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This paper presents a statistical framework for assessing wireless systems performance using hierarchical
data mining techniques. We consider WCDMA (wideband code division multiple access) systems with
two-branch STTD (space time transmit diversity) and 1/2 rate convolutional coding (forward error correc-
tion codes). Monte Carlo simulation estimates the bit error probability (BEP) of the system across a wide
range of signal-to-noise ratios (SNRs). A performance database of simulation runs is collected over a tar-
geted space of system configurations. This database is then mined to obtain regions of the configuration
space that exhibit acceptable average performance. The shape of the mined regions illustrates the joint
influence of configuration parameters on system performance. The role of data mining in this application
is to provide explainable and statistically valid design conclusions. The research issue is to define statis-
tically meaningful aggregation of data in a manner that permits efficient and effective data mining algo-
rithms. We achieve a good compromise between these goals and help establish the applicability of data
mining for characterizing wireless systems performance.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction configuration parameters on the bit error probability (BEP) of a
Data mining is becoming increasingly relevant in simulation
methodology and computational science [13]. It entails the ‘non-
trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data’ [5]. Data mining can
be used in both predictive (e.g., quantitative assessment of factors
on some performance metric) and descriptive (e.g., summarization
and system characterization) settings. Our goal in this paper is to
demonstrate a hierarchical data mining framework applied to the
problem of characterizing wireless system performance.

This work is done in the context of the S4W problem solving
environment [16,9]—‘Site-Specific System Simulator for Wireless
System Design’. S4W provides site-specific (deterministic) electro-
magnetic propagation models as well as stochastic wireless system
models for predicting the performance of wireless systems in spe-
cific environments, such as office buildings. S4W is also designed to
support the inclusion of new models into the system, visualization
of results produced by the models, integration of optimization
loops around the models, validation of models by comparison with
field measurements, and management of the results produced by a
large series of experiments. In this paper, we study the effect of
system simulated in S4W.
The approach we take is to accumulate a performance database

of simulation runs that sweep over a targeted space of system con-
figurations. Akin to [14], this database is then mined to obtain re-
gions of the configuration space that exhibit acceptable average
performance. Exploiting prior knowledge about the underlying
simulation, organizing the computational steps in data mining,
and interpreting the results at every stage, are important research
issues. In addition, we bring out the often prevailing tension be-
tween making statistically meaningful conclusions and the
assumptions required for efficient and effective data mining algo-
rithms. This interplay leads to a novel set of problems that we ad-
dress in the context of the wireless systems performance domain.

Data mining algorithms work in a variety of ways but, for the
purposes of this paper, it is helpful to think of them as performing
systematic aggregation and redescription of data into higher-level
objects. Our work can be viewed as employing three such layers of
aggregation: points, buckets, and regions. Points (configurations)
are records in the performance database. These records contain
configuration parameters as well as unbiased estimates of bit error
probabilities that we use as performance metrics. Buckets repre-
sent averages of points. We use buckets to reduce data dimension-
ality to two, which is the most convenient number of dimensions
for visualization. Finally, buckets are aggregated into 2D regions
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Fig. 1. Typical 1D slices of the configuration space. The plots show simulated BERs
(bit error rates) of wireless systems for five common benchmark channels [15]
across a typical range of average SNRs.

Table 1
Summary of mathematical notation. Lower case letters are used for points and upper
case letters are used for buckets and regions. Additional conventions are introduced in
Table 2.

c,C,R Entities (points, buckets, regions)
x,b,B Random variables
E[x],E[b],E[B] True means of random variables x, b, B
r2,R2 True variances of random variables b, B

x̂; b̂; bB Estimates of means E[x], E[b], E[B] of random variables x, b, B

r̂2; bR2 Estimates of variances r2, R2 of random variables b, B

P(E) Probability of event E, where E is a boolean condition
FN�1(T) P(X < T) for X having the Student t distribution with N � 1

degrees of freedom
fxkgn

k¼1 Set {x1,x2, . . . ,xn}

ffxkjgnk
j¼1g

n
k¼1 Set fx11; x12; . . . ; x1n1 ; x21; x22; . . . ; x2n2 ; . . . ; xn1; xn2; . . . ; xnnk

g
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of constrained shape. We find regions of buckets where we are
most confident that the configurations exhibit acceptable average
performance. The shapes of these regions illustrate the nature of
the joint influence of the two selected configuration parameters
on the configuration performance. Specific region attributes, such
as region width, provide estimates for the thresholds of sensitivity
of configurations to variations in parameter values.

