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ABSTRACT
Motivation: Data centers are a critical component of mod-
ern IT infrastructure but are also among the worst environ-
mental offenders through their increasing energy usage and
the resulting large carbon footprints. Efficient management
of data centers, including power management, networking,
and cooling infrastructure, is hence crucial to sustainabil-
ity. In the absence of a “first-principles” approach to man-
age these complex components and their interactions, data-
driven approaches have become attractive and tenable.
Results: We present a temporal data mining solution to
model and optimize performance of data center chillers, a
key component of the cooling infrastructure. It helps bridge
raw, numeric, time-series information from sensor streams
toward higher level characterizations of chiller behavior, suit-
able for a data center engineer. To aid in this transduc-
tion, temporal data streams are first encoded into a sym-
bolic representation, next run-length encoded segments are
mined to form frequent motifs in time series, and finally
these metrics are evaluated by their contributions to sus-
tainability. A key innovation in our application is the abil-
ity to intersperse “don’t care” transitions (e.g., transients) in
continuous-valued time series data, an advantage we inherit
by the application of frequent episode mining to symbolized
representations of numeric time series. Our approach pro-
vides both qualitative and quantitative characterizations of
the sensor streams to the data center engineer, to aid him
in tuning chiller operating characteristics. This system is
currently being prototyped for a data center managed by
HP and experimental results from this application reveal
the promise of our approach.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining; K.6.2
[Management of Computing and Information Systems]: In-
stallation Management - Computing Equipment Manage-
ment

General Terms: Algorithms, Experimentation, Measure-
ment, Management, Reliability.
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1. INTRODUCTION
Data centers have become a ubiquitous element of modern

IT infrastructure, especially in the services sector that re-
quires “always-on” capability. Practically every large IT or-
ganization hosts a data center, either in-house or outsourced
to major vendors. Furthermore, the recent emergence of the
software as a service (SaaS) paradigm or more generically
cloud computing, coupled with emerging web-based busi-
ness, social networking and media applications and services
have led to a tremendous growth in the number, size, and
power densities of data centers.

Recently, data centers have become an object of scorn for
environmentalists, due to their increasing energy usage and
the resulting large carbon footprints. For instance, a recent
study [25] claims that a web search uses half the equivalent
energy of boiling a kettle of water! The US EPA estimates
that energy usage at data centers is experiencing successive
doubling every five years, and that the annual electricity cost
at these centers can amount to $7.4 billion by 2011, with
10% of this amount being borne by the government. Fur-
thermore, to meet the projected growth in demand would
require the construction of 10 power plants! Sustainable
data center research is hence becoming acknowledged as an
important problem with the foremost of implications for fu-
ture energy consumption and its environmental impact [14].

A key goal is to adaptively manage demands on power,
cooling, and energy efficiency without compromising reli-
ability and performance constraints. State-of-the-art data
centers today provide capabilities for adaptive, configurable
operation at the level of each subsystem such as power distri-
bution, cooling, and compute server racks. The traditional
approach to perform such adaptation is to conduct detailed
computational fluid dynamics (CFD)-based modeling of air
and temperature flows [19] through a data center. However,
such methods are computationally intensive, and even for a
small data center (say, about 3000 sq. ft.), it can easily take
several hours for a model of reasonable accuracy to converge!

The computational infeasibility of such large-scale simu-
lations coupled with the relative ease of gathering real-time
data from sensors has led researchers to deploy sensor net-
works to track environmental data (e.g. temperature, hu-
midity), operational state of systems and devices (e.g. uti-
lization), and workload information (e.g. user requests).
Since the sheer volume of such data precludes manual in-
spection, automated data mining and knowledge discovery



techniques are important to glean vital information. Fur-
thermore, to close the loop between instrumentation and
control/management leading to energy efficiency, what is
required are high-level capabilities to transduce the data
streams into actionable knowledge for the data center ad-
ministrator.

