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Abstract

Earlier work by Saha et al. rigorously derived a general probabilistic model for the PCR process that includes as a

special case the Velikanov-Kapral model where all nucleotide reaction rates are the same. In this model the probability

of binding of deoxy-nucleoside triphosphate (dNTP) molecules with template strands is derived from the microscopic

chemical kinetics. A recursive solution for the probability function of binding of dNTPs is developed for a single cycle

and is used to calculate expected yield for a multicycle PCR. The model is able to reproduce important features of the

PCR amplification process quantitatively. With a set of favorable reaction conditions, the amplification of the target

sequence is fast enough to rapidly outnumber all side products. Furthermore, the final yield of the target sequence in

a multicycle PCR run always approaches an asymptotic limit that is less than one. The amplification process itself

is highly sensitive to initial concentrations and the reaction rates of addition to the template strand of each type of

dNTP in the solution. This paper extends the earlier Saha model with a physics based model of the dependence of

the reaction rates on temperature, and estimates parameters in this new model by nonlinear regression. The calibrated

model is validated using RT-PCR data.

Key words: Levenberg-Marquardt algorithm, multicycle PCR, nonlinear regression, polymerase chain reaction (PCR),

probabilistic model, yield.
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1 INTRODUCTION

The polymerase chain reaction (PCR) is a powerful technique used for the amplification of specific segments of DNA

or mRNA. The PCR process has become a technique of choice for bioinformatics researchers due to its capabilities of

detecting and amplifying low copy segments. However, in practice, the PCR process does not always have a consistent

relation between the initial target amount and the absolute amount of the synthesized product. This is due to the PCR’s

high sensitivity to several variables whose effects on the containers (where the reaction takes place) are difficult to

model. Therefore, comparisons of the amount of product to that of an external control standard do not always lead to

accurate quantifications. This problem, however, is addressed in quantitative competitive PCR (QC-PCR).

In the QC-PCR, a competitive mRNA or DNA, namely an allelic variant of the target template, is used as an in-

ternal standard to provide an internal control in the amplification process. Quantification is assessed by determining

the amounts of co-amplified products from replicated proportions of the target with the dilution series of the competi-

tor. A normalization based on co-amplification of a heterologous sequence, however, does not optimally address the

difference in yield due to different template efficiencies in the amplification. It is quite difficult to rigorously quantify

these differences.

Another popular version of PCR, called real time PCR (RT-PCR), is used widely as an industry standard to validate

gene expression data obtained from microarray experiments. Determining yield by following the real time kinetics

of PCR eliminates the need for a competitor to be co-amplified with the target for the internal standard. Quantitation

can be performed by the more basic method of preparing a standard curve and determining an unknown amount

by comparison to the standard curve. Real time PCR quantitation eliminates post-PCR processing of PCR products

(which is necessary in QC-PCR). This helps to increase throughput, reduce the chances of carryover contamination,

and remove post-PCR processing as a potential source of error.

PCR is an extremely important technique for biologists, with applications in research (e.g., clinical/food/veterinary

microbiology), as well as clinical medicine (e.g., oncology, disease identification, chromosomal translocations.) One

of the most important uses is in measuring gene expressions. Here, accuracy of quantification is extremely important

as slight variations in estimating initial mRNA (or cDNA) concentrations can lead to false conclusions. Due to PCR’s

exponential growth in product, the process of estimating this initial concentration involves errors of many types and is,
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mathematically, ill-conditioned. Sensitivities to these errors increase with cycle number and the yield (ratio of actual

product to exponentially increasing product) becomes nonlinear beyond a certain cycle number.

Therefore, in spite of the popularity of the PCR, theoretical considerations to reliably describe its different ap-

plications have relied mostly on experimental inferences rather than on mathematical derivations from biophysical

principles; consequently, the currently used expressions lack consistency since their foundations have not been clearly

established, frequently leading to empirical fitting procedures of experimental data that result in poor quantifications.

It is clear that a physics based model will predict the yield of the PCR amplification in a much better fashion. However,

developing any type of generalized model is not an easy task. The present study extends and validates such a model

developed by Saha et al. (2004). Before summarizing the formulation for this model, some background on the PCR

amplification is given.

The PCR amplification process in general is conducted in vitro. The three primary ingredients for this process

are the three nucleic acid segments: a double-stranded DNA containing the sequence to be amplified and two single-

stranded primers. They react in an environment containing a DNA polymerase enzyme, deoxy-nucleoside triphos-

phates (dNTPs), a buffer, and a magnesium salt (MgCl2). Through cycles of combined denaturing, annealing (a vast

number of primers is added to ensure complete annealing), and DNA synthesis, the primers hybridize to opposite

strands of the target sequence such that the synthesis stage proceeds across the region between the primers, thus dou-

bling the DNA amount. Therefore, the products formed in successive cycles should result in geometric accumulation

and the target amplification after n cycles can be approximated by

Nn = 2nN0,

where N0 is the initial amount of DNA segment to be amplified.

