
Multivariate Long-Term State Forecasting
in Cyber-Physical Systems:

A Sequence to Sequence Approach
Nikhil Muralidhar
Computer Science

Virginia Tech
Arlington, USA
nik90@vt.edu

Sathappan Muthiah
Computer Science

Virginia Tech
Arlington, USA
sathap1@vt.edu

Kiyoshi Nakayama
Energy Management
NEC Labs America

San Jose, USA
knakayama@nec-labs.com

Ratnesh Sharma
Energy Management
NEC Labs America

San Jose, USA
ratnesh@nec-labs.com

Naren Ramakrishnan
Computer Science

Virginia tech
Arlington, USA
naren@cs.vt.edu

Abstract—Cyber-physical systems (CPS) are ubiquitous in
several critical infrastructure applications. Forecasting the state
of CPS, is essential for better planning, resource allocation and
minimizing operational costs. It is imperative to forecast the state
of a CPS multiple steps into the future to afford enough time for
planning of CPS operation to minimize costs and component
wear. Forecasting system state also serves as a precursor to
detecting process anomalies and faults. Concomitantly, sensors
used for data collection are commodity hardware and experience
frequent failures resulting in periods with sparse or no data. In
such cases, re-construction through imputation of the missing
data sequences is imperative to alleviate data sparsity and enable
better performance of down-stream analytic models.
In this paper, we tackle the problem of CPS state forecasting
and data imputation and characterize the performance of a
wide array of deep learning architectures – unidirectional gated
and non-gated recurrent architectures, sequence to sequence
(Seq2Seq) architectures as well as bidirectional architectures –
with a specific focus towards applications in CPS. We also study
the impact of procedures like scheduled sampling and attention,
on model training. Our results indicate that Seq2Seq models
are superior to traditional step ahead forecasting models and
yield an improvement of at least 28.5% for gated recurrent
architectures and about 87.6% for non-gated architectures in
terms of forecasting performance. We also notice that bidi-
rectional models learn good representations for forecasting as
well as for data imputation. Bidirectional Seq2Seq models show
an average improvement of 17.6% in forecasting performance
over their unidirectional counterparts. We also demonstrate the
effect of employing an attention mechanism in the context of
Seq2Seq architectures and find that it provides an average
improvement of 57.12% in the case of unidirectional Seq2Seq
architectures while causing a performance decline in the case
of bidirectional Seq2Seq architectures. Finally, we also find that
scheduled sampling helps in training better models that yield
significantly lower forecasting error.

Index Terms—Cyber-Physical Systems, Deep Learning, Se-
quence to Sequence Models, Long-term time series forecasting,
Data Imputation

I. INTRODUCTION

Cyber-physical systems (CPS) represent a closely coupled
relationship between software systems and physical processes
controlled through actuators. The data relating to process
operation characteristics is logged through the Supervisory

Fig. 1: Model representing the Gasoil Heating Loop CPS
presented by Filonov et al. [1]1

Control and Data Acquisition (SCADA) system which is a
protocol that provides process monitoring capabilities. In addi-
tion to process monitoring (‘nowcasting‘), it is also important
to predict future system states (‘forecasting‘) of complex
CPS to enable better planning, system process optimization
and resource allocation. For example, it is important for
power generation stations to accurately forecast far into the
future to decide the level of power generation to account for
peak demand . The US National Academy of Engineering
has highlighted the importance of sustainable and blackout-
free electricity generation and distribution, [2]. An important

1Figure courtesy of Dr. Pavel Filonov.



facet for sustainable blackout-free electricity generation is the
effective long-term forecasting of peak energy demand.
CPS forecasting models also serve as a pre-requisite for
anomaly detection systems [3] in which the anomaly detector
attempts to detect significant deviations of the system oper-
ational state from previously forecast system states. Another
important application of CPS forecasting systems is for pre-
dicting time to failure or predicting the wear of components
in a system (a.k.a Remaining Usable Life or RUL prediction).
Forecasting systems can use data from previous instances
of failure of components in the system to predict when the
component will fail next [4].
The proliferation of low-cost sensors and availability of low
cost, low power, computing devices coupled with the commu-
nication network revolution has lead to CPS systems becoming
ubiquitous in contemporary times [5]. However, these low cost
hardware devices quite often fail, leading to some periods
of system operation being free of process monitoring and
consequently without any data logging. These disruptions in
data collection could be due to sensor faults, communication
malfunctions, environmental interference or human error [6].
Data that is representative of full system operation is imper-
ative for effectively training forecasting models to learn the
complete spectrum of the characteristics of the CPS. It is
with this goal of reinstating data integrity and completeness
of CPS datasets that we propose a bi-directional Seq2Seq (Bi-
Seq2Seq) deep learning model for forecasting immediate and
long-term state of a CPS as well as for imputing periods
of missing data from the CPS data logs through sequence
reconstruction. Our contributions are as follows:
• We develop a bidirectional Seq2Seq model (Bi-Seq2Seq)
capable of producing short and long-term forecasts of system
operational states of a CPS.
• We characterize the performance of the Bi-Seq2Seq model
as well as other deep learning models in short and long-term
forecasting of the state of a CPS.
• We augment Bi-Seq2Seq to perform data imputation to
reconstruct missing data sequences in the CPS data logs and
evaluate reconstruction performance.
We demonstrate the effectiveness of Seq2Seq models on
multivariate time series state forecasting tasks using the Gasoil
heating loop (GHL) CPS dataset.

