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Ushered by recent developments in various areas of science and technology, modern energy systems are
going to be an inevitable part of our societies. Smart grids are one of these modern systems that have
attracted many research activities in recent years. Before utilizing the next generation of smart grids, we
should have a comprehensive understanding of the interdependent energy networks and processes. Next-
generation energy systems networks cannot be effectively designed, analyzed, and controlled in isolation
from the social, economic, sensing, and control contexts in which they operate. In this paper we present
a novel framework to support charging and storage infrastructure design for electric vehicles. We develop
coordinated clustering techniques to work with network models of urban environments to aid in placement
of charging stations for an electrical vehicle deployment scenario. Furthermore, we evaluate the network
before and after the deployment of charging stations, to recommend the installation of appropriate storage
units to overcome the extra load imposed on the network by the charging stations. We demonstrate the
multiple factors that can be simultaneously leveraged in our framework in order to achieve practical urban
deployment. Our ultimate goal is to help realize sustainable energy system management in urban electrical
infrastructure by modeling and analyzing networks of interactions between electric systems and urban
populations.
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1. INTRODUCTION
Due to the fast decline of fossil fuels, sustainable approaches of energy production,
distribution, and consumption are now going to take the place of traditional methods
[Ramchurn et al. 2012]. The advent of electric vehicles (EVs) is a promising shift.
However, to be prepared for a world laden with EVs we must revisit smart grid design
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and operation. One of the key issues in ushering in EVs is the design and placement
of charging infrastructure to support their operation. Issues that must be addressed
include [Ramchurn et al. 2012]:

(i) prediction of EV charging needs based on their owners’ activities;
(ii) prediction of EV charging demands at different locations in the city, and available

charge of EV batteries;
(iii) design of distributed mechanisms that manage the movements of EVs to different

charging stations; and
(iv) optimizing the charging cycles of EVs to satisfy users’ requirements, while maxi-

mizing vehicle-to-grid profits.

In this paper, we propose a new framework to address the problem of charging and
storage infrastructure design for EVs by adopting an urban computing approach. Fur-
thermore, due to the additional load imposed to the network by EVs, appropriate stor-
age units must be deployed beside the charging stations. There are several works that
consider the problem of load management for EV charging and its impact on the grid
[Paul and Aisu 2012] and [Guiseppe and Antonio 2012]. However, there is no previous
work that addresses the coordinated impact of placement over an urban infrastructure
and its solution thereof.

Here, we assume that each charging station uses storage to offset the impact of
charging on the grid. Other alternative solutions can also be used, such as upgrading
transmission lines or using a Vehicle-to-Grid (V2G) strategy. While we can upgrade the
transmission lines, the distribution infrastructure still remains a bottleneck. In fact,
upgrading transmission lines is not a complete solution, albeit expensive and time
consuming, discounting the regulatory hurdles. The other solution is based on using
V2G. However, there are no EVs today which provide V2G capability to owners and
business models utilizing such capability are still uncertain from a utility perspective.
Hence, this will not affect the proposed methodology.

Urban computing, [Kindberg et al. 2007], is an emerging area which aims to foster
human life in urban environments through the methods of computational science. It
is focused on understanding the concepts behind events and phenomena spanning ur-
ban areas using available data sources, such as people movements and traffic flows.
Organizing relevant data sources to solve compelling urban computing scenarios is
itself an important research issue. Here, we use network datasets organized from syn-
thetic population studies, originally designed for epidemiological scenarios, to explore
the EV charging station placement problem. The dataset was organized for the SIAM
Data Mining 2006 Workshop on Pandemic Preparedness [Bailey-Kellogg et al. 2006]
and models activities of an urban population in the city of Portland, Oregon. The sup-
plied dataset [Bisset et al. 2006] tracks a set of synthetic individuals in Portland and,
for each of them, provides a small number of demographic attributes (age, income,
work status, household structure) and daily activities representing a normative day
(including places visited and times). The city itself is modeled as a set of aggregated
activity locations, two per roadway link. A collection of interoperable simulations—
modeling urban infrastructure, people activities, route plans, traffic, and population
dynamics—mimic the time-dependent interactions of every individual in a regional
area. This form of ‘individual modeling’ provides a bottom-up approach mirroring the
contact structure of individuals and is naturally suited for formulating and studying
the effect of intervention policies and considering ‘what-if ’ scenarios.

In our previous work [Momtazpour et al. 2012], we characterized this dataset with
a view toward understanding the behavior of EV owners and to determine which lo-
cations are most appropriate to install charging stations. We developed a coordinated
clustering formulation to identify a set of locations that can be considered as the best

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



Charging and Storage Infrastructure Design for Electric Vehicles A:3

candidates for charging stations. However, thorough study of this problem needs an
approach to determine economic costs imposed on EV owners, and to evaluate the ex-
tra load which is imposed on the network by charging stations. In the current paper,
we extend our previous framework to consider charging costs and storage placement
problems in addition to the problem of charging station placement. We develop an al-
gorithm to assign EVs to the nearest charging stations by minimizing charging cost
and travel distance. After assigning charging stations to EVs, additional load of each
charging station is calculated and used to determine appropriate storage deployment
for each location.

2. RELATED WORK
We survey related work in two categories: mining GPS datasets and smart grid an-
alytics. GPS datasets have emerged as a popular source for modeling and mining in
urban computing contexts. They have been used to extract information about roads,
traffic, buildings, and people behaviors [Yuan et al. 2012], [Yuan et al. 2010], [Liu et al.
2011]. The range of applications is quite varied as well, from anomaly detection [Liu
et al. 2011] to taxi recommender systems [Yuan et al. 2010] that aim to maximize taxi-
driver profits and minimize passengers’ waiting times. The notion of location-aware
recommender systems is a key topic enabled by the increasing availability of GPS
data, e.g., recommending points of interest to tourists [Zheng et al. 2009]. We survey
these works in greater detail next.

In [Yuan et al. 2012] Yuan et al. proposed a framework to discover regions of differ-
ent functionalities based on people movements. They adapt algorithms from the topic
modeling literature, by mapping a region as a document and a function as a topic so
that human movements become ‘words’ in this model. The focus of [Yuan et al. 2010]
and [Yuan et al. 2011] is different: here, GPS data is used to mine the fastest driving
routes for taxi drivers. In [Yuan et al. 2010], Yuan et al. mined smart driving direction
from GPS trajectory of taxis, and in [Yuan et al. 2011] they consider driver behavior
using other metrics such as driving strategies and weather conditions.

Clusters of moving objects in a noisy stadium environment are detected using the
DBSCAN algorithm [Ester et al. 1996] in [Rosswog and Ghose 2012]. This task sup-
ports monitoring a stadium for groups of individuals that exhibit concerted behavior.
In [Takahashi et al. 2012], the authors estimate distributions of travel-time from GPS
data for use in routing and route-recommendation.

