
PhyFlow: Physics-Guided Deep Learning for
Generating Interpretable 3D Flow Fields

Nikhil Muralidhar⇤, Jie Bu⇤, Ze Cao†, Neil Raj†, Naren Ramakrishnan⇤, Danesh Tafti† and Anuj Karpatne⇤
⇤Department of Computer Science, Virginia Tech

†Department of Mechanical Engineering, Virginia Tech
Email: {nik90, jayroxis, zec1, neilashwinraj, naren, dtafti, karpatne} @vt.edu

Abstract—Generating flow fields (such as pressure and velocity

fields) in 3D space is a fundamental task in computational fluid

dynamics (CFD), with applications across a vast spectrum of

science and engineering problems. An important class of fluid

flow problems in CFD is multi-phase flow, where dispersed solid

particles are present in the fluid flow. Despite recent developments

in deep learning (DL) for CFD applications, current state-of-the-

art is still unable to model 3D flow fields, especially in multi-phase

flow settings. It is with this goal that we introduce PhyFlow ,

a novel physics-guided deep learning architecture for modeling

3D multi-phase fluid flows, designed to mimic the popular

projection method for solving fluid flows in CFD simulations.

We demonstrate that PhyFlow generates high quality flow fields

and yields a 49.61% improvement over other state-of-the-art

baselines. We also test the quality of PhyFlow based fields by

employing them in downstream tasks like particle drag force

prediction and demonstrate state-of-the-art results, improving

upon the previous best models by 9.89%. Finally, we demonstrate

the consistency of PhyFlow predictions with known underlying

physics governing equations. Our source code and data are

available online*.

Index Terms—Physics-guided ML, Deep Learning, CFD

I. INTRODUCTION

Generating flow fields (such as pressure and velocity fields)
in 3D space is a fundamental task in computational fluid
dynamics (CFD), with applications across a vast spectrum
of science and engineering problems. For example, CFD
simulations of flow fields are used for optimizing the aero-
dynamic designs of automobiles and aircrafts [1], modeling
the evolution of climate/weather patterns as well as disaster
events like wildfires [2], and more recently, to even model
blood flow in the heart to detect irregularities [3].

An important class of fluid flow problems is multi-phase

flow, where the moving fluid contains dispersed elements
of a different phase (e.g., blood flow composed of plasma
with solid cells dispersed within the plasma). While multi-
phase flows are widely found in nature and used heavily in a
number of industrial applications (e.g., in propulsion, energy,
pharmaceutical, and food processing sectors), they are non-
trivial to model due to the additional complexity caused by
the interaction of different phases. One problem of interest in
the family of multi-phase flows is the prediction of flow fields
around a random arrangement of particles, which can be used
for downstream tasks such as predicting fluid forces (e.g., drag
forces) acting on the particles.

*tinyurl.com/mjkcrsdw

Despite the long history of methodological advances in the
field of CFD, exact physics-based solvers of flow fields are
highly expensive to deploy in most practical settings. Hence,
a physics-only solution to generating multi-phase flow fields is
intractable for large systems. Recently, machine learning (ML)
methods have started to gain attention for modeling highly
complex problems in a wide range of scientific disciplines [4],
[5], including recent applications in CFD [6]–[10].

However, current state-of-the-art methods in deep learning
for CFD are still unable to model 3D flow fields (a majority
of works only solve 2D flows using numerical simplifications
that do not work in 3D), especially in multi-phase flow
settings where it is important to generalize to unseen particle
arrangements using a small number of training arrangements,
which is the focus of this work. What is needed is to move
beyond black-box applications of DL and principally leverage
physics in the design, training, and evaluation of DL mod-
els for multi-phase flow generation problems. Our proposed
physics-guided deep learning framework, termed PhyFlow ,
explicitly addresses this need by incorporating physics in a
variety of ways. Figure 1 provides an overview of our target
problem and proposed solution. Here is a summary of our
main contributions:
(i) We introduce PhyFlow , a novel Physics-Guided Ma-
chine Learning (PGML) model for flow field generation
that is able to generalize to unseen particle arrange-
ments. PhyFlow consists of a novel physics-guided DL ar-
chitecture that embodies the solution structure of physics-
based CFD solvers as an implicit form of physics-based
supervision. (ii) We develop a novel Physics-Guided Inverse
Distance Function (IDF) that enables PhyFlow to be trained in
an end-to-end fashion, going from input particle arrangements
to output flow fields in a single-step framework. (iii) We
perform rigorous comparison of PhyFlow with several state-
of-the-art (SOTA) image (and flow field) generation models
across various 3D flow settings. We also demonstrate SOTA
results on the downstream task of predicting drag forces on
particles in unseen arrangements, using our generated flow
fields. (iv) Finally, we show that PhyFlow predictions are more
physically consistent with the governing physics equations
than all other baseline methods.
The rest of the paper is organized as follows: Section II dis-
cusses previous research in machine learning applications for
physics problems (in particular, CFD). Section III details the