II. DATASET DESCRIPTION

The GHL model as detailed in [1] and depicted in Fig. 1,
is used to generate the dataset and consists of three tanks,
receiving tank (RT), heating tank (HT) and collection tank
(CT). The goal of the GHL model is to heat gasoil from
RT to a temperature of 60◦ Celsius so that it reaches a
viscosity wherein it can be transferred to CT. At each state, a
portion of the gasoil from RT is transferred into HT, heated to
the requisite temperature and transferred back into RT. This
process of heating a small portion of the gasoil from RT is
carried on until the entire gasoil in RT reaches the requisite
temperature. The payload in RT is then transferred over into
CT. The empty RT is re-filled with a fresh batch of gasoil from

an external resource and the process is repeated. This process
can be carried out for any fluid but in the experiment in [1],
the fluid chosen was water.
The dataset generated is a multi-variate time-series consisting
of 19 variables corresponding to the different components in
the GHL cyber-physical system. Fig. 2 represents a visualiza-
tion of time-series generated by a subset of components that
we use in our experiments and it helps to comprehend the
complexity of the modeling task at hand. Fig. 2d represents
the fluid level of RT at different time steps. We can observe
that the time series have weak auto-correlation and show
more of a slow changing trendy behavior interspersed with
sudden increasing or decreasing steps. Fig. 2b represents the
HT temperature over time and the variation in temperature
can be observed as being a highly non-linear process with
a cyclic pattern. The time series in Fig. 2a and Fig. 2c show
more of a discrete nature in that each time series assumes only
one of two values indicating a switching mechanism. Hence,
the generated dataset has complex nonlinear, non-stationary
characteristics. It is non-trivial for traditional auto-regressive
models to learn effective representations in such non-linear,
non-stationary scenarios as they require certain stationarity
assumptions to be satisfied to effectively model sequential
data. Hence, we adopt recurrent deep learning architectures
to address this problem of sequence forecasting for CPS.

III. RELATED WORK

Time Series Forecasting Methods: Time series forecasting
is a well researched topic in many fields and there have been
a variety of models proposed like the popular auto-regressive
models (AR, MA, ARIMA) as well as state-space models
like Kalman and particle filters [7]. Such traditional models
however, require certain domain rules governing process state
transition (as in the case of Kalman filters) to be known or
others like the auto-regressive set of models require certain
assumptions made regarding the properties of the time series
themselves to hold (e.g. stationarity). In our application, we
employ a highly non-linear, non-stationary real world multi-
variate time series dataset of a cyber physical system. The data
is described in Section II.
Deep Learning for Sequence Modeling: Sequence to se-
quence models have been extremely popular in the natural
language processing domain. They were initially proposed
for the sequential data modeling task of neural machine
translation (MT) [8]–[11]. Since then, multiple variants of
encoder decoder models have been employed for machine
translation and natural language tasks like abstractive text
summarization [12]–[19]. Sequence to sequence models have
also been successfully used for speech recognition tasks [20]–
[23].
In [1], [24], [25] the authors employ sequence to sequence
deep learning models for performing forecasting and use the
forecasts to detect anomalies in the operation of CPS. In
[4], the authors use convolution and pooling in convolutional
neural networks along the temporal dimension over multi-
channel CPS sensor data to incorporate automated feature



(a) Heater Act. (b) Heating Tank Temp. (c) Injection Valve Act.

(d) Receiver Tank Level. (e) Receiver Tank Temp.

Fig. 2: Temporal characteristics of the different time-series used for evaluating models. We can see that the time-series
in Fig. 2a and Fig. 2c correspond to turning the heater and injection valve on respectively. These two time-series have
a switching nature. The heating tank temperature and receiver tank temperature sensors exhibit a highly non-linear
cyclic behavior. Finally, the receiver tank level shows a slowly changing trending behavior.

learning from raw sensor signals in a systematic way to
perform Remaining Useful Life (RUL) estimation.
Data Imputation Methods: Most of the data imputation
research adopts a clustering or nearest neighbor approach.
We outline the most recent work on data imputation [6], in
which the authors employ stacked autoencoders for performing
nearest neighbor based data imputation for missing CPS data.
However, their system is capable solely of imputation.
In this paper, we propose and characterize the performance of a
bi-directional sequence to sequence (Bi-Seq2Seq) architecture
capable of performing long-term forecasts of the operational
states of a CPS as well as re-constructing missing data
sequences in the CPS data logs through deep data imputation
techniques.
The rest of the paper is organized as follows: section IV
discusses some requisite background information while the
forecasting and data imputation problems are formally stated
in section V. The experimental setup is described in section VI,
followed by discussion of experimental results in section VII
and conclusion in section VIII.