Our work here is different from the above works in that we use a synthetic popu-
lation dataset and routes are based on people’s travel habits that are mapped using
geographical coordinates and road infrastructures. We are also not per se interested in
mining the routes but to use the route information to better support charging infras-
tructure placement.

Smart grid analytics has emerged as a promising approach to usher in the promise
of smart grid benefits. Researchers have begun to explore the problems concomitant
with EV penetration in urban areas, especially unacceptable increases in electricity
consumption [Ramchurn et al. 2012]. A promising way to approach this problem is
to understand the interactions between grid infrastructure and urban populations.
While smart grids and EVs have been studied previously from technical and AI point
of views, there is a limited number of research on smart grids from an urban computing
perspective.

In this space, agent-based systems have been proposed to simulate city behavior in
terms of agents with a view toward designing decentralized systems and maximizing
grid profits as well as individuals’ profit [Ramchurn et al. 2012]. In [Aman et al. 2011]
information from smart meters is used for forecasting energy consumption patterns in
a university campus micro-grid, whose results can be used for future energy planning.
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Significant research has been done to improve cost and reliability of energy storage
systems [Hoffman et al. 2010]. Energy storage is used to perform an operation when
there is not enough electricity. In [Makarov et al. 2012] a solution is proposed to bal-
ance energy production against its consumption. In addition, authors in [Bayram et al.
2011] try to design a general architecture in smart grid to have a significant gains in
net cost/profit considering Electric Vehicles.

3. METHODOLOGY
Our overall methodology is given in Figure 1. We describe each of the steps in our
approach next. At a basic level, we integrate two basic types of data to formulate our
data mining scenario. The first data, as described earlier, is a synthetic population
of people and activities representing the city of Portland and the second data set is
electricity consumption profile of each location. Notice that the proposed methodology
is a generic approach and can be applied to real-world data and the fact that we use
synthetic data here is only due to our lack of access to real-world data to test our
proposed methodology.

The synthetic dataset contains 243,423 locations of which 1,779 belong to the down-
town area and of further interest for our purposes. Each location is represented by
geographical [x,y] coordinate adopting the universal transverse mercator coordinate
system (UTM) [Bisset et al. 2006]. There are a total of 1,615,860 people in the en-
tire city. Information about them is organized into households, and for each household
we have the details of number of people in the household, and the ages, genders, and
incomes of each household member. Each person has a unique ID.

We have some information about each person including age, gender, income, and
his/her house ID. The typical movement patterns of people in a 27 hour period (which
includes a typical day) are also available. A total of 8,922,359 movements are provided.
In addition to starting and ending locations for people’s movements, this dataset also
provides the purpose of the movement, categorized into nine types: {Home, Work, Shop,
Visit, Social/Recreational, Serve Passenger, School, College, and Other}. A given per-
son moves from one location to another location at a specific time for a specific purpose
(from the nine mentioned above) and stays in that location for a specified period of
time. These movement types can thus be utilized for further detailed studies. We also
have the ability to map the locations using Google Maps and calculate distances of
travel between locations.

To this dataset, we augment information about electricity consumption of each lo-
cation and simulate the effects of EVs on its electricity demand profile. Since actual
electricity consumption data for each location is not available until all the consumers
have smart meters installed and in operation for some time, we approximate electricity
load profile using the existing data (organized by NEC Labs, America).

It is clear that the electricity load of each location greatly depends on the functional-
ity of that location and hence our first approach is to utilize an information bottleneck
type approach [Tishby et al. 1999] to characterize locations. Our aim is to cluster loca-
tions based on geographical proximity but such that the resulting clusters are highly
informative of location function. This is thus our first application of a coordinated clus-
tering formulation, and falls in the scope of clustering with side information. Next, we
integrate the electricity load information to characterize usage patterns across clusters
with a view toward helping identifying locations to place charging infrastructure.

Our next step is to more accurately characterize usage patterns of likely EV owners.
A specific set of clusters from the previous pipeline is used and characterized using
high-income attributes as the likely owners of EVs. We then bring in additional fac-
tors of locations that influence EV charger placement, e.g., residentiality ratio, load
on the location, charging needs, and typical duration of stay in the location. Some of
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(c) Charging Station assignment and storage placement.
Fig. 1. Overview of our methodology.

these factors (such as distance traveled) are in turn determined by mapping the home-
to-work and work-to-home trajectories of EV owners and their stop locations. In the
proposed method, three datasets are used. Two datasets describe locations and one of

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 Marjan Momtazpour et al.

them describes people. Since each location has a set of features which do not depend on
its coordination, we use one dataset to describe specific features of each location and
another dataset that only consists of geographical coordinates. In addition to datasets
that describe locations, we use a separate dataset for people with different income.

Choosing a right set of locations to install charging stations depends on many fea-
tures. These features can be categorized into two groups: 1) Features of people who
visit those locations. It is better to assume that these people have EVs, and because
we assume that people with higher income have EVs, it is preferable to choose loca-
tions which people with higher incomes visit frequently. 2) Features of locations such
as electricity load. In fact, we are looking for a set of candidate locations that have sim-
ilar features and also, are visited by same type of people. Among different data mining
approaches [Ramakrishnan and Grama 2001], clustering techniques can identify sim-
ilarities and can categorize locations into different sets.

We use a coordinated clustering formulation to simultaneously cluster three
datasets in a relational setting. Coordinated clustering tries to cluster different
datasets such that relationships between items in each dataset are preserved. Here,
we try to identify best locations to install charging stations where certain groups of
people visit those locations. Candidate locations for charging stations are the ones
that have specific characteristics such as low electricity load. However, we try to find
those locations that have direct relationship with a specific group of people (people
with high income). Obviously, type of features in people dataset is different from loca-
tions dataset. Due to this difference, and due to many-to-many relationship between
locations and people we cannot use regular clustering approaches such as k-means.
Our coordinated clustering framework builds upon our previous work [Hossain et al.
2010] which generalizes relational clustering between two non-homogeneous datasets.
This problem is a bit non-trivial since one of the relations is a many-to-many relation
and another is a one-to-one relation. The final set of coordinated clusters are then used
as interpretation and as a guide to charger placement.

After locating the homes of EV owners, we can determine their trajectories and their
stop locations. Then, based on this data, we can estimate their travel distances. This
helps us estimate charging requirements of EVs, during a day. With the help of the dis-
tribution of electricity load in the city and charging needs of EVs, we determine proper
locations for installing charging stations in city with respect to specific parameters.

In addition, we come up with the actual scenario for each EV owner, who needs
charging to see which locations are the best ones for him with respect to charging
cost and waiting time of EV owner. After measuring additional load of each charging
station, we calculate the size of storage they need in order to reduce net load. Finally,
we consider the economical aspects of storage deployment.