The quantitative reliability of the PCR, however, is limited by the amplification process itself. Due to its geometric

nature, small differences in any of the control variables will dramatically affect the reaction yield. The variables

that influence the yield of the PCR process are the concentrations of the DNA polymerase, dNTPs, magnesium salt

(MgCl2), DNA, and primers; the denaturing, annealing and synthesis temperature; the length and the number of cycles;

ramping times, and the presence of contaminating DNA and inhibitors in the sample. Even if extreme care is taken

to strictly control these parameters the tube-tube variation may sometimes affect the outcome of the reaction. The
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physical basis of such variation is not yet known. Some researchers [8,19] indicated that this variation might be due

to small temperature differences along the thermal cylinder block during the first few cycles. According to Wang

et al. (1989) and Gilliland et al. (1990), normalization based on co-amplification does not optimally characterize

the variation in yield due to differences in template efficiencies. In reality it is a well-observed fact that the reaction

efficiency is never 100 percent and does not remain constant during the cycles. Hence, the accumulation trend is better

represented as

Nn =
[

n
∏

i=1

(1 + εi)
]

N0,

where εi is the cycle efficiency and is estimated empirically from the experimental data.

A different deterministic and more physics based approach was proposed by (Schnell and Mendoza, 1997a), who

used the law of mass action to derive the kinetic equations for PCR. Stochastic models for PCR have also been

developed (Mullis and Faloona, 1987; Mullis et al., 1994; Saiki et al., 1988; Stolovitzky and Cecchi, 1996; Wang et

al., 1998; Weiss and Von Haeseler, 1995). Finally, a combined deterministic and stochastic approach was proposed by

Stolovitzky and Cecchi (1996). They used a deterministic mass action equation to compute the amplification efficiency

and estimate the number of PCR cycles. Although these models lead to a better quantification for the phenomenon,

they still do not provide an accurate solution because the efficiency is assumed to be approximately constant during

all cycles.

Velikanov and Kapral (1999) proposed a probabilistic approach to the kinetics of the PCR, which focused on the

microscopic nature of the amplification process. Their results indicated that the model was able to reproduce the

main qualitative features of PCR kinetics, namely sensitivity to reaction conditions and leveling-off of the yield with

increasing number of cycles (the plateau effect). Though they were able to obtain a closed form solution for their

model, the model itself involved two unrealistic assumptions. First, the model assumed that the reaction rates of all

nucleotides were identical. In reality, the chemical kinetics of nucleotides binding to the template strand depends

strongly on the specific nucleotide (Goodman, 1995). Second, the model assumes that the initial concentrations of

the four nucleotides are the same. In fact, the number of each type of nucleotide at the beginning of each cycle may

not be the same and may influence the dynamics of the reaction in subsequent cycles (Saha et al., 2004). Saha et

al. (2004) modified the master equation developed by Velikanov and Kapral (1999) to accommodate the fact that the
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initial template strand consists of the four different types of nucleotides, namely A, C, T, and G, and that the initial

numbers of these nucleotides present in the buffer solution at the beginning of each cycle are independent of each

other. The next section summarizes this general model derived rigorously in Saha et al. (2004).

2 PROBABILISTIC MODELING OF POLYMERASE CHAIN REACTION

Let L denote the length of the template strand and ` denote the length of the growing strand at time t; `0 denotes the

length at t = 0. A reasonable assumption is that, at the molecular level, the rate of change of the probability of a

reaction event is proportionate to the number of ways in which the molecules of the reactants available in the system

can be combined for the reaction to take place. It can be further assumed that the template strand consists of all of the

four different nucleotides (A, C, T , and G) in an arbitrary but given order.

For this given template strand, the rate of change of the probability of a single nucleotide to be added depends on

the rate of reaction of the particular nucleotide ˆ̀ ∈ {A, C, T, G} that is complementary to the (` + 1)st nucleotide

on the template strand, and the number n ˆ̀ of such nucleotides present in the system. This probability rate of change

is denoted as w(l, t). It is important to note here that ˆ̀ is the type of nucleotide that is complementary to the next

nucleotide on the template strand when the length of the growing strand is `. So, in this notation,

w(`, t) = k(`, t)nˆ̀ , (1)

where k(`, t) is the reaction rate coefficient that also depends on temperature. Two more parameters are necessary.

