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Abstract

Physics-based simulations are often used to model and un-

derstand complex physical systems in domains like fluid dy-

namics. Such simulations although used frequently, often

suffer from inaccurate or incomplete representations either

due to their high computational costs or due to lack of com-

plete physical knowledge of the system. In such situations,

it is useful to employ machine learning to fill the gap by

learning a model of the complex physical process directly

from simulation data. However, as data generation through

simulations is costly, we need to develop models being cog-

nizant of data paucity issues. In such scenarios it is helpful

if the rich physical knowledge of the application domain is

incorporated in the architectural design of machine learn-

ing models. We can also use information from physics-based

simulations to guide the learning process using aggregate su-

pervision to favorably constrain the learning process. In

this paper, we propose PhyNet , a deep learning model us-

ing physics-guided structural priors and physics-guided ag-

gregate supervision for modeling the drag forces acting on

each particle in a Computational Fluid Dynamics-Discrete

Element Method (CFD-DEM). We conduct extensive exper-

iments in the context of drag force prediction and showcase

the usefulness of including physics knowledge in our deep

learning formulation. PhyNet has been compared to sev-

eral state-of-the-art models and achieves a significant per-

formance improvement of 7.09%% on average . The source

code has been made available∗ and the dataset used is de-

tailed in [1, 2].

1 Introduction

Machine learning (ML) is ubiquitous in several disci-
plines today and with its growing reach, learning mod-
els are continuously exposed to new challenges and
paradigms. In many applications, ML models are
treated as black-boxes. In such contexts, the learning
model is trained in a manner completely agnostic to the
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Figure 1: Our proposed PhyNet Model.

rich corpus of physical knowledge underlying the process
being modeled. This domain-agnostic training might
lead to many unintended consequences like the model
learning spurious relationships between input variables,
or models learning representations that are not easily
verifiable as being consistent with the accepted physical
understanding of the process being modeled. Moreover,
in many scientific disciplines, generating training data
might be extremely costly due to the nature of the data
generation or collection process. To be used across many
scientific applications, it is important for machine learn-
ing models to leverage the rich physical knowledge in
scientific disciplines to fill the void due to data paucity
and be able to learn good process representations in the
context of limited data. This makes the model less ex-
pensive to train as well as more interpretable due to the
ability to verify whether the learned representation is
consistent with existing domain knowledge.

In this paper, we present PhyNet and attempt to
bridge the gap between physics-based models and ma-
chine learning models by incorporating domain knowl-
edge in the design and learning of machine learn-
ing models. Specifically, we present three ways for
incorporating domain knowledge in neural networks:
(1) Physics-guided design of neural network architec-
tures, (2) Learning with auxiliary tasks involving physi-
cal intermediate variables, and (3) Physics-guided ag-
gregate supervision of neural network training. Our
PhyNet model leverages prior physics theory to learn
better representations of the drag forces affecting dif-
ferent particles in assemblies. Specifically, PhyNet has
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a physics-aware neural network architecture, designed
to allow each layer in the network to learn one of the
various physical properties that interact to produce the
drag force on a particle. This physics-informed architec-
ture design follows a sequential pattern wherein repre-
sentations learned in earlier layers can be considered to
correspond to physical phenomena which have a direct
effect on physical phenomena learned in the deeper lay-
ers. Such a sequential nature allows the system to learn
physically consistent representations. In addition to the
novel architecture design, we also introduce aggregate
supervision, i.e., we introduce physics-aware statisti-
cal constraints during model training, to encourage the
learning of more physically consistent representations of
complex multi-modal distributions like pressure and ve-
locity field values in the vicinity of each particle in the
assembly.

Simulations in computational fluid dynamics (CFD)
are expensive to perform and hence generating a large
amount of data for training machine learning models is
impractical. Hence, one of our primary goals in the
paper has been to develop a physics-guided machine
learning model that is able to perform effectively under
data paucity. The physics-informed nature of the
model also helps improve the explainability of the
result and allows physics domain experts to verify
the consistency model predictions with prior physics
knowledge. We showcase this improved explainability
of PhyNet through extensive experiments in the paper.
This article is an extension of our previous work ac-
cepted at SDM 2020 [3] where we introduced the idea
of PhyNet and presented some preliminary results show-
ing its efficacy. In this work, we build upon our previous
work and introduce several improvements in the techni-
cal description of the problem statement and our pro-
posed approach, conceptual modifications in PhyNet to
improve its generalization performance, and extensive
addition of experimental results to analyze the impor-
tance of various components of PhyNet aimed at incor-
porating physics in machine learning. Here is a sum-
mary of the main contributions of our paper:

1. We extend the novel state-of-the-art PhyNet model
and improve its representative capacity to model
more granular pressure and velocity fields. This is
described in Sections 4 and 5.

2. We perform novel experiments to demonstrate the
ability of PhyNet to interpolate (see results in Sec-
tions 6.1 to 6.4) and to extrapolate to unseen parti-
cle assemblies (see results in Section 6.9) and com-
pare model performance of PhyNet to state-of-the-
art baselines.

3. We characterize the model performance of

PhyNet with increase in granularity of sampled
pressure and velocity fields and also the effect
of change in particle neighborhood size on the
model performance of PhyNet , as described in Sec-
tions 6.8 and 6.9.

4. We have developed a sampling procedure for pres-
sure and velocity field sampling around the vicin-
ity of a particle (see Section 5.1). This procedure
obeys the periodic boundary conditions that is an
inherent property of the simulation domain. This
updated sampling procedure allows sampling with
increased granularity of the sampled fields used for
PhyNet model training.

5. We have also included a detailed description of the
Particle Resolved Simulation process in Section 3.

6. Finally, we conduct extensive experimentation to
uncover several useful properties of our model
in settings with limited data and showcase that
PhyNet is consistent with existing physics knowl-
edge about factors influencing drag force over a
particle, thus yielding greater model interpretabil-
ity (see Section 6.5).

The remainder of this paper is organized as follows.
Section 2 describes related work at the intersection
of physics and machine learning. Section 3 provides
the relevant background on the target application of
multiphase fluid-particle systems. Section 4 presents
our problem formulation and our proposed PhyNet
model. Section 5 describes details of the approach used
for data generation. Section 6 presents our experimental
results while Section 7 presents concluding remarks.

2 Related Work

There have been multiple efforts to leverage domain
knowledge in the context of increasing the performance
of data-driven or statistical models With the help
of physically based priors in probabilistic frameworks
[4–6], regularization terms in statistical models [7, 8],
constraints in optimization methods [9,10], and rules in
expert systems [11,12]. In a recent line of research, new
types of deep learning models have been proposed (e.g.,
ODEnet [13] and RKnet [14]) by treating sequential
deep learning models such as residual networks and
recurrent neural networks as discrete approximations of
ordinary differential equations (ODEs).