4. ALGORITHMS
As described in Section 3, our methodology comprises the following six major steps to
determine candidate locations for charging stations:

i discovering locations’ functionalities using an information bottleneck method;
ii electricity load estimation and integration with results of previous step;

iii studying the behavior of EV owners and calculating specific parameters relevant
to their usage patterns;

iv candidate selection for charging stations using coordinated clustering techniques;
v finding appropriate charging stations for each user while maximizing user benefits;

and
vi calculating the actual load of charging stations and storage placement.

Each of these steps are detailed next.
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Fig. 2. (a) Clustering downtown locations based on geographic coordinates. (b) Clustering over the previous
clustering with people’s activities as side-information. (c) Dynamic population of the four discovered clusters
over a typical day. (d) Computed residentiality ratio revealing one primary residential cluster.

4.1. Discovering Location Functionalities
We use information bottleneck methods to characterize locations with a view toward
defining the specific purpose of the location. The idea of information bottleneck meth-
ods is to cluster data points in a space (here, geography) such that the resulting
clusters are highly informative of another random variable (here, function). We fo-
cus on 1779 locations in the downtown Portland area whose geographies are de-
fined by (x,y) coordinates and whose functions are given by a 9-length profile vector
P = [p1, p2, ..., p9], where pi is the number of travels incident on that location for the ith
purpose (recall the different purposes introduced in the previous section).

Figure 2 (a) describes the results of a clustering based on Euclidean metrics be-
tween locations whose results are aggregated in Figure 2 (b) into a revised clustering
that also preserves information about activities of people at these locations. It is worth
mentioning that in this part of our method, we desire to consider nearby locations and
their electricity loads. Hence, the most appropriate approach for distance measure-
ment is using Euclidean distance. The population distribution of these clusters over
time is shown in Figure 2 (c) which reveals characteristic changes of crowds around
peak hours and lunch times. One final analysis that will be useful is to evaluate each
of the discovered clusters with respect to what we term as the residentiality ratio. The
residentiality ratio for a location is the percentage of people who use that location as
a home w.r.t. all people who visit that location (in downtown Portland, many locations
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Fig. 3. (a) Electricity usage in residential areas. (b) Electricity usage in small office areas. (c) Electricity
usage in large office areas. (d) Electricity usage in college areas.

have combined home-work profiles, and hence the calculation of residentiality ratio
becomes relevant). Figure 2 (d) reveals one cluster with relatively high residentiality
ratio among three others.

4.2. Electricity Load Estimation
In order to uncover patterns in electricity load distributions, we now characterize each
of the discovered clusters using typical profiles gathered from public data sources such
as the California End User Survey (CEUS) and other sources of usage information.
Figure 3 presents daily electricity consumption profile across large offices, small of-
fices, residential buildings, and colleges for one year. By clustering this data across the
year, we can discern important patterns associated with different types of consump-
tion during the year. For instance, in the college setting, we can discern three types of
consumption patterns: holiday breaks (including summer), weekdays, and weekends.

Our next step is to compute the electricity load leveraging the above patterns but
w.r.t. our network model of the urban environment. Recall that our network model is
based on population dynamics but typical electricity load sources are based on square
footage calculations. We map these factors using well-accepted measures, i.e., by con-
sidering the average square footage occupied by one person in a residential area as
600sft [Blake et al. 2007], small office as 200sft [U.S. General Services Administration
1997], large office as 200sft [U.S. General Services Administration 1997], college as
50sft [The Engineering ToolBox ], retail area as 50sft [The Engineering ToolBox ], and
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Fig. 4. Electricity loads for four characterized location clusters.

other classes as 200. Further, the minimum population for an office to be considered
as a large office is set to 300.

Based on some exploratory data analysis, we selected a weekday in the past (specif-
ically, 18th March, 2011) and used the electricity load data of this day to map to the
network model. Consider that in a specific hour, N people go to location l in which ni of
them come for the purpose of pi while

∑9
i=1 ni = N . Then the electricity load for that

location is computed as

El =

9∑
i=1

niApiEpi
1000

, (1)

where Api is the average square footage per person for the purpose Pi and Ep is elec-
tricity consumption of building type p. It worth mentioning that Ep is from public
data sources (California End User Survey (CEUS)) organized by NEC labs, Amer-
ica. Observe that a single location can serve multiple purposes and the above equa-
tion marginalizes across all uses. For example, if there are 360 people in one loca-
tion, and 10 of them are in the building for the purpose of home and 350 are for the
purpose of office, the total electricity consumption of building would be calculated as
(10 × 600 × Ephome/1000) + (350 × 200 × Epoffice/1000) where 600 and 200 are average
square footage per person for the different categories, as mentioned earlier. The above
methodology enables us to characterize electricity loads in terms of the four location
clusters characterized in the previous step (see Figure 4).

4.3. Characterizing EV users
Currently only a small percentage of people use EVs, and this figure is correlated with
high income. Based on [Munro ] and [Simply Hired, Inc. ], only 6 percent of people in
the US have income more than 170,000 USD. In our synthetic dataset, 329,218 people
make an income greater than 60,000 USD. To explore a hypothetical scenario, we posed
the question:

What if 6.31% of 329,218 people from Portland bought EVs? What charging
infrastructure is necessary to support this scenario?

Based on [KEMA, Inc. 2012] this is a realistic assumption if we consider different pen-
etration scenarios in U.S in forecasted EV adoption in 2012-2022. Based on our model-
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ing of these people’s movements and patterns, we aim to identify the best locations for
charging stations.

Figure 5 (a) gives the distribution of EV users in our potential scenario. We can no-
tice several clusters around high-income neighborhoods. With the aid of Google Maps,
we can estimate the amount of time an EV owner drives and how far he/she travels on
a regular week day. Figure 5 (b) gives the distribution of distances traveled by these
users.

Assuming EV owners charge their cars at their respective homes for beginning/end
of day situations, our goal is now to identify candidate charging locations during other
times. Candidate charging stations will be a critical issue in near future as the number
of EVs increases [Richard Martin 2012]. Let us assume that the EV of a person P
consumes ECP KWh energy per 100 Km. Also, assume that the battery of this vehicle
can save ESP KWh. Then the estimated total distance that P can travel with his vehicle
before he needs to charge its battery is

∆P =
100ESP
ECP

, (2)

As an example, for the Chevrolet Volt [GM-Volt ], with ESP = 16 KWh and ECP = 22.4
KWh per 100 Km, the EV can travel 71.43 Km before it needs to be recharged.

If the total traveling distance of P in a day is DP then the number of times that P
needs to charge his vehicle is NP and is determined as follows:

NP =

⌊
DP

∆P

⌋
, (3)

As an example, if we assume that an EV’s battery can save 16 KWh energy [GM-Volt
], an electric car can go for 71.43 Km before it needs to be charged [The official U.S.
Government Source for Fuel Economy Information ].