PhyFlow
target (centered) particle neighboring particles

x

y

z

T

...

F

...

x

y

z

p,v

Particle Arrangements Flow Field Generation

Predicting Fluid Forces, e.g., 
drag force (F) 

Downstream Tasks Real-world Applications

Fig. 1: Proposed Physics-Guided Deep Learning Architecture & Applications

CFD preliminaries specific to our application and section IV
details the proposed PhyFlow model. Section V and section VI
detail the experimental setup and describe results respectively,
while section VII provides concluding remarks.

II. RELATED WORK

There is a growing body of work on developing deep
learning formulations for flow field generation [6]–[11], for
different application contexts such as 2D-turbulence modeling
[10] and 1D-solution of the governing physics equations of
fluid flow [11]. However, a majority of these works only inves-
tigate 2D single-phase flows, using numerical simplifications
such as the use of stream functions to reduce the number of
variables [11], which do not apply in 3D.

A line of work on using deep learning methods in CFD
applications involves upsampling high-resolution flow fields
using low-resolution fields provided as inputs [8], [9]. How-
ever, since they require flow field CFD simulations (although
at coarse-scales) as inputs, they are not completely free from
the expensive costs of running CFD solvers during test time.

The closest line of work related to our problem is a recent
approach developed by Siddani et al. [12] for 3D multi-
phase flow generation. In this work, a Wasserstein GAN with
gradient penalty (WGAN-GP) was used to first predict initial
estimates of flow fields in a large domain around a candidate
particle, followed by a second step to predict the flow fields
in a focused domain around the particle of interest using a
CNN network. Our proposed PhyFlow framework is different
from this work on several fronts. First, we employ a physics-
based architecture for predicting pressure and velocity fields
in a sequential manner that resembles the solution structure
of popular projection method based CFD simulations. Sec-
ond, we use a novel physics-guided inverse distance function
(IDF) representation that is able to capture local to global
information around the vicinity of every particle. Third, we
not only show the performance of our framework on flow
field generation but also on the downstream task of drag force
prediction, in contrast to previous research.

III. BACKGROUND ON FLOW GENERATION

In the field of computational fluid dynamics (CFD), a com-
mon approach for generating the steady-state pressure field
(p) and velocity fields along the three spatial axes (u, v, w)
of incompressible fluids as a function of space (x, y, z) is by
solving two basic conservation laws—mass (a.k.a divergence)
and momentum conservation, described using the following
equations:

@u

@x
+

@v

@y
+

@w

@z
= 0, (1)

u
@u

@x
+ v

@u

@y
+ w

@u

@z
+

1

⇢

@p

@x
�

1

Re
(
@2u

@x2
+

@2u

@y2
+

@2u

@z2
) = 0, (2)

u
@v

@x
+ v

@v

@y
+ w

@v

@z
+

1

⇢

@p

@y
�

1

Re
(
@2v

@x2
+

@2v

@y2
+

@2v

@z2
) = 0, (3)

u
@w

@x
+ v

@w

@y
+ w

@w

@z
+

1

⇢

@p

@z
�

1

Re
(
@2w

@x2
+

@2w

@y2
+

@2w

@z2
) = 0 (4)

where Re is the Reynolds number and ⇢ is the density of the
incompressible fluid. Eq. 1 corresponds to mass conservation
(requiring divergence of velocity fields to be 0) while the other
three equations (Eq. 2-4) correspond to momentum conserva-
tion in the x,y,z directions, respectively. Together, these four
equations are referred to as the Navier-Stokes (N-S) equations
[13], which form the bedrock of all CFD calculations for
flow generation. While they are easy to express, finding
analytical solutions to these coupled non-linear second-order
partial differential equations (PDEs) is extremely challenging
in most practical use-cases. As a result, a variety of numerical
techniques have been developed to solve these PDEs and
generate flow fields in varying input conditions, e.g., finite
difference based techniques [14].