While data centers constitute a mix of computing ele-
ments, networking infrastructure, storage systems along with
power management and cooling capabilities, all of which
contribute to energy usage and sources of inefficiency, in this
paper we primarily focus on the cooling infrastructure, espe-
cially chillers, as a case study for illustrating the importance
of data mining solutions. In particular, we show how tempo-
ral data mining can bridge the gap between low-level, raw,
sensor streams, and the high-level operating regions needed
for an engineer to efficiently manage the data center.

This paper makes the following contributions:

• We present a three-stage solution for mining data cen-
ter chiller data involving (i) change point detection,
(ii) motif mining, and (iii) sustainability evaluation.
This design helps data center administrators to im-
part significant domain knowledge in the algorithms
underlying each stage.

• Our notion of motifs can accommodate “don’t care”
transitions (e.g., transients), an advantage we inherit
by the application of frequent episode mining to sym-
bolized representations of multivariate numeric data.
They also help characterize sustainability metrics that
serve as a handle for future tuning and management
of data center operations.

• We present our algorithms in the context of manag-
ing the chiller subsystem of a data center managed by
HP in Bangalore, India. To the best of our knowl-
edge, our work is the first to use temporal data mining
techniques to bear upon the cooling infrastructure of
a production data center. Our KDD approach on this
data center demonstrates that it is, in fact, possible to
have sustainable operation as well as economical ad-
vantages, thus demonstrating that these are not con-
flicting objectives.

2. BACKGROUND

2.1 Data Centers
Figure 1 shows a data center consisting of IT equipment

(servers, storage, networking) fitted in racks arranged as
rows. A large data center could contain thousands of racks
occupying several tens of thousands of square feet of space.
Also shown in the figure are computer room air condition-
ing (CRAC) units that cool the exhaust hot air from the IT
racks. Energy consumption in data center cooling comprises
work done to distribute the cool air and to extract heat from
the hot exhaust air. A refrigerated or chilled water cooling
coil in a CRAC unit extracts the heat from the air and cools
it within a range of 10◦C to 18◦C. The cooling infrastructure
of a data center is shown in Figure 2.

Key elements of this infrastructure include CRAC units,
plumbing and pumps for chilled water distribution, chiller
units and cooling towers. Heat dissipated from IT equip-
ment is extracted by CRAC units and transferred to the
chilled water distribution system. Chillers extract heat from
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Figure 1: Thermal map of a data center showing racks

arranged in rows and CRAC units.

Cooling Tower water loop

Chiller Refrigerant loop

Chilled Water

loop

Data Center CRAC units

Warm Water

Air Mixture

In

QCond

Air Mixture

In

Cooled Water

QEvap

Makeup

Water

Air Mixture Out

pump

Chiller unit
pump

Evaporator

Condenser

Cooling Tower

Compressor

C
o
m

p
re

sso
r

Figure 2: Typical cooling infrastructure of a data center.

the chilled water system and reject it to the environment
through cooling towers or heat exchangers. In addition
to the IT equipment, the data center cooling infrastruc-
ture can account for up to 50% of the total power demand
[2]. The CRAC units provide two actuators that can be
controlled. The variable frequency drive (VFD) controls
the blower speed and the chilled water value regulates the
amount of chilled water flowing into a unit (between 0% and
100%). These built-in flexibilities allow the units to be ad-
justed according to the workload demand in the data center.
The demand is detected via temperature sensors installed on
the racks throughout a data center.

2.2 Data Center Chillers
The focus of this paper is on chiller units that receive

warm water (at temperature, Tin) from the CRAC units,
extract heat from it and recirculate the chilled water (at
temperature, Tout) back to the CRAC units.
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Figure 3: Operational state diagram of a chiller unit.

Chiller Architecture and Operation
Each chiller is composed of four basic components, namely,
evaporator, multi-stage centrifugal compressor, economizer
and water-cooled or air-cooled condenser. Liquid refrigerant
is distributed along the length of the evaporator to absorb
enough heat from the water returning from the data center
and circulated through the evaporator tubes to vaporize.
The gaseous refrigerant is then drawn into the first stage
of compressor. Compressed gas passes from the multi-stage
compressor into the condenser. Cooling tower water circu-
lated through the condenser tubes absorbs heat from the
refrigerant, causing it to condense. The liquid refrigerant
then passes through an orifice plate into the economizer.
Flashed gases enter the compressor while the liquid flows
into the evaporator to complete the circuit.