Due to the long duration of charging process, we have a constraint to install charging
stations only in destinations that people visit. Assume that VL is the set of EV owners
who visited location L during the day. Then |VL| is the total number of EV owners
who have visited location L. However, there is a greater chance for a location to be
a charging station if people with higher charge needs visit that location. Hence, the
charge needs of location L is determined based on equation 4.

WL =
∑
P∈VL

NP , (4)

Charging needs is an estimation to see in which locations, EV owners will probably
charge their EVs. It does not mean that vehicles will certainly charge at every location.
Here, we say that “there is a greater chance for a location to be a charging station if
people with higher charge needs visit that location”. Equation (4) does not mean that
vehicles will charge at every visit to such locations. It is just a measure that indicates
which locations have higher chance of experiencing charging needs. For example, if
location A is visited by 10 EVs where all of them need to be charged only once during
a day, then charging need of location A would be 10. On the other hand, if location B
is visited by 8 EVs in which all of them need to be charged twice, then the charging
need of location B would be 16, which is higher than A’s. These numbers show that
with higher probability people in location B require charging needs, compared with A.

Figure 5 (c) depicts the histogram of how many times an EV needs to be charged.
Also, Figure 5 (d) depicts the charge needs of downtown locations.
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Fig. 5. (a) EV household locations. (b) Distribution of distances people travel in their EVs. (c) Charging
needs for EVs. (d) Number of charging needs (more than zero) per location.

Table I. Table of Notations

Variable Description Variable Description
B relationship matrix C(x), C(y) cluster indices

mi,X , mj,Y prototype vectors for clusters v
(xs)
i , v(yt)

j cluster membership indicators
kx,ky number of clusters wij contingency table entry
wi. row-wise counts of w.j column-wise counts of

contingency table entries contingency table entries
αi row-wise random variable βj column-wise random variable
U uniform distribution F objective function

4.4. Charging Station Placement using Coordinated Clustering
Since charging EVs is not an instantaneous process, it is helpful to place charging
stations at those locations where people visit for an extended period of time. The aver-
age duration of stay of people in each location is an important feature in this regard.
The right choice of EV charging stations thus depends on the regular electricity load
of the area, the amount of time that people spend in the location, and the number of
times that EV owners need to charge their vehicles [KEMA, Inc. 2012]. Hence, based
on EV owners’ traveling routes during peak and off-peak hours, we can arrive at a set
of candidate regions for charging stations. In this section, we describe how coordinated
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clustering can be used for charging station placement. Notations are summarized in
Table I.

Let X be the income dataset and Y be the locations datasets. X = {xs}, s = 1, . . . , nx
is the set of vectors in dataset X , where each vector is of dimension lx, i.e., xs ∈ Rlx .
Currently, our income dataset contains only one dimension. Similarly, locations dataset
Y = {yt}, t = 1, . . . , ny,yt ∈ Rly . Locations are denoted by two dimensions (latitude and
longitude) in our current database. The many-to-many relationships between X and
Y are represented by a nx × ny binary matrix B, where B(s, t) = 1 if xs is related
to yt, else B(s, t) = 0. Let C(x) and C(y) be the cluster indices, i.e., indicator random
variables, corresponding to the income dataset X and location dataset Y and let kx and
ky be the corresponding number of clusters. Thus, C(x) takes values in {1, . . . , kx} and
C(y) takes values in {1, . . . , ky}.

Let mi,X be the prototype vector for cluster i in income dataset X (similarly mj,Y

). These are the variables we wish to estimate/optimize for. Let v(xs)
i (likewise v(yt)

j )
be the cluster membership indicator variables, i.e., the probability that income data
sample xs is assigned to cluster i in the income dataset X (resp). Thus,

∑kx
i=1 v

(xs)
i =∑ky

j=1 v
(yt)
j = 1. The traditional k-means hard assignment is given by:

v
(xs)
i =

{
1 if ||xs −mi,X || ≤ ||xs −mi′,X ||, i′ = 1 . . . kx,
0 otherwise.

(Likewise for v(yt)
j .) Ideally, we would like a continuous function that tracks these hard

assignments to a high degree of accuracy. Such a continuous function for the the cluster
membership can be defined as follows.

v
(xs)
i =

exp(− ρ
D ||xs −mi,X ||2)∑kx

i′=1 exp(− ρ
D ||xs −mi′,X ||2)

(5)

where ρ is a user-settable parameter and D is the pointset diameter which depends
on the data. An analogous equation holds for v(yt)

j . Since our method operates over
the prototypes, and uses membership probabilities to compute the probability distri-
bution of the contingency table, it is mandatory that the functions are smooth and
continuous everywhere in the system. These are the essential properties of our objec-
tive function. Any smooth and continuous membership function should work similarly.
However, equation 5 has the advantage of involving Kreisselmeier-Steinhauser (KS)
envelope function [Kreisselmeier and Steinhauser 1979] that is smooth and infinitely
differentiable. As a result, our objective function can be optimized using any standard
local and global optimizer.

We prepare a kx × ky contingency table to capture the relationships between entries
in clusters across income dataset X and locations dataset Y. To construct this contin-
gency table, we simply iterate over every combination of data entities from X and Y,
determine whether they have a relationship, and suitably increment the appropriate
entry in the contingency table:

wij =

nx∑
s=1

ny∑
t=1

B(s, t)v
(xs)
i v

(yt)
j . (6)

We also define

wi. =

ky∑
j=1

wij , w.j =

kx∑
i=1

wij ,
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where wi. and w.j are the row-wise (income cluster-wise) and column-wise (locations
cluster-wise) counts of the cells of the contingency table respectively.

We also define the row-wise random variables αi, i = 1, . . . , kx and column-wise ran-
dom variables βj , j = 1, . . . , ky with probability distributions as follows

p(αi = j) = p(C(y) = j|C(x) = i) =
wij
wi.

. (7)

p(βj = i) = p(C(x) = i|C(y) = j) =
wij
w.j

. (8)

The row-wise distributions represent the conditional distributions of the clusters in
dataset in X given the clusters in Y; the column-wise distributions are also interpreted
analogously.

After we construct the contingency table, we must evaluate it to see if it reflects
a coordinated clustering. In coordinated clustering, we expect that the contingency
table will be nonuniform. We can expect that the contingency table will be an identity
matrix when kx = ky. To keep the formulation and the implementation generic for
different number of clusters in two dataset, we need to optimize the variables (cluster
prototypes) in such a way that the contingency table is far from its uniform case. For
this purpose, we compare the income cluster (row-wise) and locations cluster (column-
wise) distributions from the contingency table entries to the uniform distribution.

We use KL-divergences to define our unified objective function:

F =
1

kx

kx∑
i=1

DKL

(
αi||U

(
1

ky

))
+

1

ky

ky∑
j=1

DKL

(
βj ||U

(
1

kx

))
, (9)

where DKL is the KL-divergence between two distributions and U indicates the uni-
form distribution over a row or a column. The idea of KL divergence is to estimate dis-
crimination of information (Minimum Discrimination Information (MDI)) that leads
us to use it as our divergence measure. Similar techniques that follow the MDI princi-
ple have the potential to be a part of our objective function. In the future, we plan to
perform extensive experiments on this.

