. In mining nonhomogeneous datasets with multiple criteria, what is the
effect of varying the emphasis of different criteria on the clustering results?
(Sections 5.2 and 5.5)

5.1. Constrained clustering

In constrained clustering, we are given a single dataset D with instance level
constraints such as must-link and must-not-link constraints [9, 10]. We can
model such problems in our relational context as shown in Figure 2 (a), (b),
and (c). We create two copies of D into D1 and D2. In the case with only
must-link (ML) constraints (Figure 2 (a)), such as between x1 and x3, we
create a relation between the entries: x1 of D1 and x3 of D2, and between
entries: x3 of D1 and x1 of D2. In addition we include relations between the
same instances in D1 and D2. Applying the dependent clustering criterion F̂d

on this dataset will realize the constrained clustering scenario. Conversely, as
shown in Figure 2 (b), for must-not-link (MNL) constraints we would create
relations between the entries that should not be brought together, and use F̂ i

as the optimization criterion. In Figure 2 (a), the relations would force the
clusterings to be dependent and as a result, either clustering would respect the
ML constraints. In Figure 2 (b), the Fi objective will force the clusterings to
violate the relations (which are really MNL constraints).

Going further, we can combine the above modeling approaches in Figure 2
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Figure 2: Realizing classical single-dataset clustering scenarios us-
ing our framework. (a) Clustering with must-link constraints. (b)
Clustering with must-not-link constraints. (c) Clustering with both
must-link and must-not-link constraints. (d) Finding alternative
clusterings.

(c) which has both ML and MNL constraints. For this scenario, the optimiza-
tion criterion is essentially a convex combination of both F̂d and F̂ i. As we
vary α smoothly from 0 to 1, we increase our emphasis from satisfying the ML
constraints to satisfying the MNL constraints. Here we set α to 0.5 (and ex-
plore other settings in future sections). We compare our constrained clustering
framework with simple unconstrained K-means and two constrained K-means
algorithms (MPCK-Means and PCK-Means) from [13]. Overall, the number
of constraint violations from our approach (Figure 3 (a)) is worse than that of
either MPCK-Means and PCK-Means, except for a small number of clusters.
This is to be expected since our method does not take a strict (Boolean) view
of constraint satisfactions. Conversely, the objective function in our approach
is the best possible value (Figure 3 (b)) when compared with the solutions ob-
tained by the other three algorithms. Finally, as shown in Figure 3 (c), the
normalized mutual information score (between the cluster assignments and the
class labels) is best for our approach compared to the other three algorithms.
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(a)

(b)

(c)

Figure 3: Comparison of our approach with unconstrained K-means
and two other constrained clustering formulations. We cluster the
Iris dataset with randomly generated 100 ML and 100 MNL con-
straints. Results are averaged over 20 runs each. (a) number of
constraints violated. (b) Objective function. (c) Normalized mutual
information.

This shows that taking a soft view of constraints does not compromise the
locality of the mined clusters.

5.2. Homotopy tracking

In this section, we consider the homotopy tracking method of [11]. Homotopy
methods are systematic approaches to characterize solution sets by smoothly
tracking solutions from one formulation to another (in this case, from an uncon-
strained formulation to a constrained formulation). This can allow the effect
of changing λ on the quality and nature of the solutions to be mathematically
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characterized. Smoothly tracking solutions as λ varies provides a holistic under-
standing of the interplay between the algorithm and a dataset. The resulting
tradeoff curve can yield information about the nature of the problem and the
probability of improvement offered by constraints.

For the purposes of this section, let superscripts denote vector indices and
subscripts denote components of vectors and scalar indices unless otherwise
indicated. Let all norms be 2-norms unless otherwise indicated and let all
distances be Euclidean distances. Let IR n denote n-dimensional real Euclidean
space and let IR n×m be the set of real n × m matrices. Let the ith row of a
matrix A ∈ IRn×m be denoted by Ai· and the jth column by A·j. Finally, for
a vector x ∈ IRn, x > 0 means all xi > 0, x >

= 0 means all xi >
= 0, and x ≥ 0

means x >
= 0 but x 6= 0.