IV. BACKGROUND

Recurrent neural networks (RNN) are components that
are variants of traditional feed forward neural networks, able to
handle variable sequence length inputs. Traditional RNNs are
different from feed forward networks as they are able to take
advantage of sequential information in the inputs as opposed
to treating inputs as independent from each other. An RNN
consists of a vector ht ∈ Rh×1 where ht denotes the hidden
state at time t. Eq. 1 shows how each hidden state is computed
as a function of the previous hidden state and the input xt at
time t. g(·) is usually a non-linear function like a sigmoid or
a hyperbolic tangent. Let xt ∈ Rn×1 denote a multi-variate
input vector to the RNN at time t. Then, the output of the
RNN at time t is x̂t ∈ Rn×1.

ht = g(Uxt + Wht−1)

x̂t = f(Vht)
(1)

Gated Network Units: RNNs are unable to effectively prop-
agate long-term dependencies due to vanishing or exploding
gradients [26]. Hence, variants of RNNs were proposed to
improve upon long-term dependency retention. A detailed
explanation of two popular variants namely the Long Short-
Term Memory Unit (LSTM) and the Gated Recurrent Unit
(GRU) have been undertaken in [27]. Both these gated variants
propose additive state updates as opposed to the traditional
RNN in which the content of the current recurrent unit is
completely replaced as a function of the previous hidden state
and current input [27]. The LSTM, initially proposed in [28],
uses purpose-built memory cells (with hidden states as well
as cell states) and gating mechanisms to forget irrelevant
information while selecting and storing relevant information
from the input sequence and previous hidden and cell states
enabling LSTM networks to exploit long-range dependencies.
We base our LSTM implementation on the variant proposed
by Graves et al. in [29]

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ottanh(ct)

(2)

In Eq. 2, it represents the input gate, ft the forget gate,
ct the cell state and ot the output gate at time step t.
The vector ht represents the hidden state vector at time
step t. Each matrix W∗ is a weight matrix learned within
each gate, used to perform functions like forgetting irrelevant
parts of the representations while adding new relevant parts



to the representation thereby improving model performance.
The σ, tanh represent logistic sigmoid and hyperbolic tangent
transfer functions respectively. Gated Recurrent Units (GRU)
are implemented as described by Cho et al. in [12]. The
GRU also employs a gating mechanism for inclusion and
exclusion of information from memory similar to an LSTM.
However, unlike the LSTM, a GRU cell has fewer parameters
as it consists of only two gates and also because it does not
maintain any cell state.

zt = σ(Wxzxt +Wxhht−1 + bz)

rt = σ(Wxrxt +Whrht−1 + br)

h′t = σ(Wxhxt +Whh(rt � ht−1) + bh)

ht = zt � ht−1 + (1− zt)� h′t

(3)

Each GRU unit (Eq. 3) accepts a vector xt as its input at
time step t and the hidden state from the previous time step (i.e
time step t−1), ht−1. The input and previous hidden state are
passed through the update gate zt which decides how much
information to retain for the future. The reset gate rt informs
the model about information from the past that is irrelevant and
can be forgotten and also operates on the input xt and previous
hidden state ht−1. Finally the input xt, the reset gate rt and
the previous hidden state ht−1 are used to produce h′t which is
the hidden state for time step t with information from the past
that the reset gate has deemed important. Finally, the hidden
state at time t (i.e ht) is calculated as a convex combination
of the previous hidden state and h′t. It must be noted that the
GRU unit uses only one memory cell for storing the hidden
representation and does not use any extra memory like the
LSTM does. The differences between the GRU and LSTM
cells are in how the actual gating mechanisms are implemented
and the fact that the GRU maintains only a hidden state unlike
in the case of an LSTM cell which has both a hidden state and
a cell state thus increasing the number of model parameters
and consequently the training complexity of LSTMs.
Both GRUs and LSTMs have mostly been trained on tasks
in natural language processing and primarily in sequential
modeling tasks like machine translation. Such attempts have
generally found GRUs and LSTMs to have comparable perfor-
mance across various tasks in the Natural Language Processing
(NLP) domain [27]. We will now define equivalent sequence
modeling tasks for Seq2Seq models in the context of time
series.

V. PROBLEM FORMULATION

Definition 1. (Multivariate Time-series): A multivariate time
series X = {x1, ...,xm} is an ordered set of m vector valued
quantities where each xi ∈ R1×k represents the scalar values
of k time-series variables at the ith time step.

At some time-step t, we wish to forecast future states of
the CPS for monitoring and planning purposes. We consider
forecast lengths exceeding t + 10 time steps ahead to be
long-term forecasts and all other forecasts to be short-term
forecasts. Hence, in this paper, we address the problem of

multi-step ahead (a.k.a sequence) forecasting of the system
state of a CPS.

Problem 1. Given a multivariate time-series X of system
operational characteristics of a CPS, develop a model for
short and long-term forecasting of system state.

We treat the multi-step ahead forecasting task described in
problem 1 as one of sequence generation. The problem of
sequence generation has been popular in natural language
processing applications like machine translation. There, the
problem is, given a sentence (i.e. sequence of words) in a
source language, to generate a sentence in the target language
with the same meaning. Sequence to Sequence (Seq2Seq)
models are a popular model architecture used for this purpose.
Time series sequence generation: A sequence
X

(i)
t:t+w = {xt,xt+1, ..,xt+w} represents a multivariate

time series of sequence length w, henceforth referred
to as X(i) for brevity. Given a set of j sequences
{X(1),X(2), ..,X(j)} each of length w, of CPS operational
characteristics, the forecasting model predicts the system state
for all time-steps in sequence j + 1 represented as Y(j+1) ∈
Rw×k, where Y(j+1) = {yjw+1, ..,y(j+1)w}.

A. Short-Term Forecasting

Traditionally in time series forecasting applications,
models are generally trained with a short-term predic-
tion loss (mostly one step-ahead). That is, given data
X

(i)
t:t+w = {xt,xt+1, ..,xt+w} , the model tries to predict

xt+w+1. Recently it has been shown that deep recurrent
architectures like LSTM/GRU show superior performance to
traditional auto-regressive and moving average models. Deep
Recurrent architectures like LSTM, GRUs are adept at mod-
eling highly non-linear long sequences due to their ability
to remember and propagate forward important parts of the
representation. Thus we employ deep recurrent models for
the purpose of long-term time series state forecasting and
imputation in CPS.