Note that the row-wise distributions take values over the columns 1, . . . , ky and the
column-wise distributions take values over the rows 1, . . . , kx. Hence the reference dis-
tribution for row-wise variables is over the columns, and vice versa. Also, observe that
the row-wise and column-wise KL-divergences are averaged to form F . This is to miti-
gate the effect of lopsided contingency tables (kx � ky or ky � kx) wherein it is possible
to optimize F by focusing on the “longer” dimension without really ensuring that the
other dimension’s projections are close to uniform.

Maximizing F leads to rows (income clusters) and columns (locations clusters) in
the contingency table that are far from the uniform distribution as required by the
coordinated clusters. It is equivalent to minimizing −F .

The coordinated clustering formulation presented thus far can have some degener-
ate solutions where large number of data points in both datasets are assigned to the
same cluster leading to a huge overlap of relationships. To mitigate this, we add two
more terms with the objective function.

FR = −F +DKL

(
p (α) ||U

(
1

kx

))
+DKL

(
p (β) ||U

(
1

ky

))
. (10)
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where p(α) and p(β) are defined as follows.

p (α) =
1

nx

nx∑
s=1

V (xs) (11)

p (β) =
1

ny

ny∑
t=1

V (yt). (12)

It should be noted that function FR is expected to be minimized. This is the reason
why −F is used in the formula for FR.

Finally, we describe how to integrate three datasets: income, location, and station
properties. Let X , Y, and Z be these three datasets, respectively. There are two sets of
relationships, existing between X , Y, and Y, Z. The objective function for these three
datasets and two sets of relationships is defined as follows.

FXYZ = FR (X ,Y) + FR (Y,Z) . (13)

Here FR (X ,Y) refers to the objective function described in Eq. 10 with the income
dataset X , and locations dataset Y. FR (Y,Z) refers to the same objective function
but input datasets are locations Y, and station property Z. In all our experiments, we
minimize FXYZ to apply coordinated clustering between income, locations, and station
property datasets.

4.5. Charging Station Assignment based on User Expectations
After determining candidate charging stations, we need to assess the effect of in-
stalling charging stations at those locations, and evaluate the changes in electricity
load. In addition, from a business point of view, it is important to study the size of
storage needed at those locations.

First, we need to evaluate candidate charging stations resulting from our co-
clustering algorithm. One solution is to see whether these set of candidates are even
used by EV owners. In order to understand which locations tend to be charging sta-
tions from EV owners’s point of view, we need to identify the desired locations of each
person. These locations are the ones that minimize cost of charging for EV owners. On
the other hand, since the process of charging an EV typically will take several hours,
user tends to charge his car in those locations where he stays for at least a few hours.
Obviously, from a business point of view, we not only consider those locations that
meet users’ criteria (charging cost), but also aim to optimize charging station in terms
of electricity load and size of storage.

In this subsection, we show how to determine where users desire to charge their
vehicles with respect to cost of charging and change of route for each user. In what
follows, we develop an algorithm to assign charging stations to users. Of course, users
have the freedom to select their charging stations. We assume that they are intuitively
looking for the cheapest options. Also, we assume that users desire to minimize their
detour and their waiting time (for charging). These assumptions were considered in
the assignment algorithm. This assignment requires an estimate of storage sizes of
charging stations. For this reason, we need to know the exact schedule of users to
calculate the overall electricity load of each location. We assume that detour, cost, and
waiting time are important issues in selecting charging stations for all users. (It should
be noted that the goal here is to estimate the storage size, not to suggest charging
stations to users.)
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ALGORITHM 1: User-based Candidate Charging Stations (UCCS)
Input: Route consists of sequence of locations.
Output: ChargingStations consists of best locations to charge as well as level of charging and

time of charging at those locations.
CS= RUCCS(Route(1), R,Route) /* assume at first each car has fully charged (R) */
MinFailure = min(CS(Failure));
MinFailureSet =subset of CS with Failure equal to MinFailure;
ChargingStations = argmin(MinFailureSet(Cost));
return ChargingStations

To the best of our knowledge, there is limited work on the “where to charge” problem
in the literature. In [Khuller et al. 2011], authors try to find the cheapest tour between
customer destination locations to fill gas. Our work is different from [Khuller et al.
2011] for a variety of reasons. For example, in our problem,

(1) Sequence of stop points for each user is determined.
(2) We do not have a boundary on the number of times that an EV owner can charge

his car.
(3) Price of charging in each location varies based on duration of stay of user in that

location.
(4) In some locations, car battery will be charged partially.

Before explaining our algorithm, it is worth mentioning that there are different stan-
dards for charging stations. Charging time of each EV depends on its capacity and the
charging level of the charger. Levels of charging for EVs can be categorized into three
levels: level 1, level 2, and level 3 (DC power). Power consumption of each level is dif-
ferent from each other and hence, prices are different. Furthermore, rate of charging
(the time that it takes to charge a battery for 1 KWh) is different for each level.

The algorithm for estimating desired charging locations based on user point of view
is as follows:

For each user, we invoke Algorithm 1 (UCCS). This algorithm takes the route of one
user as input and calculates the best locations for charging as well as level of charging
and the time of charging. Algorithm 1 calls Algorithm 2 to compute all feasible sets of
charging stations in the route that user travels. Then, Algorithm 1 only retains those
sets that have minimum number of failures, i.e. minimum number of times that car
has to switch to gas because of empty battery. After that, it selects a set of charging
stations which has a minimum cost of charging.

Algorithm 2 (RUCCS) is a recursive function for finding all feasible sets of charging
stations. It takes the current location, remaining charge in the EV, and the route of
user as inputs and calculates sets of candidate charging stations. This algorithm works
as follows:

Let us assume that currently the EV is at location Lj , and that the available charge
of battery is equal to Cj . Also, assume that d, the distance that the EV can travel
from Lj without charging its battery, can be computed. This distance is determined in
Line 2. Here, R is the capacity of the battery and D is the distance that EV can travel
with a fully charged battery. In Line 3 of the algorithm, we determine A as the set of
locations that are located on the route of EV, and are at most d meters away from Lj .
It is obvious that if the last point of the route is in A, we do not need to re-charge the
battery (Lines 4-6). On the other hand, the EV must re-charge its battery in at least
one of the locations in A; otherwise after d meters, it should switch to gas.