a) Projection Method: The projection method is
a widely-used solution method for incompressible fluid
flows [14]. It solves the momentum and mass conservation
equations sequentially in three steps (i) Intermediate Velocity

Field Estimation: first, velocity field estimates are computed
from the N-S momentum equation (Eq. 2- 4) using a known
pressure-field at a previous iterate or time-step. (ii) Pressure

Field Estimation: next, the velocity field estimates are used
to calculate the updated pressure field satisfying the mass
conservation Eq. 1. This estimation is carried out by solving
an elliptic pressure Poisson equation given the intermediate
velocity field. (iii) Velocity Field Estimate Correction: fi-
nally, the velocity field estimates are updated based on the
gradients of the updated pressure field. These three steps
are iterated until convergence. We take inspiration from this
popular method to develop the structure of our physics-guided
PhyFlow architecture as described in Section IV-A.

b) Downstream Tasks in Multiphase Flow: Once the
pressure and velocity fields have been solved, they can be used
as inputs in a variety of downstream tasks in CFD applications.
For example, in multiphase flow problems (which is the target
use-case of this work), the flow fields can be used to estimate
the interaction forces acting on particles suspended in the fluid
such as the drag force. In what are referred to as “Particle



Resolved Simulations” or PRS, the particles are explicitly
resolved in the numerical calculation on a fine 3D grid, and
the velocity and pressure fields around each particle are solved
before the fluid drag force on each particle can be computed.
We consider PRS as the ground-truth for flow field generation
and drag force prediction in this work.

IV. PROPOSED PHYFLOW FRAMEWORK

Fig. 2: Architecture of our proposed PhyFlow framework em-
bodies the solution structure of the projection method used in
physics-based CFD solvers.

The main goal of our proposed PhyFlow framework is
to build an ML model that accepts information about the
spatial arrangement of particles around a target particle as
input, and generate pressure and velocity fields in the local
neighborhood around a particle as outputs, which can be useful
for downstream tasks such as drag force prediction in multi-
phase flow contexts. By training our PhyFlow model on a
limited set of PRS ground-truth simulations, we aim to achieve
better generalizability on unseen particle arrangements than
state-of-the-art baselines by anchoring our framework with
knowledge of the physics background of flow generation in a
variety of ways. In the following, we describe the key physics-
guided innovations of our proposed framework.

A. Physics-Guided Neural Network Architecture

Figure 2 provides an overview of our PhyFlow framework
that takes in the local spatial representation of neighboring
particles centered around a candidate particle i of interest as
input 3D tensors (Ii 2 Rl⇥l⇥l), and generates predictions
of pressure (p̂i 2 Rl⇥l⇥l) and velocity (ûi 2 Rl⇥l⇥l, v̂i 2
Rl⇥l⇥l, ŵi 2 Rl⇥l⇥l) fields around particle i as 3D tensor
outputs. The proposed architecture has two parts. The first
part, termed the Positional Encoder, learns a low-dimensional
encoding (ei 2 Rk⇥k⇥k, k << l) of the positions, orienta-
tions and density of particles in the local neighborhood of
the candidate particle being modeled. While these positional
encodings capture rich information about the arrangements of
neighboring particles, flow fields also depend on the Reynolds
number (Re) of the flow regime, which is a scalar dimension-
less quantity represented by the ratio of inertial and viscous
forces. To capture this information in our PhyFlow framework,
we concatenate the positional encodings ei of particle i with
a constant 3D tensor of size Rk⇥k⇥k with values equal to
Re at every tensor cell. The concatenated encodings are then
fed as inputs into the Flow-field Decoders for generating
pressure and velocity fields. Instead of using a black-box
architecture where each component of the generated pressure