Our major contribution is the development of a statistical frame-
work for assessing wireless system performance using data mining
techniques. The following section outlines wireless systems perfor-
mance simulation methodology and develops a statistical frame-
work for spatial aggregation of simulation results. Section 3
demonstrates a substantial subset of this framework in the context
of a performance study of WCDMA (wideband code division multiple
access [7]) systems that employ two-branch STTD (space–time
transmit diversity [1]) techniques and 1/2 rate convolutional coding
(forward error correction codes [7]). We study the effect of power
imbalance between the branches on the BEP of the system across a
wide range of average signal-to-noise ratios (SNRs). Section 4 ex-
tends the statistical framework to support computation of opti-
mized regions of the bucket space. Such regions are computed by a
well-known data mining algorithm [4,18]. Section 5 applies these
concepts to the example in Section 3. Section 6 summarizes present
findings and outlines directions for future research.

2. Formalisms

Temporal variations in wireless channels have been extensively
studied in the literature [19]. The present work uses a Monte Carlo
simulation of WCDMA wireless systems to study the effect of these
variations. The simulation traces a number of frames of random
information bits through the encoding filters, the channel (a Ray-
leigh fading linear filter [6]), and the decoding filters. The inputs
are hardware parameters, average SNR, channel impulse response,
and the number of frames to simulate. The output is the bit error
rate—the ratio of the number of information bits decoded in error
to the total number of information bits simulated. Simulations of this
kind statistically model channel variations due to changes in the
environment and device movement across a small geographical area
(small-scale fading [6]). We refer to this kind of channel variation as
temporal variation because a system is simulated over a period of
time. Further, we say that a given list of inputs to the WCDMA sim-
ulation is a configuration or a point in the configuration space.

Spatial variations are due to changes in system configurations.
We use this term to describe two quite different phenomena:
changes in the average SNR and channel impulse response due to
large-scale fading [6] and variations of hardware parameters. A typ-
ical approach to the analysis of spatial variations is to run several
temporal variation simulations (i.e., compute bit error rates—
BERs—at several points within a given area of interest) and plot
1D or 2D slices of the configuration space, as shown in Fig. 1. In this
paper, we augment this approach with statistically meaningful
aggregation of performance estimates across several points. The re-
sult of this aggregation is a space of buckets, each bucket repre-
senting the aggregation of a number of points. Moving up one
level of aggregation in this manner allows us to bring data mining
algorithms to operate at the level of buckets. The space of buckets
mined by the data mining algorithm is then visualized using color
maps. The color of each bucket is the confidence that the points
(configurations) that map to this bucket exhibit acceptable average
performance.

2.1. The first level of aggregation: points

Table 1 summarizes some of the syntactic conventions used
in this paper. Mathematically, we can think of the WCDMA
simulation as estimating the mean E[xk] of a random variable xk

with some (unknown) distribution (xk is one when the information
bit is decoded in error or zero when it is decoded correctly) [10].
Each BER x̂kj; 1 6 j 6 nk, output by the simulation is an unbiased
estimate of the BEP E[xk] of the simulated configuration ck. Instead
of building a detailed stochastic model of the simulation (analyti-
cally, from the distribution of xk), we choose to work with the sim-
pler distribution of the BEP bk ¼ E½xk� � x̂kj. Thus, each sample from
the distribution of bk is realized by simulating a number of frames
and obtaining an estimate of E[xk]. The distribution of bk is approx-
imately Gaussian due to the Central Limit Theorem. Technically,
we assume that the number of frames per estimate x̂kj is ‘large en-
ough’ so that the Lindeberg condition is satisfied, that the variance
of x̂kj is finite, and that fx̂kjgnk

j¼1 are i.i.d (independent and identically
distributed). The i.i.d condition is very common in statistics and
used to refer to the case that the random variables all have the
same distribution (identically distributed) and are mutually inde-
pendent of each other (independent), i.e., they do not exhibit cor-
relations or other dependencies. We say that E[bk] = E[E[xk]] is
the expected BEP of configuration ck under Rayleigh fading.
2.2. The second level of aggregation: buckets