Given a set X̂ = {xi | xi ∈ IRd, i = 1, 2, . . ., k} of k points (cluster
representatives) in d dimensions, let X = vec

(

x1, x2, . . ., xk
)

∈ IRkd. Given a

set Ŷ = {yi | yi ∈ IRd, i = 1, 2, . . ., n} of n data points in d dimensions, let
Y = vec

(

y1, y2, . . . , yn
)

∈ IRnd. Represent a constraint by the vector c = (a,

b, z, w) ∈ IR2d+2 of two data points a, b ∈ Ŷ , an identifier z = ±1, and a
degree-of-belief weight IR ∋ w > 0, where an identifier of z = 1 means that a
and b are bound by a must-link constraint (i.e., must be in the same cluster)
and an identifier of z = −1 means that a and b are bound by a cannot-link
constraint (can not be in the same cluster). Given a set Ĉ = {ci | ci ∈ IR2d+2,
i = 1, 2, . . ., q} of q constraints, let C = vec

(

c1, c2, . . . , cq
)

∈ IRq(2d+2).

For a data point y ∈ Ŷ and two cluster prototypes xi, xj define the com-
parator function DH : IRd× IRd× IRd → IR by

DH(xi, xj , y) =
(

max
{

0, ‖xi − y‖2 − ‖xj − y‖2
})4

.

Note that DH is three times continuously differentiable, DH
>
= 0, andDH(xi, xj ,

y) > 0 if and only if the distance between y and xi is larger than the distance
between y and xj.

Given a, b ∈ Ŷ , let the must-link function

Fm : IRd × IRd × IRkd → IR

be defined by

Fm(a, b,X) =
k
∏

i=1





k
∑

j=1,j 6=i

DH(xi, xj , a) +DH(xi, xj , b)





and let the cannot-link function Fc : IR
d× IRd× IRkd → IR be defined by

Fc(a, b,X) =
k

∑

i=1





k
∏

j=1,j 6=i

DH(xj , xi, a)DH(xj , xi, b)



 .
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Then the following observations are easily verified.

Observation 1. Fm and Fc are nonnegative and three times continuously differ-
entiable.

Observation 2. For any must-link constraint c = (a, b, 1, w) ∈ Ĉ, the must-link
function Fm(a, b,X) = 0 if and only if constraint c is satisfied.

Observation 3. For any cannot-link constraint c = (a, b, −1, w) ∈ Ĉ, the
cannot-link function Fc(a, b,X) = 0 if and only if constraint c is satisfied.

Observation 4. The penalty function

F (C,X) =
∑

{i:zi=1}

wiFm(ai, bi,X)

+
∑

{i:zi=−1}

wiFc(a
i, bi,X)

is zero if and only if all the constraints in Ĉ are satisfied.

This penalty function is not infallible; degenerate solutions are still prob-
lematic, as they can cause a zero in the penalty function, and the homotopy
map also needs to be bounded on the solution curve.

Consider again the bounding constraint. Instead of forcing each prototype
to exist on the unit hypersphere as was done previously, a straightforward con-
cave function Ψ : IRkd → IR to achieve bounding is Ψ(X) = B−

∑n
i=1 ‖x

i‖2 >
= 0,

where B ∈ IR is a given large constant. Second, to prevent the degenerate con-
dition noted above, a set of constraints gi : IR

kd → IR can be constructed as
gi(X) = ǫg − ‖xi1 − xi2‖2 <

= 0, where 1 <
= i <

=

(

k
2

)

, xi1 , xi2 ∈ X̂ are different
cluster representatives and ǫg > 0 is a small constant. Note that these con-
straints are differentiable everywhere, and satisfy the reverse convex constraint
qualification at X if Ψ(X ) > 0 is inactive. If the active constraints at X sat-
isfy a constraint qualification (e.g., Arrow-Hurwicz-Uzawa), then the resulting
optimization problem

min
X

F (C,X)

subject to −Ψ(X) <
= 0,

gi(X) <
= 0, 1 <

= i <
=

(

k

2

)

(8)

satisfies the Karush-Kuhn-Tucker (KKT) necessary conditions and may be con-
sidered as a potential minimum at X .

Let E be redefined to fit this formulation as
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E(X) =
1

κ
ln







(k
2
)

∑

i=1

exp(−κgi(X))






.