and velocity fields (i.e., p̂, û, v̂, ŵ) is generated as a sepa-
rate output channel, we adopt a physics-guided architecture
for generating pressure and velocity fields that leverage the
solution structure of the projection method used in physics-
based CFD solvers as described in Section III. In particular,
we first resolve the velocity fields (akin to step (i) of the
projection method i.e., Intermediate Velocity Field Estimation)
around particle i (ûi, v̂i, ŵi) using three separate decoders.
Generated velocity fields are then concatenated with positional
encodings ei and Re and fed as inputs to another decoder that
generates pressure field, p̂i (akin to step (ii) of the projection

method wherein pressure fields are estimated contingent upon
intermediate velocity field estimates)†. Finally, the velocity
fields are corrected based on errors in the predicted pressure
field (similar to the velocity field estimate correction i.e., step
(iii) of the projection method). In this way, the learning of
pressure and velocity fields are tightly coupled such that during
forward pass of our model, the velocity field predictions are
used to condition the predictions of pressure field. Further,
by jointly learning the decoders in an end-to-end fashion,
prediction errors in the pressure field are back-propagated to
correct the velocity field predictions during model training.
The architecture of PhyFlow thus resembles the nature of
computations occurring in commonly used CFD solvers. This
is similar to recent works on embedding prior knowledge from
physics in design of neural networks [6], [10], [15].

B. Physics-Guided Input Representations

Another key innovation of our approach is the way we
construct the input tensor representation Ii to capture the
local arrangement of particles around particle i. A simple
approach for constructing Ii is to use binary masks where
a voxel in Ii is 1 only if it does not intersect with a
neighboring particle in a fixed-width neighborhood around
particle i, as considered in [12]. However, such binary masks
can only capture information about particle arrangements in
the immediate local neighborhood of particle i (with fixed
widths), while it is known that flow fields are considerably
influenced by particles not just in the local vicinity but also
outside. This is especially true for flow field values at the
boundaries of the fixed-width neighborhoods. It is also known
that the effect of a neighboring particle on the flow fields at
a voxel decreases with the distance of the particle. We build
upon these two observations well-established in CFD literature
to develop a novel Physics-Guided Inverse Distance Function

(IDF) for constructing Ii. The IDF tensor serves as the input
to our PhyFlow architecture and is calculated for every voxel
Vj in the tensor as follows:

IDF(Vj) =
KX

i=1

1

d(Vj , Pi)
, (5)

where Pi represents the ith nearest-neighboring particle to Vj ,
d(·) represents the Euclidean distance between Pi and Vj ,

†An important factor in generating the pressure field is to ensure that
velocity field satisfies mass conservation (Eq. 1) and we verify (see Appendix:
tinyurl.com/mjkcrsdw) that PhyFlow predictions adhere to Eq. 1 well.



Fig. 3: The IDF tensor captures local arrangement of particles
at every voxel (red) inside a fixed neighborhood (of width 2
units) centered around candidate particle i (orange). IDF value
at a voxel is determined by its K-nearest particles, some of
which may lie inside the fixed-width region (black), while
others may lie outside (gray).

and K represents the total number of neighbors considered.
A higher IDF value indicates a greater density of particles
around the voxel that can influence its flow field values. As
illustrated in Figure 3, the IDF tensor around a candidate
particle i (orange) not only captures the effects of particles
inside the fixed-width neighborhood around i (black), but also
those particles that are outside yet among the top-K nearest
neighbors of voxels in this neighborhood (gray). This allows
us to capture local and global information of particle arrange-
ments depending on the value of K. In our experiments, we
chose K = 15 based on previous studies on the effect of
nearest neighbor counts in multi-phase flow contexts [16].

C. Physics-Guided Model Interpretability

We propose a novel pipeline for interpreting the predic-
tions of flow fields generated by our PhyFlow framework by
quantifying the consistency of our model’s predictions with
respect to the underlying physics of fluid dynamics, namely,
the Navier-Stokes equations.

