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Abstract
Toxin classification of protein sequences is a challenging task with real world
applications in healthcare and synthetic biology. Due to an ever expanding database
of proteins and the inordinate cost of manual annotation, automated machine
learning based approaches are crucial. Approaches need to overcome challenges
of homology, multi-functionality, and structural diversity among proteins in this
task. We propose a novel deep learning based method ProtTox, that aims to address
some of the shortcomings of previous approaches in classifying proteins as toxins
or not. Our method achieves a performance of 0.812 F1-score which is about 5%
higher than the closest performing baseline.

Introduction
Protein sequences, consisting of amino acids, are responsible for a multitude of biological processes
such as metabolic reactions within cells and overall functioning at organism level. Proteins interact
with other proteins, carbohydrates, lipids and DNA to regulate and facilitate various physiological and
metabolic processes such as substrate channeling and enzyme activation. While many are responsible
for maintaining the functional aspects of respective organisms, some have characteristics that render
them toxic. Toxins are substances such as enzymatic or non-enzymatic proteins, which are deleterious
to certain target organisms, produced through either biological processes in animals, plants and
microorganisms or engineered through biotechnology. The task of classifying proteins as toxins or
non-toxins is crucial to understanding which proteins are potentially hazardous. Further, knowing
which protein sequences are toxins is advantageous in applications such as synthetic biology and
healthcare.
With the advent of modern high throughput sequencing, the cost of screening many types of samples,
clinical; environmental; experimental, is no longer prohibitive. As a result sequences are being made
available to researchers in ever greater quantity. Since manual protein function annotation based
on biological experiments is expensive and time consuming, the daunting challenge of annotating
protein sequences and understanding their biological function still persists.
Machine learning based approaches can help address the challenges and provide an effective so-
lution for the task of classifying protein sequences as toxins and help discover unknown features
important for their identification. Machine learning models can be provided engineered features
that encapsulate precious domain knowledge or they can implicitly accomplish feature extraction
through representation learning. The latter is especially true for deep learning based models, which
can efficiently perform feature extraction without the need for expensive feature engineering [2].
In our proposed model ProtTox, we adopt a supervised approach for the task of toxin identification in
order to leverage the existing database of annotated protein sequences.

Related Works
There have been multiple efforts in the past to overcome the limitations posed by experimental
approaches by employing computational methods for determining protein function. It has been
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Figure 1: ProtTox Model Architecture

observed that proteins which share structurally similar regions (homology) demonstrate similar
functionality. Homology or motif discovery based based clustering has been performed to group
proteins which utilizes this concept, for instance UniRef clusters in UniProt database. Such methods
have had limited success [9] in toxin prediction, due to the varying nature of proteins and structural
similarity to non toxins owing to factors such as shared evolutionary lineage [8].

There have been specific machine learning based approaches proposed for toxin prediction. Clan-
Tox[11] uses an ensemble of 10 classifiers with boosting to predict toxins. Global features are
extracted from the sequence data and are used as inputs to a meta-classifier. ToxClassifier [7] also
uses an ensemble based approach. It uses multiple approaches to engineer feature extraction which
include techniques such as amino acid pair frequency, BLAST [10] and HMMER [15] based similarity
scores.

Toxify [6] is a deep learning based approach for toxin prediction. It uses Gated Recurrent Networks,
which have been effective for sequence classification in the natural language processing domain.
Feature engineering here consists of obtaining Atchley Factors, that represents characteristics of each
amino acid such as polarity and hydrophobicity. The authors demonstrate state of the art performance
on their benchmark datasets indicating deep learning approaches can be an effective tool for our task.
Our proposed model also employs a deep learning approach and we describe the details in the next
section.

Method
In this section, we describe our methodology for toxin prediction. Specifically, given a dataset
D =< s1, s2, . . . , sn > of amino acid sequences, the task is to predict if any of the sequences, sk, is
a toxin (the positive class) i.e., estimate P (yi = +1|sk, θ) where θ represents the model parameters.
Figure. 1 provides an overview of three major components of our framework —(i) language model
(LM), (ii) BiLSTM encoder (E) and finally, (iii) aggregation (A) and classification layer (C).