Let gmax(X) = max
1≤i≤(k

2
) gi(X) and note that

gmax(X) <
= E(X) <

= gmax(X) +
ln(k(k − 1)/2)

κ
,

which means that if E(X) <
= 0 then gi(X) <

= 0 for all i. Thus a reasonable
approximation for (8) utilizing E to reduce the number of inequality constraints
can be defined by

min
X

F (C,X)

subject to −Ψ(X) <
= 0,

E(X) <
= 0.

(9)

Let Φ̂ : IR× IR −→ IR be the continuous positively oriented nonlinear com-
plimentarity function

Φ̂(a, b) = −|a− b|3 + a3 + b3.

Let Φ : IR× IR×[0, 1)× (0,∞) −→ IR be the λ-dependent approximation of Φ̂

Φ(a, b, λ, h) = −|a− b|3 + a3 + b3 − (1− λ)h.

Note that Φ → Φ̂ as λ → 1. Let

K̂(X) =

|Ŷ |
∑

i=1

k
∑k

j=1
1

‖yi−xj‖2

approximate the K-means criterion (to allow for continuous derivatives) and
note that the discontinuities in this formulation are removable. The Lagrangian
function associated with (9) is

L̃(X, µ̃, ν̃) = F (C,X) − µ̃Ψ(X) + ν̃E(X),

where µ̃ and ν̃ are the Lagrange multipliers, and a KKT point (X̄ , µ̄, ν̄) for (9)
satisfies

∇XL̃(X̄, µ̄, ν̄) = 0,

0 <
= µ̄ ⊥ Ψ(X̄) >

= 0,

0 <
= ν̄ ⊥ −E(X̄) >

= 0.

While this is not a KKT point (and thus a potential minimum) for (8), the
distinction between the formulations is minimal. For a relatively small number
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of clusters, κ can be tweaked to strengthen the approximation without encoun-
tering numerical difficulties.

Thus, we can define ρ : IRkd×(0,∞) × (0,∞) × [0, 1) × IRkd × IR× IR →
IRkd+2 by

ρ̃
(

k0, h0, h1, λ,X, µ̃, ν̃
)

=




(1− tanh(60λ))(X − k0) + tanh(60λ)ϕ(λ,X, µ̃, ν̃)
Φ (λ, µ̃,Ψ(X), h0)
Φ (λ, ν̃,−E(X), h1)





,

where
ϕ(λ,X, µ, ν) =

(

(1− λ)∇XE(X) + λ∇XL̃(X,µ, ν)
)T

,

h0 and h1 are selected to make the initial Φ functions 0 at λ = 0, and k0 is
an initial solution to the K-means approximation criterion. ρ is thus a strong
probability-one homotopy map for exploring clustering with constraints. Note
that B is selected so that Ψ(k0) > 0. Utilizing a homotopy tracker such as
HOMPACK90 [12], we can track this map from λ = 0 to λ = 1 to find clus-
terings that fulfill the clustering constraints while maintaining the clustering
hypothesis.

Figure 4: The iris dataset with “easy” constraints (no more than one
MNL constraint per datapoint). The Dunn index is tracked against
the arc length of γ in blue, while the satisfied constraints are tracked
in red. The Dunn Indices for the final homotopy (ρ̄) clustering (“H”),
MK-Means clustering (“M”) [13], and K-Means clustering (“K”) are
also shown.
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Figure 5: The iris dataset with “hard” constraints (consisting of
multiple MNL constraints per point). The Dunn Indices for the
final homotopy (ρ̃) clustering (“H”), MK-Means clustering (“M”),
PK-Means clustering (“P”), MPK-Means clustering (“MP”), and K-
Means clustering (“K”) are also shown.

Figure 6: The liver dataset with “easy” constraints.

Figures 4–7 utilize datasets taken from the UCI Machine learning reposi-
tory. One hundred random (valid) constraints are generated based on the true
clustering for each of these datasets, and the homotopy is tracked from a ran-
dom K-means solution to a local minimum based on the constraints. The Dunn
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Figure 7: The liver dataset with “hard” constraints.