However, when A is empty, there is no way to re-charge the battery of EV. In that
case, EV must switch to gas and we say that a failure has happened. After a failure,
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in the next subsequent stop point, Lj+1, EV’s battery must be re-charged. In this case,
we recursively call RUCCS for Lj+1 (Lines 8-23). Here, MaxCj+1,k is the maximum
possible charge of battery which is determined based on duration of stay of the car,
and level of charge, k. However, because the capacity of battery is R, the actual value
of the charge is calculated in line 11 and is shown by Cj+1,k. Cost of this charge is
determined in line 12 by CostCj+1,k.

If A is not empty (line 24), we must choose the most feasible location in A for re-
charging the battery. Therefore, in Lines 25-32, for each location in A, and for each
charging level, k, we calculate the amount of possible charge in that location (Ci,k),
the cost of charging (CostCi,k), and the maximum distance that the car will travel
(MaxDi,k), if we charge it in that location with that charging level. For each charging
level, the best stop point for re-charging the car is the one that if we re-charge our
vehicle there, we can travel further with respect to the current location, Lj .

Choosing the best members of A for re-charging is performed in Line 33. Then, if
the best stop point for charging level k is Lidx, we recursively call RUCCS with inputs
Lidx, Cidx,k, and Route (Line 34). After returning from a recursive call of RUCCS for
a location such as Li, (Lines 13 and 34), we have several sets of stop points that are
considered as feasible sets located after Li. These sets are determined with this as-
sumption that Li is a charging station too. Hence, we have to add Li to all of these sets
before returning from the current iteration of the algorithm (Lines 14-19 and 35-40).
Also, because we want to consider all feasible solutions to choose the best one, we have
to keep all the results that are determined for different charging levels. This step is
performed in Lines 20 and 41.

After determining the most feasible locations from the users perspective, i.e. loca-
tions that minimize charging cost and number of failure’s, we must match existing
charging stations with the new locations. Since, we cannot establish charging station
for each location that users want, we choose those charging stations that were ex-
tracted from Section 4.4 and assign each user to them based on distance to charging
stations. Hence, for each charging station, we know when and how many times it will
serve EVs. In order to select the best charging stations for a user, we use a nearest
charging station assignment policy. Therefore, if the desired location for charging is Li
and Sc is the set of available charging stations we use Ci instead of Li where

Ci = argmin distance(Li, Cj) for all Cj in Sc (14)

where, distance(A,B) measures the distance between locations A and B. It should be
mentioned that any method of distance measurement (Euclidean, Manhattan, ...) can
be used in this function.

With this policy, detours are minimized. After assigning charging stations, the
amount of electricity load added to charging stations based on their serving time will
be calculated.
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ALGORITHM 2: Recursive Function (RUCCS)
Input: Lj is the current location, and Cj is available charge of car at location Lj and Route

consists of sequence of locations.
Output: CS which consists of sets of candidate charging stations. Each candidate charging set

(CSi) has the following fields:
CSi(points) is the ordered set of locations where user must charge his car.
CSi(level) is level of charging at each location in CSi(points).
CSi(costs) is cost of charging at each location.
CSi(Failure) is the number of failure during trip.

1 CS = {};
2 d = Cj ∗ D

R

3 A = set of stop points in distance d of Lj ;
4 if Route(end) is in A then
5 return CS;
6 end
7 if |A| = 0 then /* failure will happen and it must switch to gas */
8 Lj+1 = next subsequent stop point in Route;
9 for k = 1 to 3 do

10 MaxCj+1,k =maximum possible charge at Lj+1 with level k;
11 Cj+1,k = min(MaxCj+1,k, R);
12 CostCj+1,k =cost of charging at Lj+1 with level k;
13 CSk = RUCCS(Lj+1, Cj+1,k, Route);
14 for each candidate set, CSk

m, in CSk do
15 CSk

m(points) = [Lj+1 CSk
m(points)];

16 CSk
m(levels) = [k CSk

m(levels)];
17 CSk

m(costs) = [CostCj+1,k CSk
m(costs)];

18 CSk
m(failure) = CSk

m(failure) + 1;
19 end
20 CS=CS ∪ CSk;
21 end
22 return CS;
23 else
24 for each point, Li, in A do
25 for k = 1 to 3 do
26 MaxCi,k =maximum possible charge at Li with level k;
27 Ci,k = min(Cj − dist(Lj ,Li)∗R

D
+MaxCi,k, R);

28 CostCi,k =cost of charging at Li with level k;
29 MaxDi,k = D

R
∗ Ci,k + dist(Lj , Li);

30 end
31 end
32 for k = 1 to 3 do
33 idx = argmaxLi∈A(MaxDi,k);
34 CSk = RUCCS(Lidx,k, Cidx,k, Route);
35 for each candidate set, CSk

m, in CSk do
36 CSk

m(points) = [Lidx,k CSk
m(points)];

37 CSk
m(levels) = [k CSk

m(levels)];
38 CSk

m(costs) = [CostCidx,k CSk
m(costs)];

39 CSk
m(failure) = CSk

m(failure) + 1;
40 end
41 CS=CS ∪ CSk;
42 end
43 return CS;
44 end
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4.6. Storage Placement
In previous section, we determined profile of electricity load at each location before and
after charging station deployment. Profile of electricity load after installing charging
stations is determined based on number of cars that are charged at each location and
their corresponding level and duration of charging. On the other hand, each location
has a predetermined capacity which is the maximum electricity load that it can toler-
ate. When electricity load of a location increases and goes above its capacity, we need
to place storage to meet the electricity demand of that location. In this regard, the
efficiency of storage is also important. Here, we assume that the desired utilization of
storage in all locations is 80% i.e. at most 80% of the capacity of a storage is used in
a day. That ensures us that storage will not discharged to no more than 80% of total
capacity. Due to the small size of storage at some locations we aggregate storages of
nearby locations. For this purpose, we use DBSCAN [Ester et al. 1996] to locate dense
areas and calculate the needed storage size of each cluster as a summation of storages
over all locations in that cluster.

From a business point of view, placing storage at a charging station must have a
adequate revenue for storage owners. In addition, putting storage at locations is ad-
vantageous to city in terms of reducing the peak of electricity load in urban area.

To investigate the revenue of storage units, we consider each charging station in turn
and compute the revenue of storage. Here, revenue refer to the amount of funds that
storage owners will save from selling energy to consumers. Revenue can be achieved
by selling energy during the day and recharging the storage during the night (with
off-peak rate). In addition, to observe profile of charging stations based on their load
curves, we use the clustering algorithm introduced in [Yang and Leskovec 2011], i.e.,
the K-Spectral Centroid (K-SC) algorithm for time series data using a similarity met-
ric invariant to scaling and shifting. They apply adaptive wavelet-based incremental
approach to K-SC to use it for large datasets. K-SC proved to be an effective clustering
when scaling is not important. By applying this method, we can understand differ-
ent types of charging stations based on their load curves and finally, locate the best
locations to put storage in order to get high revenue.