The first one is m0ˆ̀, which denotes the initial number of nucleotides of type ˆ̀ in the system. (The experiment is

executed with target value for this number in mind, but, in practice, m0ˆ̀ is known only to within some degree of error,

which can be estimated from the data; see section IIID).The other one is X ˆ̀, which indicates the ratio of the number

of nucleotides of type ˆ̀ to the total number of nucleotides of all types in the growing strand when the length of the

growing strand is `. It is reasonable to assume that the total number of nucleotides of each type remains constant, so

nl̂ = m0ˆ̀− `Xˆ̀ . (2)

The evolution of the probability function is governed by a master equation (Cox and Miller, 1965; Gardiner, 1985).

The master equation for the primer extension process was further developed by Velikanov and Kapral (1999) and is
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given by

∂

∂t
P (`, t) = w(` − 1, t)P (` − 1, t) − w(`, t)P (`, t), (3)

where P (`, t) is the probability of a reaction at time t when the growing strand length is `. Now a strictly monotonic

function η(`, t) can be introduced by

∂

∂t
η(`, t) = k(`, t), η(`, 0) = 0. (4)

Since η(`, t) is strictly monotone in t, a new function can be defined byP̃ (`, η) = P (`, t). Using the chain rule,

∂

∂t
P (`, t) =

[ ∂

∂η
P̃ (`, η)

][ ∂

∂t
η(`, t)

]

, (5)

the master equation (3) becomes

∂

∂η
P̃ (`, η) =

∂
∂tP (`, t)

k(`, t)

=
1

k(`, t)

(

k(` − 1, t)
(

m
0d̀−1

− (` − 1)Xd̀−1

)

P̃ (` − 1, η) − k(`, t)
(

m0ˆ̀− `Xˆ̀

)

P̃ (`, η)
)

=
k(` − 1, t)

k(`, t)

(

m
0d̀−1

− (` − 1)Xd̀−1

)

P̃ (` − 1, η) −
(

m0ˆ̀− `Xˆ̀

)

P̃ (`, η)

= k̃(`, η)
(

m
0d̀−1

− (` − 1)Xd̀−1

)

P̃ (` − 1, η) −
(

m0ˆ̀− `Xˆ̀

)

P̃ (`, η), (6)

where

k̃(`, η) =
k(` − 1, t)

k(`, t)
. (7)

After some calculus, the recursive solution to (6) is

P̃ (`, η) =

∫ η

0 enˆ̀u
(

k̃(`, u)ndl−1
P̃ (` − 1, u)

)

du + B`

enˆ̀η
. (8)

Under the three assumptions

k̃(`, η) ≈ 1, all m0ˆ̀ are the same, and Xˆ̀ is constant, (9)

P̃ (`, η) in (8) has a closed form, rather than recursive, solution. The constant B` can be determined from the initial

conditions, ` = `0 and η = 0. It can be safely assumed that P̃ (`0 − 1, η) = 0, and argued that the probability of the

length of the growing strand that is more than `0 is zero at η = 0, i.e.,

P̃ (`, 0) = δ``0B`0 ; ` = `0, `0 + 1, `0 + 2, . . . L.
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P (`0, 0) = P̃ (`0, 0) = B`0 is the initial probability of the primer growth, which must be estimated empirically. Since

the primer length is `0 and there should be no growing strand of length ` > `0 at time t = η = 0,

P̃ (`, 0) = B` = 0 for ` > `0.

It is important to note here that the initial condition B`0 appears just as a multiplication factor in the final solution for

the probability function. This number can be chosen empirically based on the reaction parameters.

3 PHYSICS BASED REACTION RATE MODELLING

Numerical results in Saha et al. (2004) clearly showed that the effect of the assumptions (9) is profound; for the

practical problem of estimating initial concentrations from yield curves, falsely assuming (9), when in fact these three

assumptions do not hold, can result in over 200% error in predicting final yield (compared to the general model without

these assumptions). There is thus no doubt that the general Saha model is a better starting point for a realistic model

of the PCR process than the Velikanov-Kapral model that assumes (9). Equation (8) can be solved numerically to

generate estimates of the yield of the reaction; see Saha et al. (2004). These results indicate that the model (8) is

able to reproduce important features of the PCR amplification process quantitatively. The model implies that with a

set of favorable reaction conditions, the amplification of the target sequence is fast enough to rapidly outnumber all

side products. Furthermore, the final yield of the target sequence in a multicycle PCR run always tends toward an

asymptotic limit that is less than one. The amplification process itself is highly sensitive to initial concentrations and

the reaction rates of addition to the template strand of each type of dNTP in the solution.