Let us now aggregate several points (i.e., random variables) into
one bucket. The purpose of this aggregation is to reduce data
dimensionality to a size that is easy to visualize, usually one or
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two dimensions. The basic idea is to linearly average all points that
map to the same bucket but we must do so carefully, in order to
preserve a meaningful statistical interpretation. Let fbkgn

k¼1 be
Gaussian random variables with means fE½bk�gn

k¼1 and variances
r2

k

� �n
k¼1. As in the previous paragraph, let each such variable bk

be the estimated BEP of some configuration ck, 1 6 k 6 n. For buck-
et C, define a bucket (mixture) random variable B as the convex
combination

B ¼
Xn

k¼1

pkbk;

where the pk P 0 and
Pn

k¼1pk ¼ 1. It is convenient to make fpkg
n
k¼1

the probabilities of occurrence of the configurations fckgn
k¼1 in the

dataset being analyzed. This setup underlines the dependence of
the outputs on the distribution of the inputs and frees the user from
having to provide values for the constants fpkg

n
k¼1. It is well known

that, as long as fbkgn
k¼1 are mutually independent and Gaussian with

means fE½bk�gn
k¼1 and variances r2

k

� �n
k¼1, B is Gaussian with mean

E½B� ¼
Pn

k¼1pkE½bk� and variance R2 ¼
Pn

k¼1p2
kr2

k [2]. The expected
value E[B] of the random variable B can be viewed as the expected
BEP of bucket C = {c1,c2, . . . ,cn} in a Rayleigh fading environment,
conditional on the (discrete) distribution of the configurations in C.

The values fpkg
n
k¼1 are what the statisticians call prior probabil-

ities. For most purposes of this paper, we simply estimate fpkg
n
k¼1

from available data. These values are explicitly or implicitly con-
structed during experiment design and we assume that they re-
main constant during experiment analysis. However, one can
collect additional data as long as doing so does not change
fpkg

n
k¼1. Prior probabilities can come from a number of sources:

channel sounding measurements, propagation simulations, hard-
ware and budget constraints, or even educated guesses by wireless
system designers. The rest of the paper silently assumes that the
values fpkg

n
k¼1 have been established beforehand. It is important

to remember that even though the prior probabilities are for the
most part transparent to the analysis presented here, they none-
theless always exist and all conclusions of data analysis are made
conditional on the prior probabilities.

This discussion of fpkg
n
k¼1 can be interpreted as a deferral of the

exact definition of B until experiment setup, or as parameterization
of the analysis procedure. A natural question is whether or not this
level of parameterization is sufficient. It is sufficient for the pur-
poses of this paper but, strictly speaking, the interrelations be-
tween fbkgn

k¼1 should also be defined during experiment setup.
Mutual independence of fbkgn

k¼1 is a simplifying assumption and
it might be desirable to model interactions between fbkgn

k¼1 in
practice. This implies adding covariance terms to R2 and re-think-
ing the distribution of B. Such analysis is necessarily specific to a
particular experiment. For the sake of simplicity, the rest of this pa-
per assumes mutual independence of variables in a given bucket.