In particular, we systematically replace any one of the four
flow field values in the mass or momentum conservation equa-
tions using PhyFlow predictions, while keeping other fields
fixed to ground-truth values. We then evaluate the ablated

momentum and divergence residuals and characterize their
similarity to the optimal (i.e., perfect) momentum and diver-
gence residuals for a particular (Re,�) experimental context.
We define an ablated residual as the value obtained when
terms corresponding to only one field (i.e., one of p, u, v, w
) in a mass or momentum conservation equation is calculated
using the corresponding predicted flow field while other terms
are calculated using ground-truth flow fields.
Verifying Consistency of Predicted Pressure Field: The
consistency of the pressure field is verified with respect to the
momentum conservation equations. There are a set of three
momentum conservation equations as defined in section III,
one each for the x,y,z direction of the 3D flow. The consistency
of the pressure is verified with respect to the momentum-x
equation (Eq. 2) by replacing the @p

@x term by @p̂
@x (which is the

gradient of predicted flow field p̂ w.r.t x) while all other terms
are calculated using ground truth flow fields. The value of the
residual obtained if p̂ is consistent with the N-S equations
should be close to 0. Similarly, the consistency of p̂ w.r.t
momentum-y (Eq. 3) and momentum-z (Eq. 4) is verified by

appropriately replacing the @p
@y in Eq. 3 by @p̂

@y and @p
@z in Eq. 4

by @p̂
@z and in each case analyzing the ablated residual.

Verify Consistency of Predicted Velocity Fields: Velocity
field predictions û,v̂,ŵ (velocity predictions in x,y,z directions
respectively) are used to calculate consistency w.r.t. mass
conservation N-S equation (Eq. 1), by replacing appropriate
terms in a similar vein to the consistency verification of the
pressure field. Such ablated residuals (as opposed to residuals
calculated using all predicted fields simultaneously) allow us
to explicitly verify that each of the four predicted flow fields
p̂, û, v̂, ŵ are consistent with the governing N-S equations
and that they do not converge to trivial solutions. Details
of calculation of ablated residuals using specialized finite-
difference convolutional kernels are in the appendix‡.

V. EXPERIMENTAL SETUP

Dataset Description: In this paper, we employ data from
a PRS simulation for a single random arrangement P =
{P1, .., Pm} of m particles in a multi-phase 3D flow setting.
Each particle in our simulation domain has diameter D units
with our total simulation space S spanning a cubic region of
size 10D ⇥ 10D ⇥ 10D. The result of the PRS simulation
on S yields pressure field p and three velocity fields u, v, w
(i.e., velocity in the x, y, z direction respectively) for every
fluid voxel (i.e., a grid cell in S not occupied by a particle;
all pressure and velocity fields inside particle cells are 0). For
each Pi 2 P, we extract its local neighborhood to be a cube
Ni of size 2D⇥2D⇥2D centered around Pi. Ni always fully
contains Pi at its center while any other proximal particles
may be fully or partially contained in Ni. Thus our dataset
D = {F1, .., Fm} consists of m local neighborhood flow fields
for all particles in P where each Fi = {pNi , uNi , vNi , wNi}.
For ease of notation, we drop the subscript and refer to these
local neighborhood flow-fields as p, u, v, w for a particle. Our
proposed PhyFlow model takes as input, a representation of
a particle’s local neighborhood (section IV-B) and returns
p̂, û, v̂, ŵ. Each PRS simulation is run for a particular Reynolds
number (Re) and solid fraction (�) case and we run 16
experiments i.e., one for each (Re,�) combinations of Re={10,
50, 100, 200} and solid fractions �={0.1, 0.2, 0.3, 0.35} with
a total of 7260 particles and corresponding local neighborhood
flow fields (p, u, v, w) obtained across all (Re,�) settings. The
flow field generation results are evaluated on PRS simulation
run with a completely new particle arrangement (not used
in training) for the same set of 16 experimental settings
again with a total of 7260 particles and corresponding local
neighborhood flow fields (p, u, v, w).
Baselines: We compare PhyFlow with SOTA image-to-image
translation pipelines. Specifically, we compare with pix2pix

[17] and CycleGAN [18] based variants for 3D image-to-
image translation, denoted as Vox2Vox and CycleGAN. We
also include ResNet and UNet as competitive baselines that
are not based on Generative Adversarial Network (GAN)
formulations. As mentioned in section II, [12] is the most

‡tinyurl.com/mjkcrsdw



closely related work to ours, we have re-implemented the
model (as their code is not publicly available) in [12] to the
best of our ability.
Evaluation Metrics: The root-mean-squared-error (RMSE)
evaluation metric is used to evaluate the quality of the pre-
dicted flow fields. We also evaluate the flow fields generated
by PhyFlow on a down-stream task of particle drag force
prediction on an unseen arrangement of particles. For this
task, as is standard practice [16], [19], we employ three
evaluation metrics namely (i) Mean Squared Error (MSE), (ii)
Mean Relative Error (MRE), and (iii) Area Under the Relative
Error Curve (AUREC). Further details about baselines and
evaluation metrics are in the appendix.