The models trained with single step-ahead losses can be
extended to do multiple step-ahead prediction by feeding the
forecast at the current step as input to the next step. However,
this approach also passes on the error at the current step
to the next, thereby leading to the error increasing with the
number of step-ahead forecasts the model makes. To overcome
this problem and to train sequence forecasting models on
multivariate time series data with highly non-linear structure
(Fig. 2) it is important to train a model with multi-step ahead
loss. Deep learning models are adept at modeling non-linear
function spaces and one such deep architecture that allows
us to train deep learning models on sequential data is the
Sequence to Sequence architecture.

B. Long-Term Forecasting

1) Sequence to Sequence (Seq2Seq) Models: Seq2Seq mod-
els also termed encoder-decoder models are a neural network
architecture introduced in [8] that learn to encode a variable



Fig. 3: Sequence to Sequence (a.k.a Encoder-Decoder)
model architecture used for forecasting and sequence re-
construction.

length input sequence X(i) into a fixed length vector and
use the learned sequence representation to predict another se-
quence. It is typically used in machine translation applications,
wherein the encoder learns a fixed size representation of an
input sentence in one language and uses it in the decoder
to predict the sentence in a different language. We use this
architecture to learn a representation of a window of values
of the input series to predict the next window of values, i.e.,
do window size step-ahead forecasts. Given that sequence to
sequence models are trained with multi-step loss, the problem
of error accumulation with number of forecast steps is reduced.
Fig. 3 illustrates the architecture of a seq2seq recurrent model.
The encoder (dotted blue box) consists of w recurrent units
where each unit accepts a vector xi ∈ R1×k representing
the values of the k time series at time step i. Each encoder
unit hei then updates its state vectors based on the input and
the previous hidden states passed into hei. The hidden state
of the last encoder cell hew can be considered to represent
the summary of the input sequence and is termed the context
vector represented by c ∈ Rh×1 where h denotes the hidden
size specified as a hyper-parameter. The context vector is
then passed as input into the decoder (dotted green box). The
first decoder cell hd1 receives as input, the context vector c
along with a special start of sequence (<SOS>) character to
indicate the start of a new decoder sequence. In our case, the
start of sequence character is −1. Each subsequent decoder
cell takes the output of the previous decoder cell as input
along with the hidden state of the previous decoder cell. If
sequence X(i) is passed into the encoder, then the decoder
outputs predictions for sequence X(i+1). Each decoder cell
outputs yj ∈ R1×k (refer Fig. 3) representing predictions for
the jth vector xj in the sequence X(i+1).

arg min
θ

1

m

m∑
i=1

(g(Y(i+1)|X(i))−X(i+1))2 (4)

Eq. 4 represents a mean squared error loss function which
is used to train the Seq2Seq models. It must be noted that
only the output predictions of the decoder are compared with
those of the true sequence. Since the decoder does not see
any ground-truth sequence data and relies only on the context
vector c it receives from the encoder, the decoder essentially
acts as a sequence generator capable of generating sequences
representative of future operational characteristics of the CPS.
Each decoder unit accepts as input the predictions of the
previous unit. This causes slow convergence and instability
during training because, at each step of the decoder we make
use of the predictions from prior units. However, during
training, we have the ground-truth values and thus it is possible
to make use of these ground-truth values to speedup conver-
gence and introduce more stability to the training procedure.
This procedure of using ground-truth values as input to each
decoder unit rather than having connections from the output
of preivous units to the input of the next unit is called teacher-
forcing. Though using teacher-forcing speeds up convergence,
it can lead to over-fitting as the model may learn to become
overly reliant on ground truth inputs (which is not available
at testing). This phenomenon called exposure bias has been
elucidated in [30], [31]. Thus it is essential to strike a
middle ground between teacher forcing and the normal training
procedure. One such method is Scheduled Sampling(SS). It
is a procedure used during training of encoder-decoder (i.e.
Seq2Seq) models in which the decoder is first fed inputs from
the ground truth data distribution at the beginning of model
training and through the course of training, the percentage of
sampling from the ground truth data distribution is gradually
reduced in favor of the decoder using its own previous
predictions as input to subsequent decoding steps. Finally,
the fully trained encoder-decoder model uses only its previous
predictions and does not rely on the ground truth data as input
to the decoder.

C. Sequence to Sequence models with Attention

In Seq2Seq architectures, the encoder has to learn to repre-
sent the whole input sequence using a single fixed size vector
(the context vector c ∈ Rh×1). In the case of very long
sequences (common in time-series applications), this becomes
a limitation as the representative capacity of the model is
curtailed. Attention [32] is a mechanism used to overcome
this shortcoming of encoder-decoder models. Attention, at
each decoder step, learns to pay different levels of focus
to each encoder unit, thereby allowing each decoder unit to
learn suitable combinations of the encoder hidden states . This
keeps the encoder decoder model from having to limit itself
to one single representation (or view) of the encoder sequence
for all the decoder steps thereby increasing the representative
capacity of the model. The model architecture for Seq2Seq
models with attention is shown in Fig 4.