Starting and stopping a chiller is a complex, multi-step
process. Fig. 3 shows the operational state diagram of a
typical chiller. On power-on, the chiller waits for the com-
pressors to start, after a prescribed delay. On startup, the
chiller utilization varies to match the cooling load. Based
on chiller technology, chiller compressors can throttle in
discrete stages or continuously. Feedback control is used
to maintain the outlet temperature, Tout, close to a user-
specified set-point temperature.

Terminology and Metrics
Here we define some terms used in context of a data center
chiller unit.
IT cooling load. This is the amount of heat that is gener-
ated (and thus needs to be dissipated) at a data center. It
is approximately equivalent to the power consumed by the
equipment since almost all of it is dissipated as heat. It is
commonly specified in kilowatts (KW).
COP. The coefficient of performance (COP) of a chiller unit
indicates how efficiently the unit provides cooling, and, is
defined as the ratio between the cooling provided and the
power consumed, i.e.,

COPi =
Li
Pi

(1)

where Li is the cooling load on the ith chiller unit and Pi is
the power consumed by it.
Chiller utilization. This is the percentage of the total ca-
pacity of a chiller unit that is in use. It depends on a variety
of factors, mainly, the mass flow rate of water that passes

through a chiller and the degree of cooling provided, that
is, the difference between the inlet and outlet temperatures
(Tin − Tout). For a particular Tout, an administrator can
control the utilization at a chiller through power capping or
by changing the mass flow rate of water.
Chiller power consumption. This is simply the power
consumed by a chiller unit. Although power meters that
measure aggregate power consumption of data center infras-
tructure elements are usually available, meters that measure
power consumed by an individual entity or a specific group
(e.g. chillers) may not always be installed. In such cases, if
the capacity of the unit and average COP are known, they,
together with unit utilization, can be used to estimate power
consumed.

Pi =
Ui ∗ Ci

100 ∗ COPi
(2)

where Pi is the power consumed, Ui the utilization, and Ci
the capacity, all pertaining to the ith chiller unit.

Ensembles of Chiller Units
The number of chiller units required depend on the size and
thermal density of a data center. While one unit may be
sufficient for a small data center, several units operating as
an ensemble may be required to satisfy the cooling demand
of a large data center. Figure 4 shows an ensemble of chiller
units that collectively provide cooling for a data center. Out
of the five units shown, three are air-cooled while the remain-
ing two are water-cooled. Also, to provide a highly available
data center and ensure business continuity, sufficient spare
capacity is usually provisioned to meet the cooling demand
in the event of one or more units becoming unavailable as a
result of failure or required maintenance.

Figure 4: Five chiller units work in tandem to provide

cooling for a large data center.

Operational Challenges
Although operating curves for individual chiller units exist,
no model is available for operation of an ensemble, espe-
cially one consisting of heterogeneous units. Additionally,
shift and/or drift of response characteristics with time fur-
ther complicate their management. The operational goals
are to satisfy the cooling requirements while minimizing the
total power consumption of the ensemble and maximizing
the average lifespan of the units. While multiple factors im-
pact the lifespan of a chiller unit, an important one is: rapid
and large oscillations in utilization value. High amplitude
and frequent variations in utilization due to varying load
or some failure condition result in decreased lifespan, and,
thus, need to be minimized.



Why are rapid oscillations bad? Frequent start and stop
cycles lead to fatigue of mechanical parts due to high torque
requirements, and, deterioration of electrical circuitry due
to high inrush current. Moreover, load fluctuations due to
cycling can also lead to drop in power factor and poten-
tial penalties from the utility. In case of data centers with
on-site generation, such fluctuations can lead to reliability
issues at the generators as well. Downstream of chillers,
pump performance and cooling tower efficiency can also be
adversely affected. Typically chillers have an MTBF (mean
time between failure) of 20,000 hours or more, which can
reduce exponentially due to oscillations.