In [15] the authors explored the idea of incorporat-
ing domain knowledge directly as a regularizer in neu-
ral networks to influence training and showed better
generalization performance. Yaser et al. show hints,
i.e., prior knowledge can be incorporated into learning-
from-example paradigm [12]. In [16, 17] domain knowl-
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edge was incorporated into a customized loss function
for weak supervision that relies on no training labels.
In a related line of work, physics-informed neural net-
work(PINN) [18, 19] provide a neat idea of how we can
train a neural network that follows given PDE con-
straints. The use of physics-based loss functions to
capture monotonic constraints were explored in [20,21],
while [22] including physics-based loss terms to incor-
porate the principle of energy conservation.

In addition to manipulating loss function, there
have been efforts to incorporate prior knowledge into
model architecture design, e.g. a low rank structure as
structural prior was used to designed the convolutional
filters in [23]. In [24] the authors propose a neural
network model where each neuron learns ”laws” similar
to physics laws applied to learn the behavior of com-
plex many-body physical systems. In [25], the authors
propose a theory that details how to design neural net-
work architectures for data with non-trivial symmetries.
The most direct way of using physics priors is explicitly
incorporating knowledge as constraints [26]. However,
in real-world settings where the physics of the prob-
lem is not available as closed-form equations, like the
problem discussed in this work, it is necessary to in-
corporate implicit physical rules [27] to enable learning
representations consistent with physics laws, e.g., fea-
ture invariance [28]. However, none of these efforts are
directly applicable to encode the physical relationships
we are interested in modeling in our target problem of
drag force prediction, where the relationship between
the input variables (neighborhood of particles around a
target particle) and the output variable (drag force ex-
perienced by the particle) is not explicitly available in
the form of a closed-form physical equation.

3 Multiphase Fluid-Particle Systems

Multiphase fluid-particle systems play a critical role
in propulsion, energy, pharmaceutical, food processing,
and environmental applications. Particles take the form
of solid or liquid fuel droplets in combustion systems,
biomass particles in fluidized bed reactors, catalytic
agents or ore particles in chemical processing, pill pro-
cessing in pharmaceuticals, sediment in river beds, and
dust, toxins and pollutants in the atmosphere, to give
a few examples. Methods for simulating dense fluid-
particle mixtures range from extreme high-fidelity fine-
grained simulations where only a few thousand parti-
cles [29] can be realistically simulated to coarse-grained
methods where billions of particles are simulated in the
system [30], but with an accompanying loss in accuracy.
In high-fidelity Particle Resolved Simulations (PRS),
each particle defined by its shape is resolved in the calcu-
lation as an independent entity. As a result, the flow and

pressure fields resulting from the presence of the parti-
cle are directly available from the simulation. However,
PRS is quite expensive and only a few 100s or at most
1000s of particles can be resolved in a calculation uti-
lizing grids of O(108) degrees of freedom and utilizing
O(102) processors or cores. In coarse grained simula-
tions such as the Discrete Element Method (DEM), the
particles are treated as point masses and the fluid ve-
locity and pressure fields are not resolved around each
individual particle but are only available on a spatially-
averaged scale larger than the characteristic size of the
particle. With still further coarse graining in the Two
Fluid Model (TFM), the particles are not treated as
separate entities, but instead are treated as a contin-
uum just like the fluid. In the hierarchy from high-
fidelity PRS to low-fidelity TFM, orders of magnitude
more particles can be simulated but with progressively
more dependence on models which typically result in
loss of prediction accuracy. The challenge then is to in-
crease the prediction accuracy of large particle systems
without incurring the prohibitive cost of using high-
fidelity PRS. Considering the thousand particle extreme
fine-grain PRS to be a microcosm of the million or bil-
lion particle system of DEM or TFM, respectively, we
can use fine-grained knowledge from PRS to inform and
build models of sub-scale phenomena in the large system
for increased prediction accuracy.

One of the critical interaction forces in fluid-
particulate systems that has a large bearing on the dy-
namics of the system is the drag force applied by the
fluid on the particles and vice-versa [31]. The drag force,
which results from fluid forces acting on the surface of
the particle, can be calculated from PRS with high accu-
racy. Since the velocity and pressure field surrounding
each particle is available in PRS, the resulting drag force
on each particle in the suspension can be calculated di-
rectly without any approximations. However, this is
not the case in coarse-grained models such as DEM and
TFM, in which the drag force has to be approximated
via models. This is because the particle is not resolved
but represented by a point mass proxy in DEM and
a continuous medium in TFM. As a consequence, the
fluid pressure and velocity field is only resolved on a
scale that is much larger than the particle diameter.

For an isolated single spherical particle placed in a
flow, the drag force acting on the particle is a function of
the approach velocity - (U), the diameter of the particle
- (D), density - (ρ) and viscosity - (µ) of the fluid,
which are combined to define the Reynolds number
(Re = ρUD/µ). When another particle is placed in
the close vicinity, it will influence the flow around the
first particle and change the drag force on it. Thus
when many particles are present as in a suspension
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(a) Particle Assembly Solid Fraction (φ) = 0.1 (b) Particle Assembly Solid Fraction (φ) = 0.35

Figure 2: Immersed Surfaces of Spherical Particle Assemblies.

of particles, the drag on each particle is influenced
by all the other particles. Thus, at the least, the
mean drag force acting on a particle in suspension is
influenced not only by the Reynolds number but also
by the number density of particles in the suspension,
which is represented by the solid fraction (φ) which
is the ratio of the volume occupied by the particles to
the total volume. A typical application of the drag
model in a DEM or TFM calculation would calculate
the single particle drag based on local Reynolds number
and then modify the value based on the local solid
fraction to estimate the mean drag on a particle in
suspension [32–34]. Using the mean drag force based
on the local Reynolds number and solid fraction is the
current state-of-the-art. However, the mean drag is only
a zeroth order approximation of the actual drag acting
on a particle in suspension.

Given the variability of drag force on individual par-
ticles in suspension, this paper explores techniques in
physics-guided machine learning to advance the current
state-of-the-art for drag force prediction in CFD-DEM
by learning from a small amount of PRS data. The PRS
simulations are performed using the Immersed Bound-
ary Method (IBM) [35] implemented in a multiblock
parallel framework of an in-house computational fluid
dynamics software [36,37]. In the IBM instead of having
the volume grid conform to each resolved particle, the
grid is non-conformal with the surfaces of the particles.
Instead a volume Cartesian grid is used at a fine resolu-
tion (∆ = 1/40 of particle diameter) and the randomly
distributed particles are immersed in the volume grid.
The surface of each sphere is defined by 4168 triangular
elements. The number of spherical particles in the do-
main range from 191 to 669 for solid fractions ranging

from 0.1 to 0.35 (0.1,0.2,0.3 and 0.35), respectively. For
each solid fraction, Re = 10, 50, 100, and 200 are cal-
culated which are in the intermediate regime between
Stokes flow and inertial flow. Three different random
arrangements are simulated for each solid fraction and
Reynolds number with each particle arrangement con-
sisting of 7260 spherical particles.