VI. RESULTS & DISCUSSION

We now detail the performance of PhyFlow by character-
izing the quality of the generated flow fields. We do this
by reporting the overall RMSE of the predicted flow fields
with respect to the corresponding ground truth flow fields
produced using the PRS simulation. Further, to demonstrate
the effectiveness of PhyFlow , we test it on the down-stream
task of predicting the drag-force on every candidate particle
using the generated flow fields. In all our experiments, we
specifically test for PhyFlow ’s ability to extrapolate to unseen
particle arrangements. Finally, to enable interpretability of
PhyFlow predictions, we demonstrate consistency of predicted
flow fields with the optimal physical behavior according to the
Navier-Stokes equations.

A. Model Performance Comparison

Table I showcases the comparison of PhyFlow with other
SOTA image generation and image-to-image translation ar-
chitectures as well as related flow field generation work
conducted by [12]. We report the average RMSE across the
four generated fields û, v̂, ŵ, p̂ for all particles in each of
sixteen different experimental settings. In the table, we notice
that PhyFlow outperforms all other models in 12 out of 16 set-
tings. PhyFlow achieves an average performance improvement
of 49.61% over other models across all (Re,�) settings. The
proposed full PhyFlow model outperforms all other models
in a large majority (12 out of 16) of the experimental set-
tings. PhyFlow yields an average performance improvement of
10.01% over U-Net (next best model) prediction performance
across all (Re,�) cases. Also noticeable from the table is that
all models perform better for higher � cases (i.e., 0.3,0.35)
than for cases of lower �. This may be partially attributed to
availability of greater volume of training examples in higher �
cases. To further corroborate our claim of superior flow field
generation quality, we have included qualitative results and
also evaluated each component of our PhyFlow model through
rigorous ablation analyses (see appendix§).

B. Consistency with Physical Governing Equations

Multi-phase 3D fluid flow is governed by Navier-Stokes
mass and momentum conservation equations. Since our effort

§tinyurl.com/mjkcrsdw

Fig. 4: PhyFlow (red) momentum characterization using ab-

lated residuals shows good agreement (compared to other
models) with the optimal physical residual values (green) in
(Re = 10,� = 0.1) experimental setting.

with development of PhyFlow has been to extensively lever-
age knowledge of the underlying physics toward design and
development of the machine learning pipeline for flow field
generation, it is only natural that we also analyze the degree of
consistency of the predictions with the same governing equa-
tions. We now characterize the consistency of the predicted
flow fields p̂, û, v̂, ŵ using ablated residuals (section IV-C).
Figure 4 characterizes the degree of physical consistency of
the predicted pressure p̂ with each of the three momentum
equations along the x,y,z axes, respectively. In each of the three
plots (showcasing ablated residuals for �p̂

�x , �p̂�y , �p̂�z respectively),
we notice that the predicted pressure by PhyFlow (red dotted
line) results in residuals close to the optimal (green dotted line)
residuals for the (Re=10,�=0.1) experiment. We also compare
the state-of-the-art CycleGAN model as well as the flow field
generation model proposed by Siddani et al. [12] and find that
both these models learn significantly less physically consistent
representations for the pressure field than PhyFlow . We, note
that even in CFD simulations, resolving the pressure field is a
more expensive (complex) task. We can show that PhyFlow is
able to achieve significantly more physically consistent pres-
sure field predictions than other baselines. Similar results (see
appendix) are observed for other (Re,�) experiments.