We make use of the pre-trained model from Tristan et al. [3] for the language model LM and the
encoder E. The language model LM comprises of a bidirectional LSTM unit and was trained with
the goal to predict the amino acid at a position i given information about the amino acids occurring
before and after position i in the sequence. For our purpose we keep the language LM fixed and do
not update its weights during training. The encoder unit E also comprises of Bi-directional LSTM
units. E is fed as input a vector hi at each position i. The vector hi is a non-linear Rectified Linear
Unit (ReLU) transformation of a combination of the language model output hLM

i and an embedding
vector xi for the amino acid occurring at position i.

hi = ReLU(WhLM
i + Uxi + b) (1)

Next, for obtaining P (Y = +1|hi), we first perform a linear transform of hi followed by SELU
non-linearity and then obtain the mean along the length of the sequence to obtain a representation for
the entire sequence, es. Finally to obtain the toxin score, we pass es through a dense layer followed
by a sigmoid non-linearity. We call this overall model ProtTox.

Performing mean reduction over hi assumes every part of the sequence is important for making the
prediction. However this may not be true. One way to identify which parts of the sequence are
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Non-Toxin Toxin

ModelNames Precision Recall F-1 Precision Recall F-1

ToxClassifier 0.620 1.000 0.760 1.000 0.390 0.560
Toxify 0.530 0.860 0.660 0.790 0.410 0.540
SWEM 0.723 0.957 0.824 0.936 0.634 0.756
ProtTox 0.686 1.000 0.814 1.00 0.542 0.703
ProtTox-Attn 0.706 0.999 0.827 0.998 0.584 0.737

Table 1: The ProtTox approach achieves the best precision and F-1 score for Non-Toxin prediction.
For toxin prediction, our methods achieves comparable performance w.r.t to the SWEM model

important is to make use of the attention mechanism. Specifically, we use dot-product attention [13],
with a sigmoid activation instead of softmax, over hi to obtain attention probabilities. Additionally,
to introduce sparsity and smoothness in the attention we train this model with an additional fused
LASSO term. The overall loss function is shown in Eq. 2. Here L refers to sequence length and ai
the attention probability for position i. We call this updated model with attention — ProtTox-Attn.

Loss(ŷ, y) = CE(y, ŷ) +

L∑
i=1

ai +

L∑
i=2

|ai − ai−1| (2)

Experimental Setup
Data
All our models are trained on positive examples obtained from a combination of protein records with
the toxin keyword "KW-0800" from Swissprot [4], and records marked as toxins from T3DB [16],
and VFDB [5]. For the negative examples we used the the dataset from ToxClassifier [7] comprised
of non-toxic sequences also from Swissprot. Specifically the ToxClassifer based negative dataset
comprises of sequences drawn randomly from Swissprot (ignoring sequences that match the query
keyword: toxin OR annotation:(type: “tissue specificity” venom)). The dataset also includes hard
negative examples (with high similarity to toxin-like proteins but with physiological functions)
obtained via a BLASTp search with e-value cutoff of 1.0e− 10.

For testing, we obtain a random held out sample of 1000 sequences with the Uniprot keyword "KW-
0800" as the positive set and another 1000 sequences from PATRIC’s [14] metabolically essential
genes list as the negative set.

Methods for Comparison
We compare our method against the following state-of-art methods:

• ToxClassifier [7] is an ensemble of SVM and GBM with multiple engineered features.
• Toxify [6] is a deep recurrent model built over protein sequences where each amino acid is
represented by the five Atchley factors [1]. Toxify requires the maximum sequence length to be 500,
as such for when running Toxify we truncate large sequences at position 500.
• SWEM [12] is a simple word embedding model that has been shown to be effective in text
classification approaches. We adapt the SWEM model for toxin classification. Size 3 k-mers are used
as input to the SWEM model.
• ProtTox and ProtTox-Attn are our methods described in previous section.