2.3 How can data mining help?
While administration of a single chiller unit is not com-

plicated, configuring an ensemble of chillers for optimal per-
formance is a challenging task, especially in the presence of
a dynamically varying cooling load [3]. Typically, heuristics
and rules-of-thumb are used to make decisions regarding:

• Which chiller unit(s) should be turned on/off, and
when?

• What utilization range should a particular unit be op-
erated at?

• How should the ensemble react to an increase or de-
crease in cooling demand?

Any guidance regarding questions posed above while main-
taining performance and optimizing the above stated goals
will be invaluable to a data center facilities administrator.

3. PRIOR WORK

3.1 Mining Systems and Installations
Many researchers have explored the use of data mining to

optimize computer system design. For instance, modeling of
rack-level temperature data specifically in relation to CRAC
layout has been undertaken in [1, 23]. Optimization oppor-
tunities at multiple levels of smart center architecture have
also been studied in [24]. More recent work [16] focuses
on sensor data mining to identify anomalous and deviant
behavior. Other related work includes the InteMon system
from CMU [7, 6] that dynamically tracks correlations among
multiple time series [18]. Interactive visualizations for sys-
tem management have also been investigated [17]. Beyond
these projects, most research at the intersection of data min-
ing and high performance systems has focused on compute
clusters, not necessarily data centers. For instance, failure
prediction in IBM Blue Gene systems by analyzing event
logs has been explored [10]. While these works constitute
important strides in analytics, in order to support high-level
knowledge discovery capabilities, we must raise the level of
abstraction at which we study and infer patterns from sensor
data streams.

3.2 Approaches to model time series data
There are numerous formalisms available to model time

series data and good surveys are in [5, 12]. One broad
class of representations conducts global decompositions of
the time series (e.g., PCA, DFT, wavelets) and aims to use
only the most significant components to model the series.

Alternatively, piecewise representations are easier to com-
pute and also lend themselves to a streaming mode of oper-
ation. Representations like SAX [13] first perform a piece-
wise aggregate approximation (the aggregate refers to the
notion of modeling the given, single, time series by a linear
combination of multiple time series, each expressed as a box
basis function) and symbolize the resulting representation
so that techniques from discrete algorithms can be adapted
toward querying, matching, and mining the time series. In
our work, we seek to design representations for multivariate
time series data (the works surveyed here focus on a sin-
gle series) and also to enjoy the benefits of symbolization of
series for ease and flexibility of analysis, as described below.

3.3 Finding motifs in time series
Motif mining is the task of finding approximately repeated

subsequences in time series, and studied in various works,
e.g., [4, 11, 19, 27]. Mining motifs in symbolized represen-
tations of the time series can drawn upon the rich body of
literature in bioinformatics, where motifs have been used
to characterized regulatory regions in the genome. As the
work closest to ours, we explicitly focus on the SAX repre-
sentation, which also provides some significant advantages
for mining motifs. First, a random projection algorithm
is used to hash segments of the original time-series into a
map. If two segments are hashed into the same bucket, they
are considered as candidate motifs. In a refinement step all
candidate motif subsequences are compared using a distance
metric to find the set of motifs with the highest number of
non-trivial matches. A contrasting framework, referred to
as frequent episode discovery, is an event based framework
that is most applicable to symbolic data that is not uni-
formly sampled [8, 9, 15, 20]. This enables the introduction
of junk, or “don’t care” states, into the definition of what
constitutes a frequent episode.

4. ALGORITHMS
Our primary goal is to link the multivariate, numeric, time

series temperature data gathered from chiller units to high
level sustainability characterizations. We decompose this
goal into change point detection, motif mining, and sustain-
ability characterization, thus using motifs as a crucial inter-
mediate representation to aid in data reduction. The algo-
rithms presented here, while being natural generalizations
and combinations of prior work, have not been proposed
before.