The PRS calculations are conducted in a fully-
periodic cubic domain simulating an unbounded or in-
finite suspension with flow in the x-direction. A repre-
sentative particle suspension is shown in Figure 2. The
incompressible constant property mass and momentum
conservation (Navier-Stokes) equations are solved using
a finite volume procedure. Since the volume grid and
particle surface grid are completely independent of each
other a special procedure is developed for the flow to
sense the presence of the particles, which is the essence
of the IBM. Using the surface elements of the particle,
the background grid cells are divided into fluid cells and
solid cells and the grid cells which make up the first layer
of fluid cells outside the solid particle are designated as
the fluid IB nodes. The IB nodes act as de-facto bound-
ary nodes for the fluid flow calculation such that the no-
slip no-penetration fluid boundary condition is satisfied
on the particle surface.

After obtaining the flow solution through the in-
terstitial spaces between the spheres in the suspension,
the drag force (force applied by fluid on particle in the
flow direction) is calculated by direct integration over
the particle surface. The forces on the particle surface
are made up of viscous shear forces and pressure forces.
These are calculated for each surface element and then
integrating over all the elements to obtain the viscous
and pressure contribution to total drag for each particle.
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Collectively, 21,780 unique particle drag force data
entries (7260 entries for each of 3 particle assemblies) are
obtained from the calculations. For training the neural
net, the Reynolds number (Re), solid fraction (φ), the
locations of the fifteen nearest neighbors of each par-
ticle, and the three-dimensional velocity and pressure
field through the suspension for each calculation (48)
are used.

4 Proposed PhyNet Framework

4.1 Problem Background: Given a collection of N
3D particles suspended in a fluid moving along the X
direction, we are interested in predicting the drag force
experienced by the ith particle, Fi, along theX direction
due to the moving fluid. This can be treated as a
supervised regression problem where the output variable
is Fi, and the input variables include features capturing
the spatial arrangement of particles neighboring particle
i, as well as other attributes of the system such as
Reynolds Number, Re, and Solid Fraction (fraction of
unit volume occupied by particles), φ. Specifically,
we consider the list of 3D coordinates of 15-nearest
neighbors around particle i, appended with (Re, φ) as
the set of input features, represented as a flat 47-length
vector, Ai.

A simple way to learn the mapping from Ai to Fi
is by training feed-forward deep neural network (DNN)
models, that can express highly non-linear relationships
between inputs and outputs in terms of a hierarchy of
complex features learned at the hidden layers of the
network. However, black-box architectures of DNNs
with arbitrary design considerations (e.g., layout of the
hidden layers) can fail to learn generalizable patterns
from data, especially when training size is small. To
address the limitations of black-box models in our target
application of drag force prediction, we present a novel
physics-guided DNN model, termed PhyNet , that uses
physical knowledge in the design and learning of the
neural network, as described in the following.

4.2 Physics-guided Model Architecture: In or-
der to design the architecture of PhyNet , we derive in-
spiration from the known physical pathway from the
input features Ai to drag force Fi, which is at the ba-
sis of physics-based model simulations such as Particle
Resolved Simulations (PRS). Essentially, the drag force
on a particle i can be easily determined if we know two
key physical intermediate variables: the pressure field
(Pi) and the velocity field (Vi) around the surface of
the particle. It is further known that Pi directly affects
the pressure component of the drag force, FPi , and Vi

directly affects the shear component of the drag force,
FSi . Together, FPi and FSi add up to the total drag

force that we want to estimate, i.e., Fi = FPi + FSi .
Using this physical knowledge, we design our

PhyNet model so as to express physically meaningful in-
termediate variables such as the pressure field, velocity
field, pressure component, and shear component in the
neural pathway from Ai to Fi. Figure 3 shows the com-
plete architecture of our proposed PhyNet model with
details on the number of layers, choice of activation
function, and input and output dimensions of every
block of layers. In this architecture, the input layer
passes on the 47-length feature vectors Ai to a collec-
tion of four Shared Layers that produce a common set
of hidden features to be used in subsequent branches
of the neural network. These features are transmitted
to two separate branches: the Pressure Field Layer and
the Velocity Field Layer, that express Pi and Vi, respec-
tively, as 10-dimensional vectors. Note that Pi and Vi

represent physically meaningful intermediate variables
observed on a sequence of 10 equally spaced points on
the surface of the particle along the X direction.

The outputs of pressure field and velocity field
layers are combined and fed into a 1D Convolutional
layer that extracts the sequential information contained
in the 10-dimensional Pi and Vi vectors, followed
by a Pooling layer to produce 4-dimensional hidden
features. These features are then fed into two new
branches, the Shear Component Layer and the Pressure
Component Layer, expressing 3-dimensional FS

i and FP
i ,

respectively. These physically meaningful intermediate
variables are passed on into the final output layer that
computes our target variable of interest: drag force
along the X direction, Fi. Note that we only make use
of linear activation functions in all of the layers of our
PhyNet model following the Pressure Field and Velocity
Field layers. This is because of the domain information
that once we have extracted the pressure and velocity
fields around the surface of the particle, computing Fi is
relatively straightforward. Hence, we have designed our
PhyNet model in such a way that most of the complexity
in the relationship from Ai to Fi is captured in the
first few layers of the neural network. The layout of
hidden layers and the connections among the layers in
our PhyNet model is thus physics-guided. Further, the
physics-guided design of PhyNet ensures that we hinge
some of the hidden layers of the network to express
physically meaningful quantities rather than arbitrarily
complex compositions of input features, thus adding to
the interpretability of the hidden layers.