In practice the initial concentration of mRNA is estimated from the yield after a certain number of cycles. This

value determines whether the corresponding gene is up expressed or down expressed, and is sensitive to the measured

yield. Since the model (8) is more realistic it can be expected that the yield estimated by this model would be

quantitatively more accurate than the yield predicted by the Velikanov-Kapral model (Velikanov and Kapral, 1999).

This hypothesis will be rigorously tested by calibrating the model (8) with PCR data, and then comparing the model’s

quantitative predictions with experimental data.

It should be noted here that the magnitude of the probability P (`, t) depends strongly on the value chosen for the
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initial condition (B`0). This parameter gives flexibility in the proposed model to accommodate effects due to inherent

experimental variations. The goal here is to model some of these variations to improve upon the basic model (8). In the

spirit of the physics based Velikanov-Kapral (Velikanov and Kapral, 1999) and Saha et al. (Saha et al., 2004) models,

the present study attempts to model other sources of variation in the PCR process.

The quantitative reliability of the PCR process is limited by the amplification process itself. Due to its geometric

nature, small differences in any of the control variables will dramatically affect the reaction yield. The variables that

influence the yield of the PCR process include

1. the concentration of the DNA polymerase,

2. the initial concentration of dNTPs,

3. the concentration of MgCl2,

4. initial concentration of the DNA strand,

5. the concentration of primers,

6. the denaturing, annealing, and synthesis temperature,

7. the length and the number of cycles,

8. ramping times,

9. temperature,

10. the presence of contaminating DNA and inhibitors in the sample, and

11. the tube-tube variation.

The physical basis of the effects from all these variations is not yet known. Velikanov and Kapral (1999) modeled

the stochastic kinetics of the PCR process, focusing on the microscopic nature of the amplification process. Saha et

al. (2004) extended this model to accommodate the fact that the reaction rates of addition to the template strand of

each type (A, C, T , G) of nucleotide are substantially different from each other and showed that these differences
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matter. They also have shown that the model is highly sensitive to initial concentration of these nucleotides present in

the buffer solution at the beginning of each cycle.

Parameter estimation for this basic Saha model is done first with experimental data obtained from RT-PCR ex-

periments conducted by Grene (2004) using nonlinear regression, specifically the Levenberg-Marquardt algorithm in

MINPACK (More et al., 1980). Subsequently, a series of improved models are considered.

3.1 METHODOLOGY

DNase treatment, cDNA synthesis, primer design and SYBR Green I RT-PCR were carried out as described by Van-

desompele et al. (2002). In brief, 2.25g of each total RNA sample was treated with the RNase-free rDNase I according

to the manufacturer’s instructions (Ambion). Treated RNA samples were purified before cDNA synthesis using Quia

columns (Qiagen). First-strand cDNA was synthesized using Oligo dT (18 mer) and SuperscriptII reverse transcriptase

according to the manufacturer’s instructions (Invitrogen), and subsequently diluted with nuclease-free water (Sigma)

to 12.5ng cDNA. RT-PCR amplification mixtures (25) contained 25ng template cDNA, 2× SYBR Green I Master

Mix buffer (12.5) (Applied Biosystems) and 300nM forward and reverse primer. Primer sequences for GAPDH (for-

ward: 5′-CGTGA TCTAA GGAGA GCAAG AG-3′; reverse: 5′-TTCCT TTGAG GTTAG GGAGC-3′) and GR2

(forward: 5′-TGTTC TTGCT TTGTC GCTTC-3′; reverse: 5′-CGCCA CCTTA TCAAT CTCAC C-3′) were syn-

thesized commercially (Integrated DNA Technologies). For GR2, primers were designed near the 5′ region of the

gene (74 bp–135 bp) to avoid amplification of the antisense gene (which corresponds to 780–1827 bp region on GR2

cDNA). The reactions were run on an ABI 7300 real time PCR system (Applied Biosystems). The cycling conditions

comprised 10 minutes of polymerase activation at 95◦C, and 35 cycles at 95◦C for 15 sec, 56◦C for 30 sec, and

72◦C for 30 sec. Each assay included: a standard curve of 7 serial dilution points of GAPDH or GR2 (≈ 600 bp)

PCR fragments, a no-template control, and 25ng of each test cDNA. Each assay was performed in triplicate. All PCR

efficiencies were above 95%. Sample identification was done using Sequence Detection Software (V 1.2.3, Applied

Biosystems) (Grene, 2004).
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3.2 MODEL FOR REACTION RATES

Assume that the reaction rates k(`, t) depend on the temperature T (t) as a function of time t, and on the length ` of

the growing strand according to the Arrhenius equation

k(`, t) = K0e
−

E0
RT (t) . (10)