4.1 Change point detection
Prior work in multivariate change point detection (e.g.,

see [26] has posited statistical models for behavior within
a segment and tracks changes in model parameters to de-
note qualitative change points. Our task is exacerbated by
the lack of adequate models to characterize chiller behav-
ior and also because of the varying interpretations that are
attachable to multivariate data.

First, a motif or a trend can manifest in a single series or in
multiple series. Second, even when it manifests in multiple
series, the specificity with which it manifests can be fixed or
variable. For instance, a motif can be ‘three chiller units
show oscillatory behavior’ versus ‘first three chiller units
show oscillatory behavior.’ Since we seek to mine motifs
so that their presence/absence can be cross-correlated with
the chiller design (e.g., air cooled versus water cooled), we



seek motifs of the latter form.
A multivariate time series T = 〈t1, . . . , tm〉 is an ordered

set of real-valued vectors of a particular variable. Each real-
valued vector ti captures the utilizations across all the chiller
units. Although a streaming algorithm would be more suit-
able in the context of time series data, the current imple-
mentation is intended more as a diagnostic tool than for
prediction. We first perform a k-means clustering on these
vectors and use the cluster labels as symbols to encode the
time series. Observe that the multivariate series is now en-
coded as a single symbol sequence. This sequence of cluster
labels is then analyzed to detect the change points. See
Fig. 5 for an illustration of this approach.

4.2 Motif mining
Already we have suitably raised the representation from

multivariate numeric data. We raise the level of abstrac-
tion further by doing a run-length encoding of the symbol
sequence and noting where transitions from one symbol to
another occur. This gives us a sequence of events for input
to serial episode mining as illustrated below.

Symbol Sequence : d d d b a c c d d d d c b

⇓
Event Sequence : 〈(d-b, 4), (b-a, 5), (a-c, 6), (c-d, 8),

(d-c, 12), (c-b, 13)〉
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Counting episode: B−>A−>B−>A

Motif occurrences on original time series

Figure 6: Illustration of motif mining in a single
time-series using frequent episodes

Frequent episode mining is now conducted over this se-
quence of transitions. We adopt the framework of serial
episodes with inter-event constraints. The structure of a
serial episode α is given as:

α = 〈E1
(0,d1]→ E2 . . .

(0,dn−1]
→ En〉 (3)

Here E1, . . . , En are the event-types participating in the
episode α and, for our domain, these event types are cluster
symbol indices. Note that a serial episode requires a total
order among the events. Each pair of event-types in α is
associated with an inter-event constraint. For example the

pair E1 → E2, is associated with (0, d1] such that in an oc-
currence of α event E2 occurs no later than time d1 of event
E1.

The mining process follows the level-wise procedure ala
Apriori, i.e., candidate generation followed by counting.

The candidate generation scheme is based on matching the
n−1 size suffix of one n-node frequent episode with the n−1
size prefix of the another n-node frequent episode at a given
level to generate candidates for the next level. The time
complexity of the candidate generation process is O(m2n),
where n is the size of each frequent episode in the given
level, m is the number of frequent episodes in that level,
since all pairs of frequent episodes need to be compared for
a prefix-suffix match.

The algorithm for counting the set of candidates episodes
is given in Algorithm 1. The count or frequency measure is
based on non-overlapped occurrences [8]. Two occurrences
of an episode are said to be non-overlapped if the events in
one occurrence appear between the events in the other oc-
currence. This notion most naturally eliminates the prob-
lem of trivial matches highlighted in [19] where a match
is found between two slightly shifted segments of the time
series. Algorithm 1 takes as input the event-sequence and
a set of candidate episodes and returns the set of frequent
episodes for a given frequency threshold θ. The algorithm
counts the maximum number of non-overlapped occurrences
of each episode with the inter-event time constraint (0, T ].
This approach also allows repeated symbols or events in the
episodes.

The worst case time complexity of the counting algorithm
is give by O(lnm), where l is the number of events in the
data sequence, m is number of candidate episodes and n is
the size of the episode. The algorithm makes one pass of
all the events in the event sequence and every time an event
that belongs to an episode is seen the data structure s for
the episode is updated. A hash map is used to efficiently
locate only a subset of relevant episodes for each event seen
in the event sequence. Since our method allows repeated
symbols, in the case of such episodes the same event can
update s structure at most n times. Therefore if the level-
wise growth of candidates is sufficiently arrested by a suit-
able choice threshold, the algorithm scales linearly with data
size.