Finally, we train all models with 3-fold cross-validation.

Results
In this section, we present the results of our experimental analysis. Specifically we would like to
answer the following questions:

1) What is the performance of ProtTox on toxin prediction task?

Table. 1 shows the performance of the different models in our test set. We observe that ProtTox-
achieves the best precision scores for toxin prediction, whereas ProtTox-Attn achieves a near-perfect
score of 99.8%. We notice that both models have lower recall score compared to SWEM, which
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Metrics SWEM ProtTox-Attn

Precision 0.983 0.998
Toxin Recall 0.354 0.683

F-1 0.520 0.812

Precision 0.160 0.152
Toxin Sub-type Recall 0.538 0.689

(micro-avg) F-1 0.247 0.249
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Figure 2: (A) provides the performance metric comparison between SWEM and ProtTox-Attn when
the models are trained for sub-type prediction also. With sub-type prediction the overall toxin
prediction capability of ProtTox-Attn improves. We see the best f1-score of 0.812 which is 5% better
than the best SWEM model (from Table. 1). (B) shows how ProtTox-Attn performs w.r.t to sequences
of different length. The bar indicates the # of samples with a given sequence length, whereas the curve
indicates the average loss incurred for sequences with a given length. (C) shows the performance
difference when SWEM model is trained with different sequence length cut-offs.

slightly hurts the F1 scores for both models. However, for non-toxin prediction ProtTox-Attn achieves
the best F1 score. This demonstrates our proposed models can be fruitful for vanilla toxin prediction.

2) Does predicting sub-toxin keywords help improve overall Toxin Prediction results?

In this experiment, we try to induce more structure into the prediction task by breaking down the Toxin
class into subtypes. For this we make use of the Uniprot keyword hierarchy to identify 11 sub-types:
Cardiotoxin, Cell adhesion impairing toxin, Complement system impairing toxin, Dermonecrotic
toxin, Enterotoxin, G-protein coupled receptor impairing toxin, Hemostasis impairing toxin, Ion
channel impairing toxin, Myotoxin, Neurotoxin and finally for any sequence that is a toxin but does
not fall into any of the above mentioned subtypes were put under a class called “Other”.

For this task, we only compare the performance of SWEM and ProtTox-Attn(the best performing
models from Table. 1). The models are trained with cross entropy loss where the overall score for
toxin is obtained by summing up the individual sub-type scores. Figure. 2(A) shows the performance
on toxin identification when we also try to predict the sub-type. We notice that the introduction of
additional structure to the prediction problem (in terms of sub-types and their hierarchical relation
with the root toxin class) helps ProtTox-Attn to learn better representations for toxin classification.
We believe adding sub-type predictions have helped regularize and learn a better minima for our
model ProtTox-Attn. However we note that the SWEM model performs poorly under this setting.
This is possibly due to the fact the SWEM model, being single layered model, does not have enough
complexity/capacity to model this increased label space.

3) What is the effect of sequence length on toxin prediction?

In order to answer this question, we perform two sets of experiments. First, we train multiple SWEM
models (chosen for its simplicity) with max sequence length set to 100, 200, 500, 1000. Under each
setting, if a sequence has a length greater than the specified length then its truncated. The results of
this experiment are shown in Figure. 2(C). We notice that with increasing sequence length precision
decreases but recall increases. As such, we observe optimal F1-score somewhere in the middle around
sequence length 500. Secondly, on Figure. 2(B) we investigate how the loss of ProtTox-Attn varies
w.r.t to sequence length. We notice that our model performs best for long sequences.
Conclusion
In this paper, we develop deep a learning based approach for toxin prediction. We observed that
predicting toxin sub-types help improve overall toxin classification performance especially with
increasing complexity (depth) of the model. We also study the performance variation of our model in
terms of sequences of different lengths. Moving forward, it is possible to extend our model in several
directions. Incorporating richer domain knowledge, such as on PPI and 3-D structure of proteins etc.,
can potentially provide greater predictive power.
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