C. Drag Force Prediction Results

A good indication of effective representation learning
frameworks is the performance of the learned representation
on downstream tasks. It is well known that the drag force
of a particle in multi-phase flows may be calculated as a
function of the pressure and velocity fields in the vicinity
of the particle. We hence develop a pipeline (consisting of a
very simple, shallow CNN consisting of 2 convolutional and
2 fully-connected layers) to ingest the flow-field predictions
of PhyFlow and predict the drag forces of target particles in the
context of unseen particle arrangements. We notice in table II
that PhyFlow + CNN model yields the highest AUREC values
compared with other state-of-the-art models specifically de-
signed for the drag force prediction task. The only alternative
to achieve a higher AUREC on drag force prediction is to run
a full PRS simulation (depicted in the table as PRS(Ground

Truth)) on the new particle arrangement and feed these ground
truth flow field representations to the CNN model. However,
running PRS simulation for every new particle arrangement
is extremely expensive and hence PhyFlow provides a cheap,



TABLE I: Comparison of mean RMSE of generated voxels across 16 experimental settings in the context of predicting flow
fields on unseen particle arrangements. We notice PhyFlow significantly outperforms (49.61% performance improvement) other
models in 12 out of 16 experimental settings.

Re 10 50 100 200
� 0.10 0.20 0.30 0.35 0.10 0.20 0.30 0.35 0.10 0.20 0.30 0.35 0.10 0.20 0.30 0.35

CycleGAN 0.606 0.435 0.345 0.334 0.899 0.732 0.476 0.452 1.164 0.817 0.566 0.537 1.491 0.907 0.675 0.621
ResNet 0.624 0.447 0.334 0.317 0.943 0.771 0.475 0.446 1.221 0.878 0.561 0.521 1.532 0.967 0.661 0.593
Vox2vox 0.612 0.439 0.344 0.335 0.918 0.756 0.497 0.481 1.184 0.854 0.579 0.557 1.511 0.943 0.680 0.633
U-Net 0.526 0.321 0.197 0.191 0.742 0.579 0.250 0.241 1.016 0.635 0.299 0.275 1.330 0.688 0.387 0.340
WGAN-GP 0.821 0.684 0.659 0.637 0.966 0.774 0.654 0.640 1.135 0.850 0.684 0.662 1.369 0.930 0.746 0.702
Siddani [12] 0.690 0.588 0.575 0.573 0.858 0.724 0.581 0.591 1.042 0.808 0.619 0.607 1.289 0.889 0.690 0.645
Phyflow 0.447 0.320 0.158 0.162 0.638 0.622 0.191 0.199 0.922 0.692 0.239 0.227 1.242 0.752 0.333 0.295

TABLE II: Results on the downstream task of particle drag
force prediction. PhyFlow +CNN achieves SOTA results. Only
method that performs better is one that uses ground-truth PRS
simulations of flow fields on the test cases.

Model MSE MRE AUREC
DNN (He et al. [16]) 38.53 23.12 0.78241

PhyNet (Muralidhar et al. [19]) 56.42 26.34 0.75079
Mean 31.42 19.45 0.81828

PhyFlow + CNN 9.19 11.31 0.89922

PRS(Ground-Truth) + CNN 1.42 4.37 0.96794

scalable alternative for drag force prediction on new particle
arrangements. Specifically, the average wall clock time of PRS
simulation for one (Re,�) setting is 72 hours running on 128
CPU cores whereas our PhyFlow + CNN model requires about
20 hours to train on all 16 (Re,�) settings using 2 Nvidia
P100 Tesla GPUs. Inference on new particle configurations
using PhyFlow + CNN is inexpensive and takes negligible
computation time i.e., less than 1 second per particle drag force
prediction / flow field generation. Also note, in Table II, the
current real-world methodology for drag force calculation is to
assign each particle with the mean drag force calculated using
the corresponding (Re,�) of the experimental setting [16].
PhyFlow + CNN setup yields a 9.89% improvement in AU-
REC over the Mean baseline model.

VII. CONCLUSIONS AND FUTURE WORK

We introduced PhyFlow , a one-step end-to-end physics-
guided deep learning model for fluid flow field generation
of unseen particle arrangements in 3D multi-phase flows.
Through several experiments, we demonstrated the superior
representation learning capability of PhyFlow , which out-
performs all SOTA image generation and image-to-image
translation pipelines with average performance improve-
ment of 49.61%. We also demonstrated the effectiveness
of PhyFlow generated flow fields on a down-stream task of
particle drag force prediction and achieved SOTA results
beating the next best drag force prediction model by 9.89%.
In the future, we shall extend PhyFlow to turbulent flows and
to other extrapolation contexts (i.e., unseen Re,�).