Recall here that the events in mined frequent episodes
correspond to transitions from one symbol to another. Our
hypothesis here is that if motif occurrences are matched at
transitions under an inter-transition gap constraint, then the
corresponding time series subsequences will match under a
suitable distance metric. In addition the episode mining
framework allows for robustness to noise and scaling. The
distance metric under which such motifs can be shown to
be similar needs further investigation. None-the-less this
technique is found to be very effective in unearthing similar
time series subsequences in real data sets.

4.3 Sustainability Characterization
It is difficult (and subjective) to compare two motifs in

terms of their sustainability impact by inspecting them visu-
ally. Therefore, it is necessary to quantify the sustainability
of all motifs by computing a sustainability metric for them.
This would enable quantitative comparisons between motifs;
their categorization as ’good’ or ’bad’ from the sustainabil-
ity metric point-of-view; and, furthermore, this information
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Figure 5: (left) Illustration of change detection in multi-variate time series data. (right) Our overall method-
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could be used to provide guidance to an administrator or a
management system regarding the most ’sustainable’ con-
figurations of the chiller ensemble under a particular load.
There are several sustainability metrics, such as, power con-
sumed, carbon footprint, and exergy loss [22]. Note that
typically optimizing a sustainability metric, such as power
consumed, also minimizes the total cost of operation.

Algorithm 1 Counting occurrences of serial episodes with
inter-event time constraint [0, T )

Input: Candidate episodes C = {α1, . . . , αm}, where αi =
Eαi(1) → . . . Eαi(N) is a N -node episode, Inter-event time
constraint T and frequency threshold θ, Event sequence
S = {(Ei, ti)}.

Output: Frequent episodes F : α ∈ F if α.count ≥ θ
/*Initialize*/
waits = φ
for all α ∈ C do
α.count = 0
s = Array of size N , each cell initialized to -∞
for i = 1 to|α| do
waits[Eα(i)].append(α, s, i)

for all (Ek, tk) ∈ S do
for all (α, s, i) ∈ waits[Ek] do

if (i = 1) or (tk − s[i− 1] ≤ T ) then
/*First event or Satisfies the time constraint*/
if (i = |α|) then
α.count = α.count+ 1
Reinitialize all elements of s to −∞

else
s[i] = tk

Output F = {α : α ∈ C such that α.count ≥ θ}

In this paper, we estimate two sustainability metrics for
each motif: (1) the average COP of the motif; and, (2) a
metric reflecting the frequency and amplitude of oscillations
in utilization values. The average COP is calculated using

Eqn. 1, where the load during motif i, averaged over all its
occurrences, is used as Li, and, the averaged power con-
sumption of the motif as Pi. The power is estimated using
Eqn. 2 with a COP of 3.5 for the air-cooled and 6 for the
water-cooled chillers. The COP of a motif quantifies the
cooling effectiveness of the ensemble during that motif. In
order to estimate the frequency of oscillations of a motif, we
compute the number of mean-crossings, that is, the number
of times the utilization crosses the mean value. This is very
similar to number of zero-crossings that is commonly used
in speech processing for estimation of frequency. This, to-
gether with standard deviation of a motif, allows oscillatory
behavior to be compared.

5. EXPERIMENTAL RESULTS

5.1 Datasets
We applied our motif mining methodology to chiller data

obtained from a large HP production data center covering
70,000 square feet with 2000 racks of IT equipment. Its
cooling demand is met by an ensemble of five chiller units.
The ensemble consists of two types of chillers – three are air-
cooled and the remaining two are water-cooled. The data is
spread over three different time periods: (1) July 2, 2008 to
July 7, 2008; (2) November 27, 2008 to November 30, 2008;
and (3) December 16, 2008 to December 26, 2008; totaling
over 480 hours.