4.3 Learning with Physical Intermediates: It is
worth mentioning that all of the intermediate variables
involved in our PhyNet model, namely the pressure field
Pi, velocity field Vi, pressure component FP

i , and shear
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[1]

Input Layer [1]
Fully-connected Layer
AcƟvaƟon: ELU
Input dimension: 47
Output dimension: 128

[2]

Shared Layer(s) [2]
Fully-connected Layer
AcƟvaƟon: ELU
Input dimension: 128
Output dimension: 128

Pressure Field [3]
Fully-connected Layer
AcƟvaƟon: ELU
Input dimension: 128
Output dimension: 10

[3]

Velocity Field [4]
Fully-connected Layer
AcƟvaƟon: ELU
Input dimension: 128
Output dimension: 10

[4]

[5]

ConvoluƟon Layer [5]
1D ConvoluƟonal Layer
AcƟvaƟon: Linear
Input dimension: (2,10)
Output dimension: (2, 8)

[6]

Pooling Layer [6]
1D MaxPooling Layer
AcƟvaƟon: Lineaer
Input dimension: (2, 8)
Output dimension: (2, 4)

[7]

Shear Component [7]
Fully-connected Layer
AcƟvaƟon: Linear
Input dimension: 4
Output dimension: 3

[8]
Pressure Component [8]
Fully-connected Layer
AcƟvaƟon: Linear
Input dimension: 4
Output dimension: 3

[9]

Output Layer [9]
Fully-connected Layer
AcƟvaƟon: Linear
Input dimension: 6
Output dimension: 1

Figure 3: PhyNet Architecture

component FS
i , are produced as by-products of the

PRS simulations that we have access to during training.
Hence, rather than simply learning on paired examples
of inputs and outputs, (Ai, Fi), we consider learning our
PhyNet model over a richer representation of training
examples involving all intermediate variables along with
inputs and outputs. Specifically, for a given input Ai,
we not only focus on accurately predicting the output
variable Fi at the output layer, but doing so while
also accurately expressing every one of the intermediate
variables (Pi,Vi,F

P
i ,F

S
i ) at their corresponding hidden

layers. This can be achieved by minimizing the following
empirical loss during training:

LossMSE = λP MSE(P, P̂) + λVMSE(V, V̂) +

λFPMSE(FP, F̂P) + λFSMSE(FS, F̂S) +MSE(F, F̂ )

where MSE represents the mean squared error, x̂ repre-
sents the estimate of x, and λP , λV , λFP , and λFS rep-
resent the trade-off parameters in miniming the errors
on the intermediate variables. Minimizing the above
equation will help in constraining our PhyNet model
with loss terms observed not only on the output layer
but also on the hidden layers, grounding our neural net-
work to a physically consistent (and hence, generaliz-
able) solution. Note that this formulation can be viewed
as a multi-task learning problem, where the prediction
of the output variable can be considered as the primary
task, and the prediction of intermediate variables can be
viewed as auxiliary tasks that are related to the primary
task through physics-informed connections, as captured
in the design of our PhyNet model.

The generalizability of this architecture is evident
by extrapolating the concept of intermediaries to other
physically meaningful variables or principles to enhance
learning. For instance the product of every CFD sim-
ulation is the three-dimensional velocity and pressure
field, which are solely responsible for all derived quanti-
ties of practical interest. Thus other physically relevant

quantities derived from these fields such as velocity and
pressure gradients can also be formulated as intermedi-
aries. Additionally in more elaborate settings, princi-
ples of mass, momentum, and energy conservation can
be included in the loss function to minimize errors in
the intermediate variables.

4.4 Using Physics-guided Loss: Along with learn-
ing our PhyNet using the empirical loss observed on
training samples, LossMSE , we also consider adding an
additional loss term that captures our physical knowl-
edge of the problem and ensures that the predictions
of our PhyNet model do not violate known physical
constraints. In particular, we know that the distribu-
tion of pressure and velocity fields over different com-
binations of Reynolds number (Re) and solid fraction
(φ) show varying aggregate properties (e.g., different
means), thus exhibiting a multi-modal distribution. If
we train our PhyNet model on data instances belong-
ing to all (Re,φ) combinations using LossMSE , we will
observe that the trained model will under-perform on
some of the modes of the distribution that are under-
represented in the training set. To address this, we
make use of a simple form of physics-guided aggregate
supervision, where we enforce the predictions P̂(Re,φ)

and V̂(Re,φ) of the pressure and velocity fields around
a particle respectively, at a given combination of (Re,φ)
to be close to the mean of the actual values of P and V
produced by the PRS simulations at that combination.
If P (Re,φ) and V (Re,φ) represent the mean of the pres-
sure and velocity field respectively for the combination
(Re, φ), we consider minimizing the following physics-
guided loss:

LossPHY =
∑
Re

∑
φ

MSE(µ(P̂(Re,φ)), P (Re,φ))

+MSE(µ(V̂(Re,φ)), V (Re,φ))
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The function µ(·) : R −→ R is a mean function. We
finally consider the combined loss LossMSE +LossPHY
for learning our PhyNet model.

5 Dataset Description

The dataset used has 7260 particles. Each particle has
47 input features including three-dimensional coordi-
nates for fifteen nearest neighbors relative to the target
particle’s position, the Reynolds number (Re) and solid
fraction (φ) of the specific experimental setting (there
are a total of 16 experimental settings with different
(Re, φ) combinations). Labels include the drag force in

Features Range of Data
X ∈ R15×1 −5 ∼ 5
Y ∈ R15×1 −5 ∼ 5
Z ∈ R15×1 −5 ∼ 5
Re ∈ R1×1 {10, 50, 100, 200}
φ ∈ R1×1 {0.1, 0.2, 0.3, 0.35}

Table 1: The 47 input features of the dataset. X,Y,Z
correspond to the x, y, z coordinates respectively of the
nearest neighboring particles of a particular particle of
interest. Re is the Reynolds numbers. φ is the global solid
fraction for the particular experimental setting.

the X-direction Fi ∈ R1×1 as well as variables for auxil-
iary training, i.e., pressure fields (Pi ∈ Rk×1), velocity
fields (Vi ∈ Rk×1), pressure components (FP

i ∈ R3×1)
and shear components of the drag force (FS

i ∈ R3×1).
The dimension k of the pressure fields (Pi) and velocity
fields (Vi) is a hyperparameter indicating the number of
samples around the particle vicinity at which to record
the pressure and velocity field. Hence, k governs the
granularity of the field representation used to train the
PhyNet models. We use a pressure and velocity field
with k = 100 to train our models unless stated other-
wise.

5.1 Pressure & Velocity Field Sampling
Methodology We now outline the procedure for
sampling the pressure field (Pi) and velocity field (Vi)
around a particle pi. We capture a representation of
the pressure and velocity field in the vicinity of the
particle through a discrete sampling approach using
the equations described in Eq. 5.1.

qx
j = pi.x+ ε · cos(t)

qy
j = pi.y + ε · sin(t)(5.1)

qz
j = pi.z

The sampling field locations of a particle pi can
be represented by Qi ∈ Rk×3. Let pi.x, pi.y, pi.z
represent the x,y and z coordinate respectively, of the
center of particle pi. Then, Qi = {q1

T , ...,qk
T } where

qj ∈ R3×1 and qj = {qxj , q
y
j , q

z
j }. For each location

qj ∈ Qi, we record the pressure field value and the
velocity field value at that point. ε is a distance 0.15
units away from the particle surface and is maintained
constant throughout our experiments. It must be
noted that unlike the pressure field, the velocity field
yields a 3-dimensional vector value and we calculate the
magnitude of the velocity field vector at each point qj
and use that as the sampled, discrete representation of
the velocity field in the vicinity of a particle pi.