2.3. Confidence estimation

Point and bucket estimates of the expected BEP are meaningful
performance metrics for wireless systems. Let us also estimate our
confidence in these estimates. Confidence analysis enables wire-
less system designers to make more practical claims than point
estimates alone. A statement of the form ‘this configuration will
exhibit acceptable performance in 95% of the cases’ is often prefer-
able to a statement of the form ‘the expected BEP of this configu-
ration is approximately 5 � 10�4’. More precisely, we say that
configuration ck exhibits acceptable performance when the expected
BEP E[bk] of configuration ck is below some fixed threshold T. This
statement is conditional on the temporal simulation assumptions,
i.e., Rayleigh fading. Standard values for T are 10�3 for voice quality
systems and 10�6 for data quality systems. Likewise, we say that
bucket C (a subspace of configurations) exhibits acceptable average
performance when the expected BEP E[B] of bucket C is below some
fixed threshold T. This statement is conditional on both the tempo-
ral simulation assumptions and the distribution of configurations
fckgn

k¼1 in the bucket (the prior probabilities).
The confidence that configuration ck (resp. bucket C) exhibits

acceptable (average) performance is P(E[bk] < T) (resp. P(E[B] < T)).
Since bk and B are Gaussian, these probabilities can be estimated as

PðE½bk� < TÞ � Fnk�1
T � b̂k

r̂k=
ffiffiffiffiffi
nk
p

 !
; PðE½B� < TÞ � FN�1

T � bBbR= ffiffiffiffi
N
p

 !
;

where FN�1(�) is the CDF of the Student t distribution with N � 1 de-
grees of freedom and nk and N are the sample sizes for configuration
ck and bucket C, respectively. For configuration ck,

b̂k ¼
1
nk

Xnk

j¼1

x̂kj; r̂2
k ¼

1
ðnk � 1Þ

Xnk

j¼1

ðx̂kj � b̂kÞ2;

where b̂k and r̂2
k are the estimates of the expected BEP and the BEP

variance at point ck, nk P 2 is sample size, and fx̂kjgnk
j¼1 are sample

values. For bucket C, we substitute point estimates into
E½B� ¼

Pn
k¼1pkE½bk� and R2 ¼

Pn
k¼1p2

kr2
k to obtain

bB ¼Xn

k¼1

p̂kb̂k; R̂2 ¼
Xn

k¼1

p̂2
kr̂

2
k ;

where bB and bR2 are the estimates of the expected BEP and the BEP
variance at bucket C, and fp̂kgn

k¼1 are the prior probabilities esti-
mated from the dataset as p̂k ¼ nk=

Pn
i¼1ni. Observe that

bB ¼Xn

k¼1

p̂kb̂k ¼
1Pn

k¼1nk

Xn

k¼1

Xnk

j¼1

x̂kj

is exactly the sample mean of all observations in the bucket, but bR2

is not the variance of this sample. This is the case because
ffx̂kjgnk

j¼1g
n
k¼1 are not i.i.d. samples from the mixture distribution of

B—they are samples from the constituent distributions of fbkgn
k¼1.

3. Extended example

Let us now apply the techniques developed so far to analyze the
performance of a space of configurations. The wireless systems un-
der consideration employ WCDMA technology with two-branch
STTD and 1/2 rate convolutional coding. We require that the trans-
mitter has two antennas (branches) separated by a distance large
enough for their signals to be uncorrelated, but small enough for
the mean path losses and impulse responses of their channels to
be approximately equal at receiver locations of interest. We as-
sume Rayleigh flat fading channels, which is reasonable for indoor
applications in the ISM and UNII carrier frequency bands (2.4 and
5.2 GHz, respectively). The goal is to study the effect of power
imbalance between the branches on the BEP of the configurations
across a wide range of average SNRs.

This section presents a number of plots that summarize simu-
lated BERs. We also outline the process of statistically significant
sampling of the configuration space. The next section develops a
data mining methodology that solves a practically important prob-
lem: given a dataset similar to the one presented next, find a region
of the configuration space where we can confidently claim that
configurations will exhibit acceptable (average) performance.