The dependence of k(`, t) on the length ` of the growing strand is plausible, since the energetics of a molecule are

related in a coarse way to its size. Dependence on ` (i.e., the type of the nucleotide to be added and the current length

of the growing strand) can be incorporated in K0, or in E0 (activation energy). First assume E0, the Arrhenius energy,

to be a single constant and K0 = K0(`), where six different forms of K0(`) are considered:

f1(`) = α0,

f2(`) = α0 + α1`,

f3(`) = α0 + α1` + α2`
2,

f4(`) = α0e
−α1`,

f5(`) =
α0 + α1` + α2`

2

1 + β`
,

f6(`) =

√

α0 + α1`

1 + α2`
.

The parameters α0, α1, α2, β, and E0 are estimated from the data using nonlinear regression. Precisely, k(`, t)

from (10), with a particular form for K0(`), is used for k(`, t) in (4), which yields k(`, η) in (7); P̃ (`, η) is calcu-

lated from (8), converted to the probability P (`, t), from which a yield ŷ(t) at time t is ultimately calculated (by

integrating the probability P (L − 1, t) with respect to time t over all the cycles of the PCR process, adjusting the

initial concentrations at the beginning of each cycle according to the probable yield from the previous cycle). The

details of the calculation of the yield ŷ(t) from the probability function P̃ (`, η) are given in an appendix I. The non-

linear least squares problem is then to minimize, over whatever parameters are involved, the sum of squared errors

∑

i

(

ŷ(ti)− yi

)2
, where PCR yields yi are measured at times ti. The temperature (◦K) for each cycle is modeled as a
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piecewise linear function of time t (sec) as

T (t) =































































































327 + 0.6t, 0 ≤ t ≤ 30,

345, 30 ≤ t ≤ 60,

345 + 0.7(t + 60), 60 ≤ t ≤ 90,

366, 90 ≤ t ≤ 150,

366− 1.3(t − 150), 150 ≤ t ≤ 180,

327, 180 ≤ t ≤ 210.

The parameters for the function K0(`), shown in Table 1, were estimated using nonlinear regression (the Levenberg-

Marquardt algorithm in MINPACK (More et al., 1980)) with RT-PCR data. Three sets of RT-PCR data were obtained

from experiments conducted under the same set of conditions. The first set was used to estimate the parameters and

the other two sets were used to validate these parameter estimates. Yields were plotted against cycle numbers for each

of these six models (f1, ..., f6) for K0(`) and are shown in Figs. 1 through 6; the experimental measurements shown

in those figures (with error bars showing the accepted experimental uncertainty for such data) are the averages of the

results in the second and third data sets, while the predictions are based solely on the first data set. One can observe

that the model is unable to estimate the final yield with any reasonable accuracy. It should be noted here that the

maximum flexibility that can be achieved by the Velikanov-Kapral model using the similar model for the reaction rate

constants is given by Fig. 5. Clearly this reveals the inadequacy of that (Velikanov-Kapral) model. The final predicted

yield differs from the experimental value by more than 24 percent for the best case. Clearly modeling more than the

scale factor K0 in k(`, t) = K0e
−E0/(RT (t)) and a single Arrhenius energy E0 is needed.

3.3 MODEL ACTIVATION ENERGY

A more realistic model for activation energy allows different values for each nucleotide, say E0ˆ̀. This is a reasonable

assumption as the activation energy can be expected to vary depending on the specific nucleotide. It has been shown

experimentally that the reaction rate constants for nucleotide addtion in a polymerase reaction can vary by order of

magnitude (Boosalis et al., 1987; Mendelman et al., 1989). Now using four values E0ˆ̀ for E0 and the (2, 1) rational
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function that fit best for K0(`), namely

f5(`) =
α0 + α1` + α2`

2

1 + β`
, (11)

the results are plotted in Fig. 7. It shows considerable improvement in estimating the final yield, but the prediction is

still not within the estimated experimental error of 10 percent.