The formulation of the Seq2Seq decoder with an attention
mechanism is given in Eq. 5 (encoder formulation is the same



x1 xw

Ct

at

FCN

Decoder RNN

Encoder RNN

hdj

ForecastsHistorical data

hdj

yw+1 y2w

Fig. 4: Sequence to Sequence models with attention ar-
chitecture. At each step of the decoder (green boxes),
the hidden state produced from the decoder RNN unit
(light green units) is combined with a weighted average
of the encoder hidden states. The weights which govern
how the encoder hidden states are combined to yield the
new attentional hidden state are calculated through an
attention mechanism.

as before).

hdj = f(yj , hd(j−1))

aj = align(hdj , He)

cj = ajHe =
∑
k

αkhek

h̃dj = tanh(Wc[cj ;hdj ])

(5)

In Eq. 5, f(·) represents a recurrent unit like RNN, LSTM
or GRU. hdj ∈ Rh×1 refers to the decoder hidden state at
step j, yj ∈ R1×k is the prediction output from the previous
decoder state. aj ∈ Rw×1 are the weights (alignment scores)
learned for the encoder states by the attention mechanism.
For calculating the alignment scores we use a softmax over
a fully connected unit that takes as input the vector hdj and
He ∈ Rw×h, the set of all encoder hidden states as in Eq. 6.

align(hdj , He) =
exp(He, hdj)∑
exp(He, hdj)

(6)

In Eq. 6, the denominator is a sum of the exponentiation
of hdj multiplied with each encoder hidden state in He and is
used to perform a Hadamard division of the numerator yielding
aj ∈ Rw×1, the attention vector for the jth decoder unit.

So far, we have discussed architectures that can be used
for state forecasting. All such architectures assume continuous
data is available for training. However, in real-life applications,
the training data obtained from sensors can have missing
periods. Thus it is essential to come up with techniques to
re-construct these missing sequences (or periods) so that the
aforementioned forecasting models can be trained.

Problem 2. Augment a CPS state forecasting model to address
the problem of missing data reconstruction, ubiquitous in
sensor data based CPS systems.

SCADA systems use commodity sensor hardware to collect
data and quite often face problems of data sparsity or missing
data due to sensor failure. We augment our forecasting model
to address the problem of re-construction of such missing data
sequences. Each encoder cell hei in Fig 3, has a backward
dotted arrow feeding into it from cell hei+1 in addition to
a forward solid arrow from hei to hei+1. This architecture
termed a Bi-directional Seq2Seq (Bi-Seq2Seq) model allows
the inputs to be passed into the encoder in the forward and the
reverse direction thus enabling stronger temporal dependence
discovery leading to better representation learning [33], [34].
The number of hidden states is doubled in the case of bi-
directional models as the backward path has a separate set
of hidden states than the forward path in the encoder. The
context vector in this case is constructed as the concatenation
of the forward path hidden state hew ∈ Rk×1 and the backward
path hidden state he1Rk×1. Let us consider the case of a
missing sequence X(i) to be re-constructed by the bidirec-
tional seq2seq model. Then, the sequences X(i−1), X(i+1) are
concatenated and passed into the encoder and the decoder
returns its predicted reconstruction of the missing sequence
X(i).

VI. EXPERIMENTAL SETUP

Network Architecture: All experiments are conducted
using recurrent network models with a single hidden layer.
Each model has been trained for 100 epochs with a learning
rate of 0.001. We test gated recurrent units - LSTM, GRU - as
well as the non-gated RNN recurrent unit in our experiments.
Each of the aforementioned recurrent units are employed with
step-ahead forecasting, unidirectional sequence to sequence
(Seq2Seq) and bidirectional Seq2Seq (Bi-Seq2Seq) architec-
tures. We employ tanh activation functions followed by a
linear layer to produce the predicted output at each time-step.
Finally, we also incorporate linear scheduled sampling [31]
into the training procedure of Seq2Seq models to yield better
trained networks. Unless otherwise stated, for fair performance
comparison, we have used dropout p = 0.0, hidden size
h = 96 for all our experiments.
Data Preprocessing:The scale of each time series varies
widely for the GHL system and hence we adopt the popular
mean normalization scheme to scale the data. For each time-
series x ∈ Rm×1 in the GHL dataset, Eq. 7 describes the
normalization scheme we employ to scale x in the range (1,-
1).

x∗ =
x− x̄

max(x)−min(x)
(7)

Data Imputation: For data imputation experiments, we gen-
erate data by randomly sampling a set of time points Tw =
{ti, ti+1, .., ti+w} and nullifying data from ti to ti+w. Here, w
is the sequence length of the missing sequence Tw and it can



be 1500 or 2000 for this experiment. We compare two types of
bidirectional Seq2Seq models – 1) a forecasting model which
takes as input ti−w to ti and predicts the missing sequence and
2) a model which looks at sequences appearing both before
and after the missing sequence, i.e, ti−w to ti and ti+w to
ti+2∗w and predicts the missing sequence.

VII. EXPERIMENTAL RESULTS

We try to answer the following questions through our
experiments

1) How do Seq2Seq architectures compare to step-ahead
forecasting architectures in short and long-term time
series forecasting applications?

2) Do bi-directional models yield superior forecasting per-
formance to their unidirectional counterparts?

3) Do procedures like scheduled sampling help in training
more effective models?

4) How does the representation learning capability of re-
current units vary across different models?

5) Can the aforementioned forecasting architectures be
effectively utilized in contexts with missing data for data
sequence reconstruction?

6) Do attention mechanisms help improve Seq2Seq perfor-
mance?