Let us begin with an initial sample of the configuration space, as
shown in Fig. 2 (top). This figure shows the simulated BER as a 2D
function f̂ ðS1; S2Þ of the average branch bit energy-to-noise ratios
(SNRs) S1 and S2, in dB. The parallel simulation ran for three days
on 120 machines (AMD Athlon 1.0 GHz) at a speed of approxi-
mately 2.5 points per machine per day. 10,000 frames, or
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Fig. 2. (top) Estimates of the BEPs for a space of configurations fckgM
k¼1 (M = 1600

points at 10,000 frames per point). The X and Y axes are the average SNRs of the
branches (in dB). The Z axis is the (base 10) logarithm of the simulated BER. These
estimates are not statistically significant. (bottom) Statistically significant estimates
fb̂kgM

k¼1 of the expected BEPs fE½bk�gM
k¼1 for the same space of configurations fckgM

k¼1.
For the most part, we are 90% confident that the estimated expected BEP lies within
10% of its true value. See text for exceptions.
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800,000 information bits, were simulated for each of the 820 points
S2 = 3,4, . . . ,42; S1 = 3,4, . . . ,S2. Since f̂ ðS1; S2Þ is symmetric [3], we
show M = 1600 points fckgM

k¼1 for a full cross-product of S1 and S2.
Wireless system designers are more accustomed to 1D slices of

the configuration space, e.g., the ones shown in Fig. 3. Define the
branch power imbalance factor

a ¼ 10�0:1jS1�S2 j;

where S1 and S2 are the average SNRs of the branches, in dB. (This
definition applies as long as the mean path losses of the branches
are equal.) By definition, 0 6 a 6 1, where zero corresponds to a to-
tal malfunction of one of the branches and one corresponds to a per-
fect balance of branch powers. The graphs in Fig. 3 were obtained by
fixing a and varying the effective SNR

S ¼ 10log10ðð100:1S1 þ 100:1S2 Þ=2Þ;

in dB (top), and fixing the effective SNR and varying a (bottom).
(Note that fixing the effective SNR is equivalent to fixing total
transmitter power.) The sample of configurations came from the
dataset shown in Fig. 2 (bottom), described in detail later. However,
this sample does not contain the exact points for typical slices, so
we used a fitted surface—Fig. 4—to approximate the BERs for the
slices in Fig. 3. We choose to work with the axes S1, S2 in Fig. 2 be-
cause it simplifies the discussion later.

What can be gathered from Fig. 2 (top)? The deep valley along
the diagonal is due to the fact that, provided that the effective SNR
is fixed, we expect the BEP to be smallest when the branch power is
balanced (S1 = S2, a = 1) [3]. Somewhat less expected were (a) the
wide tolerance region where jS1 � S2j is large (up to 12 dB) but
the BER is still small, (b) a very sharp decline in performance at
the edge of the tolerance region, and (c) a region of high local var-
iability in the upper part of the diagonal. The surface is truncated at

min
16k6M

fb̂kg ¼ 3:75� 10�6

because smaller estimates of the (expected) BEP require an enor-
mous computation time due to the convergence properties of
Monte Carlo Estimation (more on this below).

3.1. Statistically significant sampling methodology

The initial sample looks reasonable and uncovers interesting
trends in system performance, but it does not contain enough
information to make statistically significant claims. Estimating
the probability that a configuration exhibits acceptable average
performance requires several samples per point ck. The simulation
is computationally expensive and different regions of the
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configuration space exhibit different variability. Therefore, we
must define tight stopping criteria for sampling. Fig. 2 (bottom)
shows the output obtained with the following (per point ck) stop-
ping criteria. The criteria are designed to achieve high estimation
accuracy.

1. Sampling fx̂kjg stops when the relative error in the estimate b̂k

of the expected BEP E[bk] is smaller than the relative accuracy
threshold b = 0.1 times the current estimate b̂k, at a c = 0.9 con-
fidence level, i.e., when
sam
pl 30

40

PðjE½bk� � b̂kj < bb̂kÞP c:
SNR1, 
dBSNR2, dB

e size

20

10

10

20

3030

20

10
We required nk P 2 samples to obtain an estimate r̂2
k of the BEP

variance r2
k . Notice that the target is the relative error, not the abso-

lute error, because the range of fb̂kgM
k¼1 in the configuration space

spans four orders of magnitude. Therefore, absolute error measures
are misleading.
2. Sampling fx̂kjg also stops when we can say, with confidence

c = 0.9, that the expected BEP E[bk] is below the sampling thresh-
old t = 10�4, i.e., when
4040