3.4 PERTURBATION OF INITIAL CONDITIONS

As noted earlier, the exponential growth in PCR makes the model sensitive to initial concentrations of the nucleotides

in the solution. Hence, assume

m0ˆ̀ = m̄0ˆ̀

(

1 + δm0ˆ̀

)

, (12)

where m̄0ˆ̀ is the nominal measured experimental initial concentration and the perturbation δm0ˆ̀ is a parameter to

be estimated with the nonlinear regression concurrent with all the other parameters. If the magnitudes
∣

∣δm0ˆ̀

∣

∣ of

the estimated perturbations and the predicted yields fall within experimental error, then it may be concluded that the

model is accurate within experimental error. Indeed (see Fig. 8), the least squares estimated perturbations in the initial

concentrations were less than three percent, well within RT-PCR experimental error. Table 2 shows the estimated

parameters for the model whose predictions are shown in Fig. 8, which plots the model’s predicted yields against the

data used to generate the model. Note that for this model with estimated δm0ˆ̀ it does not make sense to compare

the model predictions with data from an experiment different from that used to estimate the model parameters, since

each experimental data set would have different perturbations δm0ˆ̀ of the initial concentrations. It does make sense,

however, to compare the other model parameters, and this is done in Table 3 for the three data sets.

In summary, the most complete model consists of the probability P̃ (`, η) defined by (8), the Arrhenius equation

(10), the model K0(`) = f5(`) from (11), the activation energies E0ˆ̀ (determined by nonlinear regression), and initial

concentration perturbations δm0ˆ̀ defined by (12). Nonlinear least squares estimation (using, e.g., the Levenberg-

Marquardt algorithm) is done to estimate the model parameters α0, α1, α2, β, E0A, E0C , E0G, E0T , δm0A, δm0C ,

δm0G, δm0T .

To support the contention that the model is not merely a phenomenological fitting of the data, Fig. 9 shows the

results of using the first half of the data to predict the second half of the yield curve, and conversely using the second
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half of the data to predict the first half of the yield curve, for three 35-cycle data sets (for the same sequence) different

from the data sets used for the earlier figures. Note that the second half of the data predicts the first half extremely

well, but that the first half (where the yield curve is all essentially linear) does not predict well the second half (where

the yield asymptotically levels off). Figs. 8 and 9 together support a significant anticipated use of the present model,

namely to use an entire RT-PCR data curve to accurately estimate initial concentrations.

Another plausible usage of this model would be to estimate the parameters of the PCR process under a certain set

of conditions such as the type of the DNA polymerase, nucleotides and primer concentrations, and temperature cycles

from the RT-PCR experiment, and then use these estimated parameters in future PCR experiments. Since RT-PCR is

an expensive process and is not always affordable, one could conduct simple PCR and use the final measured yield

(one data point) after all cycles are completed, in conjunction with estimated parameters from the previous RT-PCR

experiment, to estimate the initial concentration of the DNA product in the sample. Fig. 10 shows estimated yield at

the end of each cycle calculated by using just one data point (to obtain the initial concentration of the DNA sequence

to be amplified, as just described) against experimentally measured RT-PCR yield. Unfortunately, as demonstrated by

Fig. 10, the model cannot be used with simple PCR data to reliably predict RT-PCR output.

4 CONCLUSION

This final version of the model (with model parameters α0, α1, α2, β, E0A, E0C , E0G, E0T , δm0A, δm0C , δm0G,

δm0T ) appears to successfully capture the dynamics of the PCR process, both qualitatively and quantitatively, and

can be used to to predict the yield of the process from given initial concentrations, or estimate initial concentrations

from a given yield curve. As a by-product the nonlinear regression provides estimates of the Arrhenius energies for

a given PCR process, and it will be an interesting future research task to design a PCR experiment to experimentally

determine these values and compare with the regression estimated values.

Although the final model’s estimates of yield appear to be within the limits of experimental error, note that in reality

every cycle may potentially produce a significant number of incomplete strands. As the cycle number progresses

these strands may as well be amplified and at the end of the process may contribute to the measured final yield.
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In the present model incomplete strand contributions with length less than some threshold are ignored to reduce

the computational complexity. However, a close look at Equation (8) suggests that the equation can be written as

P (`) = F (P (` − 1)). Therefore, the entire probability distribution with respect to the length of the growing strands

can be computed and contributions of each of these strands towards final yield can be estimated. However, this would

be a computationally expensive process. For instance, for a 35 cycle PCR simulation for a strand that is 400 nucleotides

long, the computation would need to be carried out for strands of all 401 different lengths (0 through 400) at the end of

each of the 35 cycles instead of for just one length. This incomplete strand modeling issue will be investigated further

in future work.

APPENDIX 1: YIELD CALCULATION

The PCR process involves multiple consecutive cycles. During the first cycle the complementary counterpart of the

original template strand grows as the free dNTPs attach one by one to the template. By the end of the cycle a double

stranded DNA molecule is created. The denaturation and primer annealing phases separate these two strands and at

the beginning of the next cycle two different types (one is complementary to the other) of template strands exist in the

solution. These two types are arbitrarily labeled as “+” and “−”. The primers that are attached to these two different

templates during the next cycle are different in length, and they also bind at different locations from the 3’ end on the

corresponding templates. This necessitates different conditions of extension for these two different types of primers.