5.2 Motifs
In all, 22 motifs were discovered in the chiller utilization

data whose qualitative properties are summarized in Table 3
(more on this later). From a quantitative point of view these
motifs can be clustered into groups based on load. One such
group (Group II) is depicted in Table 1 with other quanti-
tative measures. Although each group has very similar load
levels, the COP within a group varies with the motifs. In
Group II, for instance, motif 8 has a COP of 4.87, while



Cluster

ID

Power

(in tons)

Avg Util

(in %)

Dev. #Samples Color

4 944.38 185.34 187.88 681

14 859.10 168.60 204.35 699

20 832.14 163.31 151.58 781

18 829.87 162.86 151.09 772

12 768.14 150.75 47.68 1485

19 706.24 138.60 166.98 1382

1 666.01 130.71 109.98 653

5 659.68 129.47 115.78 1299

8 597.20 117.20 40.71 3723

6 583.26 114.47 143.87 667

9 479.37 94.08 81.38 949

16 464.30 91.12 164.41 562

17 456.84 89.66 71.88 1504

15 431.86 84.75 80.54 975

11 395.65 77.65 215.82 1250

7 348.92 68.48 59.97 2330

3 326.92 64.16 58.03 4313

2 325.93 63.97 50.96 2280

13 312.77 61.38 164.51 970

10 268.89 52.77 21.08 1388

Figure 7: Characterization of operating states of the
ensemble of chillers using clustering

motif 5 is significantly more efficient at a COP of 5.4. This
information provides key insights to an administrator re-
garding motifs that are more energy efficient compared to
others. Furthermore, this information could be codified into
rules for setting chiller ensemble configuration based on the
current load.

Table 2 shows the most efficient and the least efficient mo-
tifs for Group II based on power consumption, determined
by the motif’s COP value. Also shown are the potential
power savings assuming that the least efficient motif could
be transformed into the most efficient one.

Table 3 provides a qualitative description of all the motifs.
They are grouped together manually based on similar uti-
lization behavior of each of the chillers in the ensemble. Two
factors are considered – the average utilization during the
motif, and, the oscillatory behavior. The utilization level is
labeled as low (L), medium (M) or high (H) based on the
average utilization ranges of (0, 35), (35, 65) or (65, 100), re-
spectively. The oscillatory behavior is marked (1) none (N)
– which indicates steady values with minor variations; (2)
small (S) – which indicates the values show oscillations that
have a small amplitude; and finally, (3) large (L) – which
indicates oscillations with a large amplitude. Furthermore,
units that are not operating are marked ’OFF’.

5.3 Comparing motifs 5 and 8
We investigate now in more detail the differences between

motifs 5 and 8 of Group II. While both motifs 5 and 8 have
three chillers turned on, they are of different types. In motif
8, all three operating chillers (C1, C2 and C3) are air-cooled.
In motif 5, two air-cooled (C1 and C2) and one water-cooled
chiller (C4) are running. The qualitative behavior of the
chillers in the two motifs are show in Table 3. In motif 5, one
chiller runs at high utilization (C4 at 66.5%), while the other
two run at low utilizations (11.3% and 33.8%). In motif 8,
one chiller runs at low utilization (17.63) while the other
two operate at the medium range (49.1% and 44.3%). The

amount of oscillatory behavior in the two motifs is about
the same as indicated by the average rate of mean-crossings
and standard deviation in Table 1. In both the motifs, one
air-cooled chiller show large oscillations.

5.4 Economical incentives for sustainable op-
eration

Business growth is an important factor in planning for in-
vestment in infrastructure. Chillers, of the kind described
in this paper, can cost upwards of $150k and typically, de-
preciate over 15-20 years. In the absence of intelligent man-
agement, the annual operating cost, even at 50% load, can
be equally high. Maximizing utilization and efficiency is
crucial to achieve a favorable return on investment. Oper-
ating chillers among favorable motifs that satisfy these con-
ditions will enable IT administrators to sustain growth in
business without major capital or maintenance costs. It will
not only prolong the useful life of the existing equipment
but postpone expensive retrofits and further infrastructure
investments.