5.2 Experimental Setup All deep learning models
used have 5 hidden layers, a hidden size of 128 and
were trained for 500 epochs with a batch size of 100.
Unless otherwise stated, 55% of the dataset was used for
training while the remaining data was used for testing
and evaluation. We applied standardization to all the
input features and labels in the data preprocessing step.
Baselines: We compare the performance of
PhyNet with several state-of-the-art regression baselines
and a few close variants of PhyNet .

1. Linear Regression (Linear Reg.), Random Forest
Regression (RF Reg.), Gradient Boosting Regres-
sion (GB Reg.) [38]: We employed an ensemble of
100 estimators for RF, GB Reg. models and left all
other parameters unchanged.

2. DNN: A standard feed-forward neural network
model for predicting the scalar valued particle drag
force Fi.

3. DNN-MT-Pres: A DNN model which predicts the
pressure field around a particle (Pi) in addition to
Fi. The pressure and drag force tasks are modeled
in a multi-task manner with a set of disjoint layers
for each of the two tasks and a separate set of
shared layers.

4. DNN-MT-Vel: Similar to DNN-MT-Pres except in
this case the auxiliary task models the velocity field
around the particle (Vi) in addition to drag force
(Fi).

We employ three metrics for model evaluation:
MSE & MRE: We employ the mean squared error

(MSE) and mean relative error (MRE) [2] metrics to
evaluate model performance. Though MSE can capture
the absolute deviation of model prediction from the
ground truth values, it can vary a lot for different scales
of the label values, e.g., for higher drag force values,
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MSE is prone to be higher, vice versa. Thus, the need
for a metric that is invariant to the scale of the label
values brings in the MRE as an important supplemental
metric in addition to MSE.

MRE =
1

m

m∑
i=1

|F̂i − Fi|
F (Re,φ)

F (Re,φ) is the mean drag force for (Re, φ) set-

ting and F̂i the predicted drag force for particle i.

Ideal Curve
Non-Ideal Sample Curve
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Example Relative Error (RE) Curves
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AU-REC: The third
metric we employ is the
area under the relative
error curve (AU-REC).
The relative error curve
represents the cumu-
lative distribution of
relative error between
the predicted drag force
values and the ground
truth PRS drag force
data. AU-REC calculates the area under this curve.
The AU-REC metric ranges between [0,1] and higher
AU-REC values indicate superior performance.

6 Experimental Results

We conducted multiple experiments to characterize and
evaluate the model performance of PhyNet with physics-
guided architecture and physics-guided aggregate super-
vision. Cognizant of the cost of generating drag force
data, we aim to evaluate models in settings where there
is a paucity of labeled training data. Our main goals
are to generate effective predictions of drag force under
data paucity and show consistency of the trained pre-
diction model with known prior domain knowledge. We
conduct several experiments to verify the consistency of
the intermediate predictions with known physics phe-
nomena thereby ensuring explainability of the model
predictions. Finally, we also tackle the challenging prob-
lem of extrapolation and characterize the ability of the
proposed PhyNet model to extrapolate to unseen set-
tings.

6.1 Physics-Guided Auxiliary Task Selection
When data about the target task is limited, we may
employ exogenous inputs of processes that have an
indirect influence over the target process to alleviate the
effects of data paucity on model training. An effective
way to achieve this is through multi-task learning.
Table 2 shows the results of several multi-task and single
task architectures that we tested in the context of the
particle drag force prediction task. It is widely known

Model MSE
MRE

(%IMP)
AU-REC
(%IMP)

Linear Reg. 49.80 38.48 (-68.58%) 0.731 (-19.9%)

RF Reg. 32.58 19.38 (-37.62%) 0.819 (-8.08%)

GB Reg. 28.70 18.04 (-32.98%) 0.832 (-6.62%)

DNN 20.77 13.91 (-13.1%) 0.874 (-2.0%)

DNN-MT-
Pres

20.83 15.01 (-19.45%) 0.864 (-3.03%)

DNN-MT-
Vel

21.02 14.79 (-18.26%) 0.865 (-2.92%)

PhyNet-
FP

x FS
x

15.01 12.46 (-2.96%) 0.888 (-0.34%)

PhyNet 15.78 12.09 (–) 0.891 (–)

Table 2: We compare the performance of PhyNet and
its variant PhyNet-FP

x FS
x (only x-components of pressure

and shear drag are modeled) with many state-of-the-art
regression baselines and show that the PhyNet model yields
significant performance improvement over all other models
for the particle drag force prediction task. We evaluate
model performance in the context of three specific metrics
described in Section 5.2. The last column of the table reports
the AU-REC metric while the center column reports the
mean relative error metric. Both these columns also quantify
the percentage improvement of the best performing model i.e
PhyNet w.r.t all other models in the context of the specific
metric (AU-REC & MRE). We notice that PhyNet models
are able to achieve lower errors across all metrics relative to
other models.

and accepted in physics that the drag force on each
particle in fluid-particle systems such as the one being
considered in this paper, is influenced strongly by the
pressure and velocity fields acting on the particles [2].
Hence, we wish to explicitly model the pressure and
velocity fields around a particle, in addition to the main
problem of predicting its drag force. To this end, we
design two multi-task models, DNN-MT-Pres, DNN-
MT-Vel, as described in section 5.2. We notice that
the two multi-task models DNN-MT-Pres and DNN-
MT-Vel show inferior performance to the DNN model,
however the PhyNet model which is a combination of
both the auxiliary tasks is able to outperform the
DNN and all other models as shown in Table 2. This
improvement in performance may be attributed to the
carefully selected auxiliary task and model architecture
to aid in learning the representation of the main task.
Statistical Significance Comparison: In or-
der to further verify the validity of model per-
formance, we evaluate the statistical significance
of PhyNet predictions relative to the other deep learn-
ing architectures mentioned in Table 2. We conducted
a two-sided Mann-Whitney-Wilcox rank-sum test [39]
which is a non-parametric hypothesis test, in our case
indicating whether the difference in performance of a
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pair of regression models is statistically significant. We
notice from Table 3 that the PhyNet model yields sta-
tistically significant performance improvements over all
the other deep learning architectures, further corrobo-
rating our earlier findings in Table 2.