1) Short-Term Forecasting Performance: Table I depicts
the comparative performance of Seq2Seq models and step-
ahead forecasting recurrent models on a short-term 10 step
ahead forecasting task. We observe that the Seq2Seq models
perform significantly better than their step-ahead forecasting
counterparts. Models with the RNN recurrent unit yield fore-
casts that are significantly inferior than models that use the
LSTM, GRU units in all cases. The Seq2Seq-GRU model
(S2S GRU) exhibits a superior performance to all other models
employed in the short-term forecasting task.

Model w MSE Percentage
Improvement

RNN 10 0.031 -90.32
LSTM 10 0.0054 -44.44
GRU 10 0.0042 -28.57
S2S RNN 10 0.0037 -18.92
S2S LSTM 10 0.0032 -6.25
S2S GRU 10 0.003 –

TABLE I: Performance comparison between Seq2Seq and
traditional step-ahead forecasting models for short-term
forecasting (sequence Length (w)=10 and hidden size (h)
= 32). We can see that even for short sequence lengths,
Seq2Seq models outperform basic recurrent models. The
last column indicates the percentage improvement of
the Seq2Seq-GRU (S2S GRU) model over the rest of
the models. We notice that Seq2Seq-GRU significantly
outperforms all other competing models and that Seq2Seq
models outperform their non Seq2Seq counterparts.

2) Long-Term Forecasting Performance: Fig. 5 depicts
the comparative forecasting performance of two types of
model architectures the Seq2Seq architecture (S2S) and the

Bidirectional Seq2Seq architecture (Bi-S2S) each with RNN,
LSTM, GRU units. In each case, we observe that the RNN
model is the worst performing unit. Both the unidirectional
and bidirectional GRU models outperform their LSTM coun-
terparts. In the case of LSTMs and GRUs, the bidirectional
LSTM and GRU outperform their unidirectional counterparts
respectively. We believe this is because of the stronger tempo-
ral relationships learned by passing the same sequence in the
positive and negative temporal direction [33] thereby tapping
into the full representative power of the LSTM and GRU cells.
The same effect is not observed in the case of RNNs as the
basic RNN cell is unable to effectively propagate temporal
dependencies over long sequences. Finally, we see that the Bi-
directional Seq2Seq GRU model yields the best performance
across all window lengths, significantly outperforming all
other models in terms of forecasting performance. Also, it
can be observed that the quality of the forecast degrades with
increasing sequence length.

Fig. 5: Sequence Length vs. MSE (lower is better).
Bidirectional models in general seem to show better perfor-
mance (lower MSE) as compared to their uni-directional
counterparts, with the GRU based variant performing the
best among all models. The usage of bi-directional layers
seem to help the gated variants much more than the non-
gated simple RNN based models. The Bi-S2SGRU model
provides approx. 60% reduction in MSE over S2SRNN.

3) Effect of Scheduled Sampling on model training:
Fig. 6 shows the percentage improvement in performance of
bi-directional Seq2Seq model (Bi-S2SGRU(SS)) (forecasting
performance characterized in Fig. 7) and Seq2Seq model
(S2SGRU(SS)), both using GRU as its recurrent unit and
trained with scheduled sampling, over the same models trained
without scheduled sampling i.e Bi-S2SGRU, S2SGRU. We
can see that there is a significant performance improvement
obtained with scheduled sampling in the case of bidirectional
Seq2Seq models. The improvement is negligible for the unidi-
rectional Seq2Seq models (S2SGRU) in the case of sequence
length 90. However, the performance improvement increases
with increasing sequence length (w) yielding a maximum
performance improvement of 8.71% at w=150 and a mean per-
formance improvement across all sequence lengths of 4.87%.
Scheduled sampling offers significantly higher performance
improvement in the case of bidirectional Seq2Seq models with



Fig. 6: Impact of Scheduled sampling based training on
forecasting error (MSE) - (higher is better). The bidi-
rectional models trained with scheduled sampling show
a max performance improvement of about 44% (for
sequence length 150) whereas for uni-directional models,
training with scheduled sampling only provides about a
9% increase at the most. Also we can see that effect of
using scheduled sampling becomes more pronounced as
the sequence length increases.

a maximum percentage improvement of 43.73% for w=150
and a mean performance improvement of 25.89% across all
sequence lengths.

4) Seq2Seq Model Representation Learning Characteri-
zation: We delve deeper into what makes Seq2Seq models
(with and without scheduled sampling) perform better than
simple recurrent models. For this, we show a heatmap plot
of the learned hidden to hidden transformation weights of a
GRU cell trained in a Seq2Seq architecture (with and without
scheduled sampling) as well as a simple recurrent architecture.
The heatmap is shown in Fig. 8. We can see that bidirec-
tional Seq2Seq models learn sparser weights than the simple
recurrent models. Also the hidden to hidden transformation
weights learned in the update gates of a GRU cell in the
Seq2Seq models show more definitive striations or patterns
with the scheduled sampling variant being more sparse. There
are no discernible patterns in the learned weights of a simple
recurrent GRU model. Thus we can say that Seq2Seq models
learn higher quality data representations relative to their non
Seq2Seq counterparts.