PðE½bk� < tÞP c:
500 15000
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Fig. 6. Sample sizes for Fig. 2 (bottom). The top part shows the perspective plot and
the bottom part shows the scatter plot.
This work considers voice quality applications, so the exact value of
the expected BEP is irrelevant as long as it is smaller than the per-
formance threshold T = 10�3. The sampling threshold t was set to an
order of magnitude below the performance threshold T to avoid
large approximation error of a fitted surface near T.
3. Finally, sampling fx̂kjg stops when more than 50 samples of

10000 frames each are required to satisfy either of the previous
rules. This rule fired in 5% of the cases, all at the boundary of the
tolerance region and most in mid diagonal.

Altogether, 5154 samples were collected for an average of 6.3
samples per point. Needless to say, the computational expense of
such sampling remains too high for practical applications. While
a large number of samples is typically desirable (for validation pur-
poses), we will show that our data mining framework makes very
effective use of data and thus requires fewer samples in practice.
Let us now look at the data in more detail.
3.2. Results of statistically significant sampling

We assumed that the samples output by the WCDMA simula-
tion are Gaussian. Intuitively, we are simulating a large number
of information bits (800,000) per BEP estimate x̂kj, so the Lindeberg
condition for the Central Limit Theorem should hold. Fig. 5 shows
empirical evidence that this is the case. We have arbitrarily chosen
one point among those with 20–30 sample values fx̂kjgnk

j¼1 and
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plotted the empirical CDF of this sample against that of the Gauss-
ian distribution with the mean equal to sample mean b̂k and the
variance equal to sample variance r̂2

k . The curves are close to each
other and the Shapiro–Wilk test yields W = 0.98 (0 6W 6 1) and p-
value of 0.88. Other points also demonstrate similar curves and
high values of W, but p-values vary significantly. This dataset con-
tains sufficient samples to estimate fE½bk�gM

k¼1 with high relative
accuracy, but 6.3 samples per point are insufficient to formally jus-
tify a Gaussian assumption.

It is also instructive to see some measure of how the sample
variance is distributed across the configuration space. Figs. 6 and
7 show sample sizes and sample standard deviation-to-mean ra-
tios for the samples in Fig. 2 (recall that we prefer relative mea-
sures because the range of fb̂kgM

k¼1 is large). Both figures indicate
high variance around the boundary of the tolerance region. This
is not surprising because the edges of the tolerance region are rel-
atively steep. Fig. 7 also shows relatively high variance at some
points inside the tolerance region. This is because the simulation
achieved the sampling threshold t = 10�4 and stopped before it
achieved the relative accuracy threshold b = 0.1. Knowing this,
one would expect a larger relative variance in the tolerance region.
Let us examine why this is not the case.

We treat the BEP as a continuous Gaussian random variable bk,
but all sample values fx̂kjgnk

j¼1 are discrete—they are ratios of two
integers, the number of errors and the number of bits simulated.
The simulation may not detect any bit errors when the expected
BEP E[bk] is relatively small (e.g., one error in the number of bits
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Fig. 7. Sample standard deviation-to-mean ratios for Fig. 2 (bottom). The top part
shows the perspective plot and the bottom part shows the scatter plot.
simulated). Since no channel is perfect, zero is too optimistic an
estimate for the expected BEP. Instead, we conservatively assume
that at least three bit errors have been detected. This is why the
smallest estimate b̂k of E[bk] is 3/800,000 = 3.75 � 10�6. However,
using any constant cutoff prevents us from estimating the variance
r2

k . We would need to simulate a large number of frames to esti-
mate r2

k when the expected BEP is small. Instead, we can empiri-
cally show that the probability that the expected BEP is smaller
than the performance threshold T = 10�3 is close to one. Let
b̂k ¼ 3:75� 10�6 be the sample mean, nk = 2 be the sample size,
and r2

k be the BEP variance at point ck where two independent sim-
ulations detected three or fewer bit errors each. Sampling fx̂kjgwill
stop because sample variance is zero, so the first stopping rule
applies.