The cost savings by operating in favorable motif regimes
can be quite easily characterized by multiplying the kW sav-
ings by 0.11×24×365 to obtain the annual savings in dollars
($). Here, $0.11 is assumed to be the cost per KWh (kilo
watt hour) of electricity. In this case switching from motif 8
to motif 5 gives us a nearly $40,000 in annual savings! Ex-
trapolating this cost saving to other similar motifs gives us
an idea of the utility of data mining algorithms in helping
achieve cost effectiveness.

5.5 Carbon footprint calculation
Saving 1kWh of energy is equivalent to preventing release

of 0.8 kg of carbon dioxide into the atmosphere. Based on
the energy savings number, we can calculate the reduced
carbon footprint.

Saved Power = 41kW

Saved Energy (annually) = 41kW× 8760 hrs

Reduction in Carbon footprint = 41kW× 8760× 0.8

= 287328 kg CO2

Observe that this is just the operational footprint; there is
also an “embedded carbon footprint” of the chiller unit (as
added in its manufacturing process). By maximizing oper-
ational life and utilization, we are managing this embedded
carbon in the equipment as well. In other words, we are lim-
iting the increase in embedded carbon in the environment
while delivering the cooling required.

6. DISCUSSION
We have demonstrated a powerful approach to data min-

ing for data centers that helps situate trends gathered from
sensor streams in the context of sustainability metrics use-
ful for the data center engineer. Our future work is in sev-
eral categories. First, we seek to perform streaming analysis
of the chiller data to provide real-time actionable input to
manage the operational state of chillers. Second, we seek to
explore the co-existence possibility of both short (i.e., last-
ing at most a few hours) and longer motifs (e.g., spanning
half a day to possibly multiple days) and use this informa-
tion to perform higher order minings of motifs [21], i.e., to
detect patterns composed of motifs themselves. Third, we
seek to use other sustainability metrics to characterize the



Table 2: The most and least efficient motif for each group and the potential power savings if the operational
state of the chiller ensemble could be transformed from the least to the most efficient motif.

Load (KW) Most Efficient Least Efficient Potential Power Savings
Ave. Std Motif Motif KW %

Group II 2089 35 5 8 41 9.83%
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Figure 8: Two motifs with similar load but widely varying levels of efficiency. Observe how the least efficient
motif transitions to the most efficient motif in the given time period.

Table 1: Summary of the quantitative measures as-
sociated with motifs. Shown here are statistics for
motif in one of the load groups.

Load Power Span
Motif (KW) (KW) COP MC Std (min) N
Group II

8 2028 417 4.87 .042 5.05 50 10
2 2073 400 5.18 .048 4.28 113 17
5 2076 384 5.4 .048 4.25 49 35
4 2083 387 5.38 .048 4.31 82 23
6 2119 422 5.02 .044 4.08 51 23
3 2121 414 5.13 .042 4.31 119 11
1 2123 395 5.38 .046 4.39 172 10

MC – number of mean-crossings per minute
N – number of occurrences of the motif

motifs; for instance, through lifetime analysis to convert the
loss in a chiller’s lifetime into a power number.

Eventually, we would like to use temporal data mining
to uncover a complete model of the data center which can
then be tuned/controlled/optimized, thus making data min-
ing an integral part of the data center architecture. To
achieve this, we need to model the transfer function in a
way that encapsulates workload changes, manual steering of
chiller operation, and other intermittent transients and re-
coverable faults. We propose to use our motifs as a handle
to redescribe time series data so that significant portions

of time series progression can be captured via state transi-
tion diagrams. Control strategies can then be assessed by
superimposing their likely trajectories over the state tran-
sition diagrams and quantifying their stability characteriza-
tions. This will enable us to use data mining not simply
as a post-processing data interpretation phase but to actu-
ally form dynamic models of data center chillers and their
control strategies.

7. REPEATABILITY
We are committed to repeatability of our results. Datasets

and source codes used in this paper are available at:
http://neural-code.cs.vt.edu/chiller
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