Index (blue) is tracked against the number of violated constraints (red). The
Dunn Index is a fairly simple index for satisfaction of the clustering hypoth-
esis, and it can’t be used on nonconvex clusterings (such as those sometimes
generated by the MPCK-means and PCK-means algorithms). However, where
applicable, the result determined by those algorithms is shown as well as the
MK-means algorithm and the best K-means result from 50 independent exper-
iments (note that this is separate from the K-means solution used to prime the
homotopy method for these examples).

Of particular interest is the fact that the change in the Dunn Index is
not monotonic. As alternative clusters are encountered, their satisfaction of
the Dunn Index may greatly increase or greatly decrease, depending on the
strength of the constraints. Note that the final Dunn Index (as the clustering
becomes closer to the “true” clustering) is always higher than the starting point,
but local Dunn Indices may be even higher than the final. The strength of a
constraint is not only reflected by whether or not it matches the true clustering
(assuming one exists for a given dataset), but by how much satisfying the
constraint increases the strength of the cluster.

One particular application of constrained clustering is the use of ǫ- and
δ- constraints, that is, constraints used to reinforce the clustering hypothesis,
rather than constraints based on some true clustering. Let C1 and C2 be con-
straints (must-link, cannot-link, or combinatorial) and let F 1 and F 2 be the
corresponding penalty functions. Then C3 = C1 ∨ C2 has the corresponding
penalty function F 3 = F 1F 2. Similarly, C4 = C1 ∧ C2 has the corresponding
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penalty function F 4 = F 1 +F 2. Observe that F 3 = 0 if and only if C3 is satis-
fied, and F 4 = 0 if and only if C4 is satisfied. Finally, observe that any number
of must-link and cannot-link constraints can thus be combined in conjunctive
normal form by summing products of these penalty functions. As such, these
penalty functions can easily be adapted to represent penalty functions for ǫ–
and δ–constraints, which are always expressible as a combination of must-link
and must-not-link constraints in conjunctive normal form.

K MK PCK MPCK ρ̃
1.7349 2.3067 1.7679 1.2516 0.8706

liver 1.7349 1.8801 1.4568 1.2516 0.8706*
1.7349 1.6682 1.3542 1.2516 0.8706
1.9995 0.9883 0.8762 0.8681 0.8094

pima 1.5653 1.9403 1.0585 1.4436 0.8601*
1.5387 1.9316 1.0585 1.4436 0.8601
0.9392 0.9883 0.8762 0.8681 0.8094

faults 0.9392 0.9652 0.8762 0.8681 0.8094*
0.9392 0.9652 0.8637 0.8681 0.8094
1.5126 1.6650 0.8185 1.5393 0.6604

wine 1.5126 1.5507 0.6542 1.4515 0.6097*
1.5126 1.4506 0.6101 1.3447 0.4948
0.7373 1.5023 1.4662 0.9612 0.9379

iris 0.7373 0.9455 0.8877 0.7175 0.6453*
0.7373 0.7445 0.7041 0.6585 0.5776
2.0706 2.0512 1.6898 1.6898 1.6188

iono 2.0706 1.8936 1.8936 1.6898 1.6188*
2.0706 1.8936 1.8919 1.6898 1.6188
3.4599 1.8348 1.0414 1.8284 2.2789

glass 2.2910 1.4204 1.0414* 1.2820 1.2204
1.7415 1.0621 1.0414 1.0038 0.2403

Table 3: Table of Davies-Bouldin indices for lowest, median, and
highest result over 50 experiments for each of the datasets listed.
Note that lower is better. Best median results are marked with an
asterisk.

Table 3 also uses datasets taken from the UCI Machine Learning Repository.
It tracks the Dunn Index of the best result discovered by each of the listed
algorithms and shows the worst, median, and best result over 50 experiments
for each one. Here, the ability of the homotopy method to explore all clusterings
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between two states, rather than simply striving to satisfy constraints, is clearly
demonstrated.

5.3. Finding alternative clusterings

We investigate alternative clustering using the Portrait dataset as studied in [14].
This dataset comprises 324 images of three people each in three different poses
and 36 illuminations. Pre-processing involves dimensionality reduction to a
grid of 64 × 49 pixels. The goal of finding two alternative clusterings is to
assess whether the natural clustering of the images (by person and by pose)
can be recovered. We utilize the same 300 features as used in [14] and setup
our framework as shown in Figure 2 (d). Two copies of the dataset are created
with one-to-one relationships and we aim to cluster the dataset in a disparate
manner.