Therefore, two different types of probability distributions (denoted by“+” and “−”) are required in order to accurately

represent the extension of these primers during each cycle.

The initial condition for the probability distributions for the second cycle can be written as

P+
2 (`+, 0) = ω+

2 P+
1 (`+, 0) ≡ ω+

2 P (`+, 0)

and

P−

2 (`−, 0) = ω−

2 P−

1 (`+, 0) ≡ ω−

2 P (`−, 0),

where `+ and `− are the lengths from the 3’ end of the original and complimentary strands, ω+
2 and ω−

2 represent

the weights of the component distribution, and the subscript denotes the cycle number. The weights are the fractions,
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out of the entire DNA matter accumulated, of DNA molecules that are to be amplified. A simple but reasonable

assumption will be that the primer binds if the length of overlap between the primer and the template strand is higher

than a threshold (`+
t and `−t in each case). Thus, interpreting the ωs as the probabilities of primer attachment,

ω+
2 =

`+
∑

j=l+−`+
t

P (j, η)

and

ω−

2 =
`−
∑

j=l−−`−
t

P (j, η).

The probability of extension P +
2 (`+, 0) is the probability of attachment (ω+

2 ) times the conditional probability

of extension given primer attachment (P (`+, 0)) from the master equation. For each cycle k > 1, P +
k (`+, 0) and

P−

k (`−, 0) are initialized similar to P +
2 , P−

2 , and then P +
k (`+, η), P−

k (`−, η) are defined from (8) (with initial condi-

tions analogous to that of second cycle) for η > 0. Following Velikanov and Kapral (1999), assume that `+
t = `+/2,

and `−t = `−/2.

The actual volume of the original and complementary strands (denoted by E+
n (`+, η) and E−

n (`−, η), n > 0 being

the cycle number) can be estimated recursively as

E+
n (`+, η) = E+

n−1(`
+, η̄) + E−

n−1(`
−, η̄)P−

n (`−, η)

and

E−

n (`−, η) = E−

n−1(`
−, η̄) + E+

n−1(`
+, η̄)P+

n (`+, η),

where η̄ is the scaled final time for that cycle, and E+
0 , E−

0 are the initial volumes of the original and complementary

strands, respectively, to be amplified. For double stranded DNA amplification, E+
0 = E−

0 . For single stranded mRNA,

E−

0 = 0.

The final yield is defined as the fold change of the volume of the initial strands to be amplified, normalized by the

initial volume of the respective original strand, and scaled with the fold change for maximum theoretical amplification

(2N for N cycles):

15



Φ+
n ≡

log
(

E+
n

(`+,η̄)

E+
0

)

log(2N)
=

log(E+
n (`+, η̄)) − log(E+

0 )

N log(2)
.

APPENDIX 2: SEQUENCE AMPLIFIED

CTTTACCTCT AGCAGACGCA GCAACTCTAC ACTCGGTACG GGATAATCCA GCCGAATTCG GAAAGATTCG

ATTGATGGCA TCAGTTGGTT GGGGATTCGC TATGTTCATT ATGGGAATAG CACTCGATTA TTCGGATACA

AAAAATCATT CGAGGTGGAG CTCTTGGAAT GCTCAAAGAG ACACTTGTTG GTGGATCAAC TTCCGAAATC

ATCCATGTCC CTACCGTCAA CCAGCAGTTG AACAAGCTTT CATGCTTCTT CTCATTCTTA TCTGCCTTTG

TGAATTCTTC TCAGCTCCTG TGCTGAAAAT ACAACAGAGA AAAATTATAC GTTATGTTTC GTAATGTGTG

TCATATTTAT GTTGGCTGCC ATGGGATTGG CCAGTA
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Table 1: Values of Parameters Estimated for Each Model of K0 = K0(`).

α0 α1 α2 β E0(J/Mol) RMSE

f1(`) = α0

2.01(+02) — — — 1.14397(+05) 1.14(+01)

f2(`) = α0 + α1`

6.79(+02) −1.47(+01) — — 1.16352(+05) 8.33(+00)

f3(`) = α0 + α1` + α2`
2

7.63(+02) −3.86(+01) 5.61(−01) — 1.1482(+05) 6.42(+00)

f4(`) = α0e
−α1`

5.89(+02) 1.21(−01) — — 1.10323(+05) 7.03(+00)

f5(`) =
(

α0 + α1` + α2`
2
) /

(1 + β`)

1.68(+03) 4.50(+01) −5.72(−01) 1.29(+00) 1.11158(+05) 4.10(+00)

f6(`) =
√

(α0 + α1`) /(1 + α2`)

1.63(+06) −4.02(+04) 2.47(+00) — 1.1572(+05) 5.37(+00)

5 10 15 20
n

0.2

0.4

0.6

0.8

Φ

Figure 1: Comparison of yield φ measured experimentally by RT-PCR (diamonds) and estimated by model (10) with

K0 = f1(`) = α0 (stars).
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Table 2: Estimated Parameters and Initial Concentrations m̄0ˆ̀ for the Model Shown in Fig. 8.