Model p-Value
DNN 0.00039

DNN-MT-Pres 4.74e-8
DNN-MT-Vel 4.519e-8
PhyNet-FPx FSx 0.003769

PhyNet –

Table 3: Results of Mann-Whitney-Wilcox rank-sum test
for statistical significance. Each p-value represents a result
of the test performed to compare the statistical significance
of PhyNet with every other model. We notice that based
on the p-values obtained, we can comfortably conclude that
the performance improvement obtained with PhyNet are
statistically significant.

6.2 Physics-Guided Learning Architecture Sec-
tion 6.1 showcases the effectiveness of multi-task learn-
ing and of physics-guided auxiliary task selection in the
context of PhyNet models, for learning improved repre-
sentations of particle drag force.
We now delve deeper and inspect the effects of expand-
ing the realm of auxiliary tasks. In addition to this, we
also use our domain knowledge regarding the physics
of entities affecting the drag force acting on each par-
ticle, to influence model architecture through physics-
guided structural priors. As mentioned in Section 4,
PhyNet has four carefully and deliberately chosen aux-
iliary tasks (pressure field prediction, velocity field pre-
diction, predicting the pressure component(s) of drag,
predicting the shear components of drag) aiding the
main task of particle drag force prediction. In addition
to this, the auxiliary tasks are arranged in a sequen-
tial manner to incorporate physical inter-dependencies
among them leading up to the main task of particle
drag force prediction. The effect of this carefully chosen
physics-guided architecture and auxiliary tasks can be
observed in Table 2. We now inspect the different facets
of this physics-guided architecture of the PhyNet model.

We first characterize the performance of our
PhyNet models with respect to the DNN and mean
baseline. Fig. 4 represents the cumulative distribution
of relative error of the predicted drag forces and the
PRS ground truth drag force data. We notice that both
DNN and PhyNet outperform the mean baseline which
essentially predicts the mean value per (Re,φ) combi-
nation. The PhyNet model significantly outperforms
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Figure 4: The cumulative distribution function of relative er-
ror for all (Re,φ) combinations. Overall, the PhyNet model
comfortably outperforms the DNN model and the Mean
baseline (dotted red line).

the DNN (current state-of-the-art [2]) model to yield
the best performance overall. We also tested DNN
variants with dropout and L2 regularization but found
that performance deteriorated. Another important
takeaway from Fig. 4 is, we notice that over 80% of the
predictions of the PhyNet model have lower than a 20%
error with respect to PRS based drag force estimates.
The percentage of predictions with less than 20% error
is significantly lower in the case of the DNN and Mean
models.

6.3 Performance With Limited Data Bearing in
mind the high data generation cost of the PRS simu-
lation, we wish to characterize an important facet of
the PhyNet model, namely, its ability to learn effec-
tive representations when faced with a paucity of train-
ing data. Hence, we evaluate the performance of the
PhyNet model as well as the other single task and multi-
task DNN models, on different experimental settings
obtained by continually reducing the fraction of data
available for training the models. In our experiments,
the training fraction was reduced from 0.85 (i.e 85% of
the data used for training) to 0.35 (i.e 35% of the data
used for training).
Fig. 5 showcases the model performance in settings
with limited data. We see that PhyNet model signif-
icantly outperforms all other models in most settings
(sparse and dense). We note that even for the set-
ting with highest data paucity i.e training fraction 0.35,
PhyNet outperforms all other models. The gradient
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Figure 5: Model performance comparison for different levels
of data paucity. We can see that PhyNet outperforms all
other models for all training fractions.

boosting (and all the other regression models except
DNN) fail to learn useful information as more data is
provided for training. We also notice that the DNN
model fails to outperform the PhyNet model for all set-
tings although the performance of the DNN and the
PhyNet models is quite comparable for the setting with
the highest volume of training data i.e 0.85 training frac-
tion.

6.4 Characterizing PhyNet Performance For
Different (Re,φ) Settings. In addition to quanti-
tative evaluation, qualitative inspection is necessary
for a deeper, holistic understanding of model behav-
ior. Hence, we showcase the particle drag force pre-
dictions by the PhyNet model for different (Re,φ) com-
binations in Fig. 6. We notice that the PhyNet model
yields accurate predictions (i.e yellow and red curves
are aligned). This indicates that the PhyNet model is
able to effectively capture sophisticated particle inter-
actions and the consequent effect of said interactions on
the drag forces of the interacting particles. We notice
that for high (Re,φ) as in Fig. 6p, the drag force i.e
PRS curve (yellow) is nonlinear in nature and that the
magnitude of drag forces is also higher at higher (Re,φ)
settings. Such differing scales of drag force values can
also complicate the drag force prediction problem as it
is non-trivial for a single model to effectively learn such
multi-modal target distributions. However, we find that
the PhyNet model is effective in this setting.
Thus far, we characterized the performance of the
PhyNet model in isolation for different (Re,φ) contexts.
In order to gain a deeper understanding of the perfor-
mance of PhyNet models for different (Re,φ) combina-
tions, we show percentage improvement for the AU-
REC metric of PhyNet model and three other mod-
els in Fig. 7a - Fig. 7c. We choose DNN, DNN-MT-
Pres, DNN-MT-Vel as these are the closest by design to

PhyNet among all the baselines we consider in this pa-
per. In Fig. 7, we see that PhyNet outperforms the other
models in most of the (Re,φ) settings. PhyNet when
compared with the DNN model achieves especially good
performance for low solid fraction settings which may be
attributed to the inability of the DNN model to learn
effectively with low data volumes as lower solid fractions
have fewer training instances. In the case of the DNN-
MT models, the PhyNet model achieves significant per-
formance improvement for low and high solid fraction
and Reynolds number cases indicating that PhyNet is
able to perform well in the most complicated scenarios
(high Re, high φ) as well as under data paucity (low
φ). PhyNet is able to achieve superior performance in
14 out of the 16 (Re, φ) settings across all three models.

6.5 Verifying Consistency With Domain
Knowledge A significant advantage of physics-guided
multi-task architecture design is the increased inter-
pretability provided by the resulting architecture.
Since each component of the PhyNet model has been
designed and included based on sound domain theory,
we may employ this theoretical understanding to verify
through experimentation that the resulting behavior
of each auxiliary component is indeed consistent with
known theory. We first verify the performance of the
pressure and shear drag component prediction task in
the PhyNet model. It is well accepted in theory that
for high Reynolds numbers, the proportion of the shear
components of drag (FS) decreases [2]. In order to
evaluate this, we consider the ratio of the magnitude of
the predicted pressure components in the x-direction
(FPx ∈ FP) to the magnitude of the predicted shear
components in the x-direction (FSx ∈ FS) for every (Re,
φ) setting†. The heatmap in Fig. 8 depicts the compar-
ison of this ratio of predicted pressure components to
predicted shear components to a similar ratio derived
from the ground truth pressure and shear components.
We notice that there is good agreement between the
predicted and ground truth ratios for each (Re, φ)
setting and also that the behavior of the predicted
setting is indeed consistent with known domain theory
as there is a noticeable decrease in the contribution of
the shear components as we move toward high Re and
high solid fraction φ settings.