Table 5 depicts the achieved accuracies on the Portrait dataset using simple
K-means, convolutional-EM [14], decorrelated K-means [14] and our framework
for disparate clustering. Our algorithm performs better than all other tested
algorithms according to both person and pose clusterings.

(a) (b)
C1 C2 C3 C1 C2 C3

C1 0 0 72 C1 36 36 36
C2 63 64 0 C2 36 36 36
C3 3 8 114 C3 36 36 36

Table 4: Contingency tables in analysis of the Portrait dataset. (a)
After K-means with random initializations. (b) After disparate clus-
tering.

Method Person Pose

k-means 0.65 0.55

Conv-EM [14] 0.69 0.72

Dec-k-means [14] 0.84 0.78

Our framework (disparate) 0.93 0.79

Table 5: Accuracy on the Portrait dataset.
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5.4. Scalability and locality preservation

In this section, we consider two synthetic datasets with one (possibly many-
many) relationship between them. The parameters we study are: lx, ly, the
dimensions of the vectors (varied from 4 to 20), nx, ny, the number of vectors
(fixed at 100, because as our time complexity analysis shows, they only effect
the step of assigning vectors to clusters); kx; ky, the number of clusters sought
(also varied from 4 to 20), and |B|, the number of relationships between the
datasets (varied from a one-to-one case to about a density of 50%). The vectors
were themselves sampled from (two different) mixture-of-Gaussians models.

Figure 8 (a) answers the question of whether our approach yields local
clusters as the number of relationships increase (and hence each dataset is more
influenced by the other). In this figure, we used settings of 4 and 20 clusters and
used our framework to find dependent as well as disparate clusters, and also
compared them with K-means (which doesn’t use the relationship). Figure 8 (a)
shows that even though the K-means algorithm is mining two separate datasets
independently, our algorithms achieve very closely comparable results in spite
of the co-ordination (dependence or disparate) requirements. Thus, locality of
clusters in their respective attribute spaces is not compromised and unvarying
with the sparsity of the relationship matrix. At the same time, as Table 6
shows (for the case of four clusters), we achieve the specified contingency table
criteria.

Figure 8 ((b),(c)) shows the runtime for our algorithm as a function of
attribute vector dimensions (i.e., lx, ly) and number of clusters (i.e., kx, ky).
We vary one parameter, keeping the other fixed (kx, ky fixed at 8 versus lx, ly
fixed at 12). In overall these plots track the complexity analysis presented earlier
except for the higher dimension/cluster settings which show steeper increases
in time. This can be attributed to the greater number of iterations necessary
for convergence in these cases.

Finally, we explore how our results are influenced by the number of clusters,
for both dependent as well as disparate clustering formulations (see Figure 8
(d)). As the number of clusters increases, both objective criteria (F̂d and F̂ i)
become difficult to attain, but for different reasons (recall that the intent of
both criteria is to be minimized). In the case of dependent clusters, although
the problem gets easier as clusters increase (every point can become its own
cluster), the objective function scores get lower due to our regularization as
explained in Section 4. In the case of disparate clusters, as the number of
clusters increases, the size of the contingency table increases quadratically with
the number of samples staying constant. As a result, it becomes difficult to
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(a) (b)

(c) (d)

Figure 8: Synthetic data results. (a) Comparisons of SSE measures
with K-means. (b, c) Time as number of attribute dimensions (b)
or clusters (c) is increased. (d) Objective criterion as a function of
the number of clusters for both dependent and disparate schemas of
clustering.

distribute the samples across the contingency table entries without introducing
some level of dependence (i.e., some entries must be zero implying dependence).