α0 1.73(+03)

α1 4.63(+01)

α2 5.63(−01)

β 1.32(+01)

E0A(kJ/Mole) 1.042(+05)

E0C(kJ/Mole) 1.052(+05)

E0G(kJ/Mole) 1.057(+05)

E0T (kJ/Mole) 1.046(+05)

m̄0A(ng/l) 2.5(+03)

m̄0C(ng/l) 2.5(+03)

m̄0G(ng/l) 2.5(+03)

m̄0T (ng/l) 2.5(+03)

δm0A(percent) 2.72(+00)

δm0C(percent) 1.87(+00)

δm0G(percent) −1.12(+00)

δm0T (percent) 1.37(+00)
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Table 3: Model Parameters for Three 20-cycle Data Sets for the Same Sequence.

Parameters Data Set 1 Data Set 2 Data Set 3

α0 1.733(+03) 2.668(+03) 1.012(+03)

α1 4.634(+01) 5.724(+01) 3.827(+01)

α2 5.632(−01) 6.117(−01) 4.321(−01)

β 1.322(+01) 1.101(+01) 2.054(+01)

E0A(kJ/Mole) 1.042(+05) 1.026(+05) 1.054(+05)

E0C(kJ/Mole) 1.052(+05) 1.037(+05) 1.069(+05)

E0G(kJ/Mole) 1.057(+05) 1.039(+05) 1.065(+05)

E0T (kJ/Mole) 1.046(+05) 1.032(+05) 1.043(+05)

5 10 15 20
n

0.2

0.4

0.6

Φ

Figure 2: Comparison of yield φ measured experimentally by RT-PCR (diamonds) and estimated by model (10) with

K0 = f2(`) = α0 + α1` (stars).
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Figure 3: Comparison of yield φ measured experimentally by RT-PCR (diamonds) and estimated by model (10) with

K0 = f4(`) = α0

(

1 − e−α1`
)

(stars).

5 10 15 20
n

0.2

0.4

0.6

Φ

Figure 4: Comparison of yield φ measured experimentally by RT-PCR (diamonds) and estimated by model (10) with

K0 = f3(`) = α0 + α1` + α2`
2 (stars).
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Figure 5: Comparison of yield φ measured experimentally by RT-PCR (diamonds) and estimated by model (10) with

K0 = f5(`) =
(

α0 + α1` + α2`
2
) /

(1 + β`) (stars).
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0.2

0.4

0.6
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Figure 6: Comparison of yield φ measured experimentally by RT-PCR (diamonds) and estimated by model (10) with

K0 = f6(`) =
√

(α0 + α1`) / (1 + α2`) (stars).
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Figure 7: Comparison of yield φ measured experimentally by RT-PCR (diamonds) and estimated by model (10) with

K0 = f5(`) =
(

α0 + α1` + α2`
2
) /

(1 + β`), and activation energy E0(`) = Eˆ̀ (stars).
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Figure 8: Comparison of yield φ measured experimentally by RT-PCR (diamonds) and estimated by model (10) with

K0 = f5(`) =
(

α0 + α1` + α2`
2
) /

(1 + β`), E0(`) = Eˆ̀, m0ˆ̀ = m̄0ˆ̀ + δm0ˆ̀ determined by regression (stars).
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Figure 9: Comparison of yield φ measured experimentally by RT-PCR (circle) and estimated by model (10) with

K0 = f5(`) =
(

α0 + α1` + α2`
2
) /

(1 + β`), E0(`) = Eˆ̀, m0ˆ̀ = m̄0ˆ̀ + δm0ˆ̀ determined by regression for a 35

cycle PCR with first half of the yield estimated from 2nd half of the data (triangle) and vice versa (diamond) for three

different data sets for the same sequence.
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Figure 10: Comparison of yield φ measured experimentally by RT-PCR (circle) and estimated by model (10) with

K0 = f5(`) =
(

α0 + α1` + α2`
2
) /

(1 + β`), E0(`) = Eˆ̀, using just one (simple PCR final yield) data point to

estimate the initial concentration of the DNA sequence to be amplified.
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