5. RESULTS
Figure 6 describes the coordinated clustering scenario. As illustrated in this figure, we
use three datasets: People (Income), coordinates (x,y) of location, and features (load,
charge need, stay) of location. First dataset contains information about income of peo-
ple and second dataset has information about the geographic coordinates of each loca-
tion. However, the third dataset contains the characteristics of locations for charging
station placement. Electricity load of buildings, charging need of people in that location
and duration of stay in each location are three features in this dataset.

We begin with some preliminary observations about our data. Figure 7 depicts the
distribution of people based on their income, indicating that a significant number of
people have high income, leading to a large number of EV users. We experimented
with coordinated clustering settings involving many settings. Figure 8 depicts three
clusters of locations based on each of the attribute sets in our schema. Note that be-
cause the clusters are mapped onto (x,y) geographical locations, locality is apparent
only in Figure 8 (b).

Profiles of these clusters are described in detail in Figure 9. Of particular interest
to us is the view from the perspective of EV attributes, i.e., Figure 9 (c). Details of
these clusters are explored in greater detail in Table III. Ideal locations for charging
stations for EVs must have a relatively low current electricity load (to accommodate
the installation of charging infrastructure), high charging needs (population profiles),
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Fig. 6. Coordinated clustering schema.

<0 0 − 5k 5−10k 10−15k 15−20k 20−25k 25−30k 30−35k 35−40k 40−45k 45−50k 50−55k 55−60k >60k
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

N
um

be
r 

of
 P

eo
pl

e

Income

Histogram of People Income

Fig. 7. Distribution of income.

5.24 5.245 5.25 5.255 5.26

x 10
5

5.039

5.0395

5.04

5.0405

5.041

5.0415

5.042
x 10

6

X

Y

Categorization of Locations based on People Income

 

 
Rich
Middle
Poor

5.24 5.245 5.25 5.255 5.26

x 10
5

5.039

5.0395

5.04

5.0405

5.041

5.0415

5.042
x 10

6

X

Y

Clustering Result on Geographical Coordination of Locations (x,y)

 

 
Center
North
South

5.24 5.245 5.25 5.255 5.26

x 10
5

5.039

5.0395

5.04

5.0405

5.041

5.0415

5.042
x 10

6

X

Y

Geographical Locations of Clustering Results of Third Table

 

 
Cluster 1
Cluster 2
Cluster 3

(a) (b) (c)

Fig. 8. Results of coordinated clustering (3 clusters) when viewed through the attributes of each domain.
(a) Clusters based on income. (b) Clusters based on geographical location. (c) Clusters based on EV charging
station attributes.

and high staying duration [KEMA, Inc. 2012]. As can be seen from Table III cluster
2 from the third dataset fits these requirements. Greater insights into the three clus-
ters from the viewpoint of these three attributes is shown in Figure 10 supporting the
choice of locations in cluster 2 as the right candidates for locating charging stations. As
we mentioned before, we try to identify locations with specific features while certain
group of people (people with high income) visit those locations. Although based on the
clusters of first dataset (people), we must choose locations where mostly people with
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Fig. 9. Profiles of clusters obtained from coordinated clustering w.r.t. each of the three domains. (a) Income
attributes. (b) Location attributes. (c) EV charging station attributions.
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Fig. 10. Detailed inspection of clusters for their suitability for locating EV charging stations. (a) Distri-
bution of electricity loads. (b) Distribution of charging needs. (c) Distribution of duration of stay. An ideal
cluster should have (low, high, high) values respectively, suggesting that cluster 2 is best suited.

Table II. Profiles of Clusters in Third Dataset (Location’s Features)

Cluster % of People with % of Locations with % of Locations with % of Locations with
High income High Elec. load High Charging need High Stay

1 0.43 0.45 0 0.02
2 0.41 0.06 0.15 0.88
3 0.41 0.05 0.01 0.01

greater salary affordances visit, the distribution of high income vs. low income people
in clusters 1, 2 and 3 in third dataset (locations) are almost similar. This is illustrated
in Table II. With respect to distribution of high income people people, cluster 1 is bet-
ter selected. However, cluster one is not a good choice for installing charging stations
because 45% of its locations are those with high electricity load. Between other two
clusters (cluster 2 and cluster 3), cluster 2 is better because it has low electricity load,
high charging need, and high duration of stay.

With the aid of clustering, we can predict which locations are the best candidates
to install charging stations. However, the effect of installing charging stations in these
locations on other metrics such as the price of charging and electricity load of buildings
must be evaluated.

Since we are looking only at downtown area of Portland, we do not have any in-
formation about exact location of other charging stations outside of downtown. Here,
we padded our downtown area by 500 meters from each side (if we suppose down-
town has a rectangular shape). Then, assuming that those cars in the padded area can
be served by our current charging stations, we run the algorithm 1 for each car. The
distance between charging station and current location of car must be minimized be-
cause charging at charging station with Level 1 or 2 will take several hours and people
prefer to charge their cars at those locations that they stay longer. In reality, users
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Table III. Characteristics of Clusters in Third Dataset (Location’s
Features)

Cluster Elec. Load Charging Need Stay Duration
1 High Low Low
2 Low High High
3 Low Low Low

Table IV. Characteristics of Charging Stations

Level Description Elec. Load(kW) Cost(c//kWh) Time(h)
on-peak mid-peak off-peak

1 110v outlet,16 Amp 2.2 16.62 10.85 7.77 8
2 220v charger, 16 Amp 3.3 16.62 10.85 7.77 4
3 400v DC, 125 Amp 50 10.89 6.36 3.63 0.5

can charge their cars anywhere in vicinity (∼1 mile) of their desired buildings (ex. he
can park his car at nearest charging station and walk to his office). Furthermore, we
need to have information for two types of movements (riding to charging station, and
walking to office). Since, the distances are not too large, using Euclidean distance to
measure distances is not troublesome and makes computations easier. Furthermore,
the actual information about roads of the area was not available to use and the dataset
consists only origin and destination of each movement.

Specifications of three levels of charging for Portland are summarized in Table IV
based on PGE [Portland General Electric Company 2012a] and [Portland General Elec-
tric Company 2012b]. From [Portland General Electric Company 2012b], Schedule 7 is
chosen for level 1 and 2 and Schedule 32 is selected for level 3. It is worth mention-
ing that prices (tariff rate) are based on time of use policy (TOU). The definition of
On-peak, Mid-peak, and Off-peak is inspired from the electricity loads in our dataset:

— On-peak: 6 AM to 10 AM and 5 PM to 8 PM
— Mid-peak: 10 AM to 5 PM and 8 PM to 10 PM
— Off-peak: 10 PM to 6 AM

Prices at Table IV are for both buying electricity from the grid and from charging
station (by EVs). The type of charging depends on time of stay. If an EV stays for 8
hours, it can charge by charging level 1 which is cheapest option. If an EV stays for 4
hours, it can use level 2 charger whereas if the EV needs to be charged in 30 minutes,
it can use the level 3 (DC) option. Price of charging in level 3 is very high compared to
level one and two. For example, cost difference (a complete charging) between charging
by DC and level I would be 50∗10.89−2.2∗16.62 = 507.936 cents or $5. Hence, the overall
impact of level of charging (I, II, and DC) is very high on charging stations and on users
in cost and electricity load points of view.