We need to show that sampling can indeed stop, i.e., that the
probability that the expected BEP is below the performance thresh-
old T is

PðE½bk� < TÞ � Fnk�1
T � b̂k

r̂k=
ffiffiffiffiffi
nk
p

 !
P 0:995:

This statement can only be false when ðT � b̂kÞ
ffiffiffiffiffi
nk
p

=r̂k 6 64, or
r̂k P 2:2� 10�5, almost an order of magnitude bigger than the con-
servative estimate b̂k of the expected BEP E[bk]. This is unlikely be-
cause Fig. 7 (bottom) shows that the sample standard deviation
rarely exceeds the sample mean even by half an order of magnitude.
In other words, we do not have accurate estimates for variance r2

k in
the tolerance region. However, we can still reasonably conclude
that configurations exhibit acceptable performance in this region.

4. The third level of aggregation: regions

Consider a set of buckets fCkgM
k¼1 with corresponding random

variables fBkgM
k¼1. Given a number of sample values, the framework

developed in Section 2 allows us to estimate the probabilities
fPðE½Bk� < TÞgM

k¼1 that buckets fCkgM
k¼1 exhibit acceptable average

performance. (All arguments about buckets equally apply to points
because a point is a special case of a bucket.) This section is con-
cerned with finding an optimal subset of random variables from
among fBkgM

k¼1. This optimal subset corresponds to an optimal re-
gion of a 2D bucket space. We would like to find a sufficiently large
admissible region Rm such that we are sufficiently confident that
buckets in Rm exhibit acceptable average performance.

There are many ways to define admissibility and we are inter-
ested in adopting a definition that is both meaningful in the wire-
less domain and permits effective data mining algorithms. Among
a space of such admissible regions, we can define different opti-
mality criteria and data mining then reduces to searching within
this space. In this paper, a region Rm is admissible when it has a
particular type of shape. We will explore three different criteria
for the mining of optimal regions; the algorithms and these criteria
are based on the algorithms in [4,18] and have been adapted to the
problem of mining simulation data in this paper.

Additional notation relating buckets to regions is introduced in
Table 2. Let X and Y be two discrete parameters to the temporal
Table 2
Summary of region notation. Also see Table 1.

X,Y Parameters that partition the point space into buckets
MX,MY X and Y dimensions of the bucket space
M = MX �MY Number of buckets in the bucket space
DX,DY Domains of X and Y
g(m) Number of buckets in region Rm

Cj(m,i) ith bucket in region Rm, 1 6 i 6 g(m)
nj(m,i) Number of samples in bucket Cj(m,i)

xj(m,i),yj(m,i) X and Y values for bucket Cj(m,i)
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(e.g., WCDMA) simulations such that X and Y partition the point
space into disjoint buckets fCkgM

k¼1. More precisely, let X,Y have
ordinal domains DX,DY, let jDXj = MX, jDYj = MY, jDXjjDYj = M, and as-
sume that the map q : DX � DY ! fCkgM

k¼1 is bijective. In other
words, X and Y define a discrete 2D space of buckets. Since the do-
mains of X and Y are ordinal, this space is easily visualized as a 2D
color map or a 3D perspective plot.

For example, the average SNRs S1 and S2 in the previous section
partition the space of configurations into buckets. Both S1 and S2

vary from 3 to 42 in steps of 1 (in dB), so MX = MY = 40 and
M = 40 � 40 = 1600 (recall, from Section 3, that only 820 of these
points were simulated and the remaining ones were symmetrically
reflected). Furthermore, the domains of S1 and S2 are ordinal be-
cause the values of S1 and S2 are directly related to the powers of
the transmitter antennas. In this case, the buckets are simply the
points in the space of configurations. In general, buckets can be
convex combinations of points, as detailed in Section 2. Recall that
we defined the color of a bucket as the probability that the bucket
exhibits acceptable average performance. Fig. 8 shows these ‘col-
ors’ as a perspective plot for the STTD example.
4.1. Region shape