5) Data Imputation:: For data imputation, we randomly
remove 100 sequences of length w and then try to reconstruct
them using a model that uses – 1) only the past information
and 2) both past and future information. We refer to the
second variant as Bi-S2S(IMP). To perform the data impu-
tation experiments, we naturally choose the best models from
previous experiments i.e Bidirectional Seq2Seq models trained
with Scheduled Sampling (Bi-S2S(SS)) and employ the RNN,
LSTM, GRU recurrent units with this architecture. The results
for data imputation are presented in Table II. Using future

information leads to only slightly improved performance in
RNN and GRU architectures. Thus, we conclude that Bi-
Seq2Seq models used for forecasting are effective in sequence
reconstruction also and we do not need any separate model for
imputation.

Cell w Bi-S2S(IMP) Bi-S2S(SS)

RNN
1500 0.0902 0.0922
2000 0.091361 0.091812

LSTM
1500 0.0933 0.0915
2000 0.0914 0.0901

GRU
1500 0.0898 0.0904
2000 0.091 0.0915

TABLE II: Imputation performance (in terms of MSE)
comparison of bidirectional models that use only past
information (Bi-Seq2Seq(SS)) with models that use both
past and future information (Bi-Seq2Seq(IMP)). We see
that GRU based models perform better than LSTM and
RNN in the imputation task. Also, the Bi-Seq2Seq(SS)
model that uses only past information yields inferior but
comparable performance to Bi-Seq2Seq(IMP).

6) Importance of Attention in Seq2Seq Models:: Table III
shows the percentage improvement in terms of MSE for the
Seq2Seq model with attention over the normal Seq2Seq model
(i.e without attention). The table also provides the effect of
attention for Bi-Seq2Seq models. Specifically,
• We can see that using attention significantly helps im-

prove performance of unidirectional Seq2Seq models for
cases of longer sequence lengths as expected. This is
because, for short sequences, it is possible for the encoder
to store all necessary information in a single fixed size
context vector and thus attention is not very helpful.

• We also notice that attention does not help in case of Bi-
Seq2Seq models. We believe that using both backward
and forward recurrent layers yields a final context vector
that has a good representation of both the beginning
and the end of the input sequence. Thus, an attention
mechanism to encode long-term dependencies into the
context vector does not have much effect. On the other
hand, in unidirectional Seq2Seq models, the final hidden
state of the encoder has a better representation of the
latter part of the input sequence than its beginning (using
gated architectures like LSTM and GRU only reduces
this problem but it does not eliminate it). Using attention
models in this context, allows each decoder unit to use
all hidden states of the encoder, allowing for better rep-
resentation learning of the entire input sequence encoded
into the context vector.

Our claim of higher quality model representation learning
using the attention mechanism is further corroborated by Fig. 9
which depicts a comparison between the mean squared error
per decoder unit (or time step) of a Seq2Seq model without
attention and a Seq2Seq model with attention. Both the models
use GRU as the recurrent unit and the sequence length of the
predicted sequence (i.e decoder sequence) is 90 time steps.



(a) Heater Act. (b) Heating Tank Temp. (c) Injection Valve Act.

(d) Receiver Tank Level. (e) Receiver Tank Temp.

Fig. 7: Seq2Seq model predictions for each time-series in the Gasoil heating loop dataset with a prediction sequence
length (w) of 90. We depict the predictions (in green) and the ground-truth (in blue) for a sample time period in the
testing phase of the bidirectional sequence to sequence model trained with scheduled sampling (Bi-S2S(SS)). It must
be noted that the predictions are not clearly visible in Fig. (a)-(c) and Fig. (e) as they are superimposed on the actual
values indicating that the Bi-S2S(SS) forecasting model is able to yield very good long-term forecasts.

0.4

0.2

0.0

0.2

0.4

0.4

0.2

0.0

0.2

0.4

R
e
se

t 
G

a
te

U
p
d
a
te

 G
a
te

C
a
n
d
id

a
te

BiS2SGRU Bi-S2SGRU(SS) GRU

Fig. 8: Heatmap of GRU weight matrices (reset gate,
update gate and candidate). We see that Bi-Seq2Seq models
learn sparser weights than simple recurrent models. Also
the update gate weight matrix in Bi-Seq2Seq models shows
definite patterns, with the scheduled sampling variant (Bi-
S2S(SS)) being sparser.

• We observe from the figure that the additive error in
the Seq2Seq model without attention, causes the MSE to
increase at a significantly higher rate compared to the rate
of MSE increase of the Seq2Seq model with attention.
This is primarily because of the flexibility offered by
the attention mechanism allowing the decoder to focus
on different parts of the encoder sequence and select the
subset of encoder hidden states most amenable to model
the next sequence output.

• The red error bars indicate the variance in MSE per
decoder unit and we notice that the variance increases
significantly more in the case of the Seq2Seq model
without attention than for the model with attention indi-
cating that the Seq2Seq model without attention becomes
more uncertain about its predictions further into the

w Seq2Seq with Attention Bi-Seq2Seq(SS) with
Attention

10 1.850 -58.000
90 71.162 -67.807

110 72.403 -189.179
130 75.058 -7.226
150 65.175 -25.867

TABLE III: Percentage improvement of attention based
models over their corresponding non-attention counter-
parts. All models had a single hidden layer and were tested
with GRU as the recurrent unit.

decoder sequence as it is making its predictions with
less information about the encoder sequence than its
counterpart Seq2Seq model with attention.

0 20 40 60 80
0.00

0.01

0.02

0.03

0.04 S2S GRU

S2S Attn. GRU

Fig. 9: Encoder Decoder Attention Model Comparison
of mean squared error per decoder unit (w = 90). We
observe that the mean squared error increases significantly
with each decoder unit in long-term sequence forecasting
problems for Seq2Seq models without attention. In the case
of Seq2Seq models with attention, the flexibility brought
in by the attention mechanism helps control the effect of
these additive errors in long decoder sequences.