Experiments show that average distance traveled by each car is 8.4881 meters and
that the maximum distance traveled in this experiment was 1188.2 meters. Figure 11
(a) depicts the histogram of distance between location of current stop point and avail-
able charging station. This result is promising since we considered part of the bound-
aries of downtown while there might be a charging station in that area. The number of
charging stations based on our clustering algorithm is 161 while number of locations
that people liked to charge their cars is 367. The histogram of expenses that all EV
owners in Portland will pay daily for charging is shown in Figure 11 (b).

Also, number of cars that are served at each charging station is important from a
business point of view, to study revenue of charging station owners. As Figure 12 (a)
shows this is zero for some charging stations (black circles) and they can be removed
from consideration as charging station candidates. Based on this figure, we can place
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Fig. 11. (a) Histogram of distance between current stop point of location and available charging station
(meter). (b) Histogram of expenses people spend on charging during a day.
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Fig. 12. (a) Number of cars that served by each charging station. Note that some charging station (black cir-
cle) are useless and can be removed. (b) Size of storage in charging stations (kWh). Note that some charging
station (black circle) are useless and can be removed.

appropriate charging infrastructure at those locations that serve certain number of
cars.

It should be noted that the number of failures in our algorithm is 48. This highlights
the number of cases where an EV must switch to gas in order to continue its route.
Experiments show that all of these 48 cases was due to the nature of our dataset, i.e.
distance between locations was more than maximum possible distance of travel with a
full battery.

Those charging stations that provide service to cars will add extra load to the loca-
tion. This load might be more than the capacity of the location. Here, we assume that
maximum load of one location during a day is equal to its capacity. We must place stor-
age to those locations that require extra electricity. For determining the size of storage
at each charging station, we must look at values of location’s capacity and electricity
load after adding EV. To compute size of storages, we would like to assume that stor-
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age will not discharge to more than 80%. For example, 50kWh should be selected for
a net daily load of 40kWh. The size of required storage should be calculated from the
area below the curve of new electricity load (kW X hr) and above the capacity (net peak
load)(kW). Typically, storage will be charged at night and used during the day and it
should be sized to cover a day’s net load.

Figure 12 (b) shows how many locations need to have storage. Again, black circle
means there is no need for storage at this location. Based on our assumption, uti-
lization is 80%. However, the time-based utilization (i.e. the percentage of time that
storage has been used in a day) is shown in Figure 13. Obviously, the value of time-
based utilization cannot be 1 in this case, because storage needs to be recharged over
night to be used for the next day.

After determining storage sizes, we can aggregate them to minimize number of stor-
age units. This aggregation is based on vicinity of locations. Hence, we used DBSCAN
to find dense areas and take summation of the storage size over all locations in each
cluster. This is shown in Figure 14. In this figure, small black circles represent those
locations where they couldn’t be grouped by other locations and considered as noise in
DBSCAN algorithm. small red dots represent center of each group. As an example, in
upper-right side, overal storage size of two locations (purple circles) is 252 kWh.

To study the amount of saving for each storage, we assume that each storage will
charge at night with off-peak rate. Hence, during the day in on-peak and mid-peak
hours, storage owners will sell energy to consumers (EV owners). Hence, the differ-
ence between price of selling and price of recharging will be considered as revenue of
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Fig. 15. Revenue of energy storage at charging stations

storage. Figure 15 shows energy storage revenue for each charging station that has
storage unit. This value of revenue is calculated for one typical day.

To observe the profiles of charging stations based on their load curves after adding
EVs and after adding storage, we used the K-SC clustering approach described earlier.
Here, the value of electricity load before adding EV, after adding EV, and after storage
deployment during 24 hours were considered as a vector of 24*3 elements. The profiles
of charging stations are categorized into 4 clusters which the prototype of each clus-
ter is shown in Figure 16. It should be noted that this clustering is invariant to shift
and scale and that is why the value of load after storage deployment is higher than
maximum value of load before considering EV. Figure 17 depicts an example of actual
curves for one charging station in cluster 1. It is obvious that storage deployment will
ensure that the value of electricity load will not go higher than the capacity at each lo-
cation. Figure 16 is important in understanding the behavior of charging stations. Also
this figure is helpful in deciding between using a mobile storage unit and a stationary
one.

In Figure 16, charging stations in clusters 1 and 4 have little impact on the peak
load, whereas those in cluster 2 and 3 significantly increase peak demand of the sys-
tem. Therefore, using energy storage for charging stations in cluster 2 and 3 would
make more sense than in clusters 1 and 4. Based on number of charging stations in
each cluster, 43% of charging stations (in cluster 2 and 3) are candidates for storage
deployment. On the other hand, if there is no possibility of adding energy storage,
charging stations in clusters 1 and 4 would have much less impact on the grid and will
be accepted by utilities with less opposition. Also, one can deploy mobile storage units
for charging stations in clusters 1 and 4.

Figure 18 shows the amount of daily revenue achieved by storage deployment for
each cluster. In this figure, locations in cluster 2 and 3 have highest revenue compared
with cluster 1 and 4. Total revenue in cluster 1 and 4 is 6547.2 cents while total rev-
enue in cluster 2 and 3 is 33081.0 cents. Based on this, one can justify using stationary
battery storage in candidate charging stations (cluster 2 and 3).

6. DISCUSSION
Electrical vehicles are going to become more popular in the near future. We have
demonstrated a systematic data mining methodology that can be used to identify loca-
tions for placing charging infrastructure as well as storage infrastructure as EV needs
grow. In addition, we identified candidate locations for deployment of stationary en-
ergy storages to utilize existing electricity infrastructure. The results presented here
can be generalized to a temporal scenario where we accommodate a growing EV pop-
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ulation and to design charging infrastructure to accommodate additional scenarios of
smart grid usage and design.

The methodology presented in this paper mostly incorporates demand data from
the electricity infrastructure and future work would incorporate information from the
electricity supply side too. Information such as loading level of electricity feeders and
remaining excess capacity of feeders for EV charging stations can be integrated in
the methodology to improve the placement of EV charging stations. Also, there are
several measures that were not considered here, such as life of battery, peak shaving
reduction, adding PVs to current system, and details of economic analysis in charg-
ing stations and energy storage deployment. Incorporating these aspects is a direc-
tion of future work. Finally, the analysis presented here integrates a small range of
datasets, each of which has adequate coverage over regions of interest. To overcome
regions of data sparsity, we could employ the use of surrogate models like Gaussian
processes [Ramakrishnan et al. 2005], which can enable the integration of a greater
variety of datasets.
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