Consider regions (subsets) of buckets in the bucket space. If the
shape of these regions is unconstrained, there are 2M possible re-
gions fRmg2M

m¼1. Let region Rm, 1 6m 6 2M, consist of buckets
fCjðm;iÞggðmÞi¼1 , where g(m), 1 6m 6 2M, is a mapping from region
number m to the number of buckets in this region, and j(m, i),
1 6m 6 2M, 1 6 i 6 g(m), is a mapping from region number m
and bucket number i within region Rm to bucket number k,
1 6 k 6M, that we use to subscript buckets fCkgM

k¼1. The exact def-
initions of g(m) and j(m,i) are not important as long as they gen-
erate all possible regions (subsets) fRmg2M

m¼1.
The shape of admissible regions should be constrained because

unconstrained regions are hard to interpret and tend to overfit the
training data. Besides, the problem of selecting an optimal uncon-
strained region is computationally intractable—all 2M possible re-
gions must be considered, where M = 1600 in the STTD example.
The region shape can be constrained in a number of different ways
(rectangular, x-monotone, etc.). Our restrictions on region shape
are discussed next.
Without loss of generality, assume that DX = {1,2, . . . ,MX} and
DY = {1,2, . . . ,MY}. Intuitively, region Rm is rectilinear when its
intersection with any horizontal or vertical line is connected. More
formally, region Rm is rectilinear if and only if whenever buckets
Cj(m,i) at (xj(m,i),yj(m,i)) and Cj(m,j) at (xj(m,j),yj(m,j)) are both in Rm,
then (a) q(r,s) = Cj(m,i) and q(r, t) = Cj(m,j) imply buckets q(r,u) are
also in Rm for all u 2 [s, t], and (b) q(r, t) = Cj(m,i) and q(s, t) = Cj(m,j)

imply buckets q(u, t) are also in Rm for all u 2 [r,s]. Here [a,b] means
all integers between the integers a, b, inclusive. We use Manhattan
geometry to define connectedness. Region Rm is connected if and
only if for every pair of buckets Cj(m,i) and Cj(m,j) in Rm there exists
a sequence of buckets

Cjðm;iÞ ¼ Cjðm;l1Þ;Cjðm;l2Þ; . . . ;Cjðm;lnÞ ¼ Cjðm;jÞ

in Rm such that for every 1 6 k < n

kq�1ðCjðm;lkÞÞ � q�1ðCjðm;lkþ1ÞÞk1 ¼ 1:

Intuitively, any two buckets are connected by a sequence of hori-
zontal or vertical moves. Furthermore, we say that region Rm is
admissible if it is both rectilinear and connected.

This definition of admissibility can be viewed as a relaxed def-
inition of convexity. Geometrically, it is easy to see that region Rm

is admissible if and only if, when we look at Rm from left to right, its
upper boundary first increases and then decreases monotonically
(a pseudoconcave function), and its lower boundary first decreases
and then increases monotonically (a pseudoconvex function). In
other words, the region boundary need not be strictly convex or
strictly concave, but it must be pseudoconvex or pseudoconcave.
Admissible regions are informally summarized in Fig. 9. All admis-
sible regions are composed of regions of four primitive types: W
(region gets wider from left to right), N (region gets narrower), U
(region slants up), and D (region slants down). Twelve combina-
tions of these types yield all types of admissible regions: W, WU,
WUN, WD, WDN, WN, UN, DN, U, D, N, and the empty region.

Our choice of connected rectilinear regions is due to primarily
heuristic considerations. These considerations are commonly
applicable, but must be re-evaluated for each study. Both the con-
nectedness and the rectilinearity restrictions can be justified for
the STTD example (see next section). In general, it is easy to justify
connectedness, but hard to justify rectilinearity. We advocate the
use of connected rectilinear regions primarily because this shape
is resistant to noise in the sample, not because we can analytically
show that the region boundary is rectilinear. In data mining, the
choice of region shape is most commonly dictated by the desired
tradeoff between bias and variance [8]. Regions with flexible shape
exhibit small bias (they can fit any data) but high variance (they
can be overly sensitive to a particular dataset). Regions with rigid
shape exhibit high bias but small variance. Connected rectilinear
regions provide