VIII. CONCLUSION

In this paper, we have developed a bidirectional Seq2Seq
model Bi-Seq2Seq capable of providing long-term forecasts
of the operational state of a CPS as well as reconstructing



missing data sequences. We have evaluated our models in
comparison with simple unidirectional Seq2Seq architectures
as well as with regular step ahead forecasting variants of the
recurrent model cells and showcased quantitative results. All
our results indicate that the Bi-Seq2Seq models significantly
outperform other models in the forecasting task and hence we
are able to conclude that they learn a far better representation
of the underlying CPS process relative to the non bidirectional,
non Seq2Seq variants. We show qualitatively that the learned
representations are sparser for Seq2Seq models than their
simpler step-ahead counterparts. We have also shown that
incorporating mechanisms like attention does not improve the
performance of our Bi-Seq2Seq model trained with scheduled
sampling whereas attention mechanisms do have a positive
effect on the performance of the unidirectional Seq2Seq
models. Moving forward, we wish to utilize the forecasting
models in applications like anomaly (or intrusion) detection
in CPS.

REFERENCES

[1] P. Filonov, A. Lavrentyev, and A. Vorontsov, “Multivariate industrial
time series with cyber-attack simulation: Fault detection using an lstm-
based predictive data model,” arXiv preprint arXiv:1612.06676, 2016.

[2] K.-D. Kim and P. Kumar, “An overview and some challenges in cyber-
physical systems,” Journal of the Indian Institute of Science, 2013.

[3] M. Momtazpour, J. Zhang, S. Rahman et al., “Analyzing invariants in
cyber-physical systems using latent factor regression,” in ACM SIGKDD,
2015.

[4] G. S. Babu, P. Zhao, and X.-L. Li, “Deep convolutional neural network
based regression approach for estimation of remaining useful life,” in
DASFAA, 2016.

[5] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
the next computing revolution,” in ACM/IEEE DAC, 2010.

[6] L. Zhao, Z. Chen, Z. Yang, Y. Hu, and M. S. Obaidat, “Local similarity
imputation based on fast clustering for incomplete data in cyber-physical
systems,” IEEE Systems Journal, 2016.

[7] J. G. De Gooijer and R. J. Hyndman, “25 years of time series forecast-
ing,” International journal of forecasting, 2006.

[8] K. Cho, B. Van Merriënboer, C. Gulcehre et al., “Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation,”
arXiv preprint arXiv:1406.1078, 2014.

[9] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in NeurIPS, 2014, pp. 3104–3112.

[10] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998–6008.

[12] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[13] J. Lin, X. Sun, S. Ma, and Q. Su, “Global encoding for abstractive
summarization,” arXiv preprint arXiv:1805.03989, 2018.

[14] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang et al., “Abstractive text
summarization using sequence-to-sequence rnns and beyond,” arXiv
preprint arXiv:1602.06023, 2016.

[15] J. Gehring, M. Auli, Grangier et al., “Convolutional sequence to
sequence learning,” arXiv preprint arXiv:1705.03122, 2017.

[16] N. Kalchbrenner, L. Espeholt, K. Simonyan, A. v. d. Oord, A. Graves,
and K. Kavukcuoglu, “Neural machine translation in linear time,” arXiv
preprint arXiv:1610.10099, 2016.

[17] S. Chopra, M. Auli, and A. M. Rush, “Abstractive sentence summa-
rization with attentive recurrent neural networks,” in Proceedings of the
2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2016, pp.
93–98.

[18] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and accurate recurrent
neural network acoustic models for speech recognition,” arXiv preprint
arXiv:1507.06947, 2015.

[19] N. Jaitly, Q. V. Le, O. Vinyals, I. Sutskever, D. Sussillo, and S. Bengio,
“An online sequence-to-sequence model using partial conditioning,” in
Advances in Neural Information Processing Systems, 2016, pp. 5067–
5075.

[20] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in IEEE ICASSP. IEEE, 2013, pp.
6645–6649.

[21] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in NeurIPS, 2015, pp.
577–585.

[22] Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional networks
for end-to-end speech recognition,” in IEEEE ICASSP, 2017. IEEE,
2017, pp. 4845–4849.

[23] L. Lu, X. Zhang, and S. Renais, “On training the recurrent neural
network encoder-decoder for large vocabulary end-to-end speech recog-
nition,” in ICASSP. IEEE, 2016, pp. 5060–5064.

[24] P. Filonov, F. Kitashov, and A. Lavrentyev, “Rnn-based early cyber-
attack detection for the tennessee eastman process,” arXiv preprint
arXiv:1709.02232, 2017.

[25] P. Malhotra, A. Ramakrishnan, G. Anand et al., “Lstm-based
encoder-decoder for multi-sensor anomaly detection,” arXiv preprint
arXiv:1607.00148, 2016.

[26] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE transactions on neural networks,
1994.

[27] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, 1997.

[29] A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

[30] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level train-
ing with recurrent neural networks,” arXiv preprint arXiv:1511.06732,
2015.

[31] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in NeurIPS,
2015.

[32] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[33] D. Cheng, M. T. Bahadori, and Y. Liu, “Fblg: a simple and effective
approach for temporal dependence discovery from time series data,” in
ACM SIGKDD, 2014.

[34] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, 1997.