5.5. Comparing gene expression programs across
yeast, worm, and human

In this study, we focus on time series gene expression profiles collected over heat
shock experiments done on organisms of varying complexity: H: human cells
(4 time points), Y : yeast (8 time points), and W : C. elegans (worm; 7 time
points). We also gathered many-many (top-k) ortholog information between
the three species. A typical goal in multispecies modeling is to identify both
conserved gene expression programs as well as differentiated gene expression
programs. The former is useful for studying core metabolism and stress response
processes, whereas the latter is useful for studying species-specific functions
(e.g., the yeast is more tolerant to desiccation stress, but the worm is the more
complex eukaryote).
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7 6 4 11

1 3 10 2

9 10 3 8

4 9 2 11

17 3 2 2

4 18 2 3

4 3 20 3

2 0 1 16

6 5 7 5

8 7 5 5

6 6 7 4

7 8 7 7

Table 6: Our approach helps drive a K-means cluster assignment
(top) toward either dependent (bottom-left) or disparate (bottom-
right) sets of clusters.

First we study a 3-way clustering setup with only two constraints, namely
that clusters in H and W must be dependent, denoted by H = W , and that
clusters in W and Y must be disparate, denoted by W <> Y . See Figure 9
(top). As the balance between these criteria is varied from one extreme to
another (via the convex combination formulation), this curve traces out the
objective function values. The top left corner is the point where complete
emphasis is placed on achieving theH = W criterion (conversely for the bottom
right corner). As we seek to improve the other criteria, note that we might (and
will) sacrifice the already achieved criterion. The point of maximum curvature
on this plot gives a ‘sweet spot’ so that any movement away from the sweet spot
would cause a dramatic change in the objective function values. A qualitatively
different type of plot is shown in Figure 9 (middle) for the case study described
in the next section, but here again the point of maximum curvature reveals a
balancing threshold of the two criteria. A 3-way clustering setup with three
constraints is described in Figure 10 and its corresponding tradeoff plot is in
Figure 9 (bottom). Here there are likely multiple points of interest depending
on which criteria are sacrificed in favor of others.

5.6. Multiorganismal and multistress modeling case study

Finally, we present a case study that has a diversity of both organisms and
stresses. To capture process-level similarities and differences, the data vectors
we cluster here correspond to Gene Ontology categories rather than individual
gene expression profiles. We used three time series datasets: WA—C. elegans
aging (7 time points), DA—D. melanogaster aging (7 time points) and DR—
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(a)

(b)

(c)

Figure 9: Balancing objectives in multicriteria clustering optimiza-
tion. Points of maximum curvature on these plots reveal a balancing
point between the conflicting criteria.

D. melanogaster caloric restriction (9 time points). Observe that the first two
datasets share a similarity of process whereas the latter two share a similarity
of organism. In a sense, the D. melanogaster aging dataset is squarely in the
“middle” of the other two datasets. When subjected to clustering together, the
inherent tradeoff is what we seek to capture.
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Figure 10: Clustering three datasets with three constraints between
them. Two sets of clusters (between human/worm and between
worm/yeast) are constrained to be similar whereas the third set (be-
tween human/yeast) is constrained to be dissimilar. Observe how the
top two contingency tables are driven toward diagonal dominance
whereas the bottom contingency table is driven toward a uniform
distribution.

For this evaluation, we studied the enrichment of clusters obtained from
our framework vis-a-vis K-means clustering. We set the number of clusters at
7 and evaluated GO terms for an FDR-corrected q-value of 0.05. First, we
study the clustering setup so that DA = DR and WA = DA, for a setting of
α = 0 (so that more emphasis is placed on achieving the dependent clustering
DA = DR). Here, we observed 75 GO terms enriched (versus 37 for K-means).
Similar improvements were seen for α = 0.5 (55 versus 20) and for α = 1 (89
versus 35). Observe the greater numbers of terms enriched in general for the
extremes (which is to be expected). In terms of process-level similarities, the
GO terms common across the aging datasets but which do not appear when we
emphasize organism-level similarities are neuron recognition, embryonic pattern
specification, aromatic compound catabolic process, somatic sex determination,
and sulfur compound biosynthetic process.



UNIFIED APPROACH TO DEPENDENT AND DISPARATE... 419

The organism-level similarities are captured in chemo-sensory behavior, cell
redox homeostasis, peptide metabolic process, regulation of cell proliferation,
anatomical structure formation, and negative regulation of growth.

These results show that process-level similarities involve higher order func-
tions whereas organism-level similarities involve growth and metabolism pro-
cesses. The careful interplay between aging and caloric restriction, both at the
organismal and at the interorganismal level, is an interesting conclusion from
this study.