6.6 Auxiliary Representation Learning With
Physics-Guided Statistical Constraints Two of
the auxiliary prediction tasks involve predicting the
pressure and velocity field samples around each par-

†Similar behavior was recorded even when ratios were taken
for all three pressure and shear drag components.
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(c) Re = 10, φ = 0.3
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(d) Re = 10, φ = 0.35
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(e) Re = 50, φ = 0.1
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(f) Re = 50, φ = 0.2
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(g) Re = 50, φ = 0.3
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(h) Re = 50, φ = 0.35
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(i) Re = 100, φ = 0.1
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(j) Re = 100, φ = 0.2
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(k) Re = 100, φ = 0.3
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(l) Re = 100, φ = 0.35
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(m) Re = 200, φ = 0.1
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(n) Re = 200, φ = 0.2
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(o) Re = 200, φ = 0.3
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Figure 6: Each figure shows a comparison between avg. PhyNet predictions (red curve) and ground truth drag force data
(yellow curve), for different (Re,φ) cases. In each figure, the particle index on the x-axis indicates unique particle IDs
assigned in increasing order of predicted drag force per particle. PhyNet Avg. is a rolling average (window size 10) over
the individual PhyNet predictions (blue dots) ordered by particle index. We also showcase the mean drag force value for
each (Re,φ) case (black). The top row of figures indicates experiments conducted with low Re i.e Re=10 and different
φ values. Notice that as φ increases, the number of samples is higher and hence the model is able to achieve a better
representation of the corresponding PRS data curve (yellow). We also notice that as Re and φ increase, the degree of
non-linearity of the system increases due to the increase in complexity of the interactions between the particles. The
magnitude of drag forces is also higher at higher Re and φ values.
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Figure 7: Each figure indicates the percentage improvement in the context of the AU-REC metric of the PhyNet model
over the DNN (Fig. 7a), DNN-MT-Pres (Fig. 7b) and DNN-MT-Vel (Fig. 7c). Red squares show that PhyNet does better
and blue squares indicate that PhyNet is outperformed by other models. The figures show that PhyNet yields significant
performance improvement over other models. In settings corresponding to low solid fractions, (i.e low number of particles),
we notice significant performance improvement of PhyNet over all other models. It is to be noted that the percentage
improvement is at least 1.76% over other models even in the most complex modeling setting of Re=200 and φ = 0.35.
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Figure 8: Heatmap with ratio of absolute value of pressure
drag (FP

x ) x-component to shear drag (FS
x ) x-component

i.e
( |FP

x |
|FS

x |

)
. Left figure shows ratio for PhyNet predictions

and right figure shows the same ratio for ground truth data.
Distribution of ratios in both figures is almost identical.

ticle. We hypothesized that since the drag force of a
particle is influenced by the pressure and velocity fields,
modeling them explicitly should help the model learn
an improved representation of the main task of particle
drag force prediction. In Fig. 9, we notice that ground-
truth pressure field PDFs exhibit a grouped structure.
Interestingly, the pressure field PDFs can be divided
into three distinct groups with all the pressure fields
with φ = 0.2 being grouped to the left of the plot, pres-
sure fields with φ = 0.1 being grouped toward the bot-
tom, right of the plot and the rest of the PDFs form-
ing a core (highly dense) group in the center. Hence,
we infer that solid fraction has a significant influence
on the pressure field. It is non-trivial for models to
automatically replicate such multi-modal and grouped
behavior and hence we introduce physics-guided statis-
tical priors through aggregate supervision during model
training of PhyNet . We notice that the learned distri-
bution with aggregate supervision Fig. 9 (center) has
a similar grouped structure to the ground truth PDF

Training
Fraction

No Aggregate
Supervision
(AUREC)

Aggregate
Supervision
(AUREC)

0.35 0.83265 0.85096
0.45 0.85874 0.86969
0.55 0.85635 0.89138
0.65 0.9005 0.91
0.75 0.86516 0.918016
0.85 0.90869 0.92495

Table 4: Effect of aggregate supervision on PhyNet for
different levels of data paucity. We notice that PhyNet with
aggregate supervision outperforms the variant without it in
all cases.

pressure field. We also obtained the predicted pressure
field PDFs of a version of PhyNet trained without ag-
gregate supervision and the result is depicted in Fig. 9
(right). We notice that the PDFs exhibit a kind of mode
collapse behavior and do not display any similarities to
ground truth pressure field PDFs. Similar aggregate
supervision was also applied to the velocity field pre-
diction task and we found that incorporating physics-
guided aggregate supervision to ensure learning repre-
sentations consistent with theory, significantly improved
model performance. The effect of aggregate supervision
is empirically characterized in Table 4 where we com-
pare PhyNet with and without aggregate supervision for
different training fractions (0.35 - 0.85) as before. We
notice that in all settings PhyNet with aggregate super-
vision performs better than the variant without aggre-
gate supervision.
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Figure 9: The figure depicts the densities of the ground truth (left) and predicted (center, right) pressure fields of the
PhyNet model for each (Re,φ). Specifically, we wish to highlight the effect of aggregate supervision (physics-guided
statistical prior) on the predicted pressure field. Notice that the PDFs of the pressure fields predicted with aggregate
supervision are relatively more distributed similar to the ground truth distribution of pressure field PDFs as opposed to
the plot on the right which represents predicted pressure field PDFs in the abscence of aggregate supervision and incorrectly
depicts a some what uniform behavior for all the PDFs of different (Re,φ) cases.

6.7 Hyperparameter Sensitivity As outlined in
Section 4, each of the four auxiliary tasks in the
PhyNet model, is governed by a hyperparameter during
model training. In our experiments, we only tune the
hyperparameters for the pressure field and velocity field
prediction tasks leaving all other hyperparameters set
to static values for all experiments. We employ a
grid search procedure on the validation set to select
the optimal hyperparameter values for the pressure
and velocity field prediction auxiliary tasks in the
PhyNet model. In order to characterize the effect of
this hyperparameter selection procedure on the model
evaluation, we evaluate the sensitivity of the model to
different hyperparameter values.