REFERENCES

[1] J. D. Anderson and J. Wendt, Computational fluid dynamics. Springer,
1995, vol. 206.

[2] J. Baptiste Filippi et al., “Coupled atmosphere-wildland fire modelling,”
Journal of Advances in Modeling Earth Systems, vol. 1, no. 4, 2009.

[3] B. Melka et al., “Multiphase simulation of blood flow within main
thoracic arteries of 8-year-old child with coarctation of the aorta,” Heat

and Mass Transfer, vol. 54, no. 8, pp. 2405–2413, 2018.
[4] M. Raissi and G. E. Karniadakis, “Hidden physics models: Machine

learning of nonlinear partial differential equations,” Journal of Compu-

tational Physics, vol. 357, 2018.
[5] R. Ramakrishnan et al., “Big data meets quantum chemistry approxi-

mations: the �-machine learning approach,” Journal of chemical theory

and computation, vol. 11, no. 5, pp. 2087–2096, 2015.
[6] D. Kochkov et al., “Machine learning accelerated computational fluid

dynamics,” arXiv preprint arXiv:2102.01010, 2021.
[7] Y. Zhu et al., “Physics-constrained deep learning for high-dimensional

surrogate modeling and uncertainty quantification without labeled data,”
Journal of Computational Physics, vol. 394, p. 56–81, Oct 2019.
[Online]. Available: http://dx.doi.org/10.1016/j.jcp.2019.05.024

[8] A. Subramaniam et al., “Turbulence enrichment using physics-informed
generative adversarial networks,” 2020.

[9] H. Gao, L. Sun, and J.-X. Wang, “Super-resolution and denoising of
fluid flow using physics-informed convolutional neural networks without
high-resolution labels,” 2020.

[10] R. Wang et al., “Towards physics-informed deep learning for turbulent
flow prediction,” in ACM SIGKDD, 2020, pp. 1457–1466.

[11] M. Raissi et al., “Physics informed deep learning (part i): Data-driven
solutions of nonlinear partial differential equations,” arXiv preprint

arXiv:1711.10561, 2017.
[12] B. Siddani et al., “Machine learning for physics-informed generation of

dispersed multiphase flow using generative adversarial networks,” arXiv

preprint arXiv:2005.05363, 2020.
[13] A. J. Chorin, “Numerical solution of the navier-stokes equations,”

Mathematics of computation, vol. 22, no. 104, pp. 745–762, 1968.
[14] J. H. Ferziger, M. Perić, and R. L. Street, Computational methods for

fluid dynamics. Springer, 2002, vol. 3.
[15] L. Li et al., “Kohn-sham equations as regularizer: Building prior

knowledge into machine-learned physics,” Physical Review Letters, vol.
126, no. 3, p. 036401, 2021.

[16] L. He and D. K. Tafti, “A supervised machine learning approach for
predicting variable drag forces on spherical particles in suspension,”
Powder technology, vol. 345, pp. 379–389, 2019.

[17] P. Isola et al., “Image-to-image translation with conditional adversarial
networks,” CVPR, 2017.

[18] J.-Y. Zhu et al., “Unpaired image-to-image translation using cycle-
consistent adversarial networks,” in ICCV 2017, 2017.

[19] N. Muralidhar et al., “Phynet: Physics guided neural networks for
particle drag force prediction in assembly,” in SDM 2020. SIAM,
2020, pp. 559–567.

[20] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of Big Data, vol. 6, no. 1, 2019.

[21] A. Yew, “Brown university mathematics apma 0160, lecture
notes: Numerical differentiation: finite differences,” 2011, uRL:
https://www.dam.brown.edu/people/alcyew/handouts/numdiff.pdf. Last
visited on 2021/02/08.

[22] B. Xu et al., “Empirical evaluation of rectified activations in convolu-
tional network,” arXiv preprint arXiv:1505.00853, 2015.