6. Related work

MDI: The objective functions defined here have connections to the principle
of minimum discrimination information (MDI), introduced by Kullback for the
analysis of contingency tables [15] (the minimum Bregman information (MBI)
in [16] can be seen as a generalization of this principle). The MDI principle
states that if q is the assumed or true distribution, the estimated distribution
p must be chosen such that DKL(p‖q) is minimized. In our objective functions
the estimated distribution p is obtained from the contingency table counts.
The true distribution q is always assumed to be the uniform distribution. We
maximize or minimize the KL-divergence from this true distribution as required.
Space restrictions prevent us from describing the connection to MDI in further
detail.

Co-clustering binary matrices, cross-associations, and associative
clustering: Identifying clusterings over a relation (i.e., a binary matrix) is the
topic of many efforts [17, 18]. The former makes use of information-theoretic
criteria to best approximate a joint distribution of two binary variables and
the latter uses the MDL (minimum description length) principle to obtain a
parameter-less algorithm by automatically determining the number of clusters.
Our work is focused on not just binary relations but also attribute-valued vec-
tors. The idea of comparing clustering results using contingency tables was
first done in [19] although our work is the first to unify dependent and dis-
parate clusterings in the same framework.

Finding disparate clusterings: The idea of finding disparate clusterings
has been studied in [14]. Here only one dataset is considered and two dissimilar
clusterings are sought simultaneously where the definition of dissimilarity is
in terms of orthogonality of the two sets of basis vectors. This is an indirect
way to capture dissimilarity whereas in our paper we use contingency tables
to more directly capture the dissimilarity. Furthermore, our work enables the
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combination of similar clusterings and disparate clusterings in a more expressive
way. For instance, given just two datasets X and Y with two relationships R1

and R2 between them, our work can identify clusters in X and Y that are
similar from the perspective of R1 but dissimilar from the perspective of R2: it
is difficult to specify such criteria in terms of the basis vectors since they will
be the same irrespective of the relationship.

Clustering over relation graphs: Clustering over relation graphs is a
powerful framework by Banerjee et al. [2] that uses the notion of Bregman
divergences to unify a variety of loss functions and applies the Bregman infor-
mation principle (from [16]) to preserve various summary statistics defined over
parts of the relational schema. The key difference between this work and ours
is that this framework is primarily targeted toward dependent clustering (com-
pression) whereas our work targets both dependent and disparate clustering,
over different parts of the relational schema as appropriate.

Multivariate information bottleneck: Our work is reminiscent of the
multivariate information bottleneck (MIB) [20], a framework for specifying clus-
terings in terms of two conflicting criteria: compression (of vectors into clusters)
and preservation of mutual information (of clusters with auxiliary variables that
are related to the original vectors). We share with MIB the formulation of a
multicriteria objective function derived from a clustering schema but differ in
the specifics of both the intent of the objective function and how the clustering
is driven based on the objective function. Furthermore, the MIB framework was
originally defined for discrete settings whereas we support a mixed modality of
datasets.

7. Conclusion

We have presented a very general and expressive framework for clustering non-
homogeneous datasets. We have also shown how it subsumes many previously
defined formulations and that it sheds useful insights into tradeoffs underlying
complex relationships between datasets, especially when those tradeoffs are sys-
tematically explored with a homotopy algorithm. The mathematical theory be-
hind a novel application of probability-one homotopy algorithms to constrained
clustering was also given.

Our directions for future work are three fold. Thus far, we have used dis-
tinct relations to enforce disparate and dependent clusterings. One of the first
directions for future work is to allow both types of clusterings to be captured
in the same relation. This would help capture more expressive relationships



UNIFIED APPROACH TO DEPENDENT AND DISPARATE... 421

between datasets, such as a banded diagonal structure in the contingency ta-
ble. Secondly, just as the theory of functional and multivalued dependencies
(FDs and MDs) helps model relations in and between individual tuples, we aim
to develop a theory of ‘clustering dependencies’ that can help model relations
in the aggregate, e.g., between clusters. Thirdly, how to generalize homotopy
algorithms to apply to multicriteria machine learning problems (more than two
datasets and more than two relations) should be investigated.
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