Training Fraction λP λV
0.35 1e−1 1e−4

0.45 1e−3 1e−3

0.55 1e−1 1e−4

0.65 1e−2 1e−4

0.75 1e−5 1e−3

0.85 1e−5 1e−2

Table 5: The table showcases hyperparameter values of
PhyNet , for different levels of training fractions each ob-
tained through gridsearch. It must be noted that only the
hyperparameters for the pressure and velocity field predic-
tion auxiliary tasks were tuned and the rest of the values
were kept constant for all experiments λFP = 0.01, λFS =
0.01.

We design the hyperparameter sensitivity experiment
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Figure 10: Hyperparameter sensitivity evaluation of the
grid search hyperparameter selection procedure for the
PhyNet model. We notice that PhyNet is robust to differ-
ent settings of hyperparameters as we do not see significant
changes in the AU-REC between the settings where hyper-
parameters for the PhyNet were selected through grid search
on the validation set (green) and the settings wherein the
hyperparameter values were set to a constant value by hand
before the experiment (blue) i.e no parameter tuning.

to inspect how model performance varies with different
training fractions (i.e different experimental settings).
We conduct an experiment by reducing the training
fraction from 0.85 to 0.35. Fig. 10 shows the results
of our experiment wherein the blue bars indicate the
AU-REC values obtained when the PhyNet model was
trained with a static (predefined) set of hyperparam-
eters‡. The green bars indicate the setting where the

‡The optimal hyperparameters for the 0.55 training fraction
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optimal hyperparameters for pressure and velocity field
prediction for the PhyNet model were obtained through
gridsearch on the validation set. We notice that over all
the training fractions, there is no significant difference
between the two models and hence conclude that the
PhyNet model is robust across different hyperparame-
ter settings. Exact hyperparameter values are detailed
in Table. 5.

6.8 Effect of Pressure & Velocity Sampling
Methodology In Table 6, we characterize the model
performance with different sampling frequencies of the
pressure and velocity fields around each particle. The
sampling plane is the XY plane with the Z axis aligned
with the particle center. We notice from the results

Num. Samples AUREC MRE (% IMP)
10 0.88241 13.03 (-7.2%)
20 0.88694 12.56 (-3.8%)
30 0.88575 12.71 (-4.88%)
40 0.88852 12.43 (-2.74%)
100 0.89138 12.09 (–)

Table 6: Effect of pressure & velocity sampling rates on drag
force prediction. We can observe that the learned model
representation improves with increase in sampling frequency
and the model with sampling frequency 100 yields the best
performance. We notice that the most granular pressure
and velocity field sampling procedure (100 samples) yields
an improvement of 7.2% over the coarse grained pressure
and velocity sampling procedure (10 samples).

in Table 6, that the model performance improves with
increasing sampling frequency indicating that higher
sampling frequencies capture the overall pressure and
velocity fields in a more representative manner.

6.9 Effect of Neighborhood Size & Extrapola-
tion to Unseen Assemblies Extrapolation is a chal-
lenging task for machine learning models and is the ul-
timate test of generalizability of a learned representa-
tion. We conducted experiments to evaluate the gener-
alization capability of our PhyNet model by testing the
model performance in the context of predicting drag
forces of unseen particle assemblies. A particle assem-
bly indicates a certain spatial arrangement of particles
for a particular (Re,φ) case used to perform a CFD
experiment. This is important because the spatial ar-
rangement of neighboring particles around a particle of
interest, affects the drag forces acting on the particle.

We generated three separate particle assemblies
(each with 16 combinations of the same range of (Re,φ)

case were used for all other settings.

Neighborhood
Size

Model MSE MRE(% IMP)

5
DNN 41.64 22.89

PhyNet 39.563 22.95

10
DNN 32.613 21.42

PhyNet 29.67 21.15

15
DNN 28.447 19.72

PhyNet 24.79 18.88

Table 7: Extrapolation to two unseen particle assemblies
using different sized particle neighborhoods. The results de-
pict that the PhyNet model outperforms the DNN model
in the context of higher neighborhood sizes (10,15 neigh-
bors). PhyNet achieves an average of 2% improvement over
the DNN model in terms of mean relative error, measured
across all the extrapolation settings.

settings) and used 55% of one of the particle assemblies
for training while the entirety of the other two particle
assemblies were held out and used to evaluate model
extrapolation performance. Table 7 showcases that both
the PhyNet model and the DNN model yield improved
performance with larger particle neighborhoods. This
indicates that larger neighborhoods enable learning
of richer particle interaction information leading to
better representation learning. We notice that the
PhyNet model is able to outperform the DNN model
for higher particle neighborhoods (i.e., cases when 10
,15 neighboring particles considered as inputs), while
the DNN slightly outperforms the PhyNet model for the
case with 5 neighbors.

7 Conclusion

In this paper, we introduce PhyNet , a physics inspired
deep learning model developed to incorporate fluid me-
chanical theory into the model architecture and pro-
pose physics informed auxiliary tasks selection to aid
with training under data paucity. We conduct a rigor-
ous analysis to test PhyNet performance in settings with
limited training data and find that PhyNet significantly
outperforms all state-of-the-art baselines for the task
of particle drag force prediction, achieving an average
performance improvement of 7.09% across all models.
We verify that each physics informed auxiliary task of
PhyNet is consistent with existing physics theory, yield-
ing greater model interpretability. We also introduce a
sampling procedure consistent with the periodic bound-
ary condition of the underlying simulation domain, for
obtaining a granular sample of the pressure and veloc-
ity fields around the particle surface and showcase that
the PhyNet model was able to learn higher quality rep-
resentations of the particle drag force with fine grained
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pressure and velocity field samples. We also show the
effect of augmenting PhyNet with physics-guided aggre-
gate supervision to constrain auxiliary tasks to be con-
sistent with ground truth data. The effect of the size
of particle neighborhood on modeling has also been de-
tailed and we notice that larger particle neighborhoods
enable better modeling of the drag forces acting on the
particle of interest. Finally, we also demonstrate the
ability of PhyNet to extrapolate to unseen particle as-
semblies and wish to conduct additional experiments
further characterizing extrapolation ability in yet other
settings moving forward. In the future, we also plan to
study the effect that upstream and downstream parti-
cles have on the pressure, velocity fields and drag force
of a particle of interest.

In conclusion, the paper gives a general framework
for incorporating physics into machine learning through
intermediaries when these intermediaries influence the
quantity being modeled but are not available during
model deployment. Such situations abound in computa-
tional science and engineering when highly resolved sim-
ulations are used to develop models to be deployed as
”subgrid” models in low resolution calculations. While
the PhyNet framework has been demonstrated for find-
ing particle drag in a suspension, the same framework
can be deployed for other CFD-based model develop-
ment efforts in a variety of engineering fields and in
fields such as atmospheric and geological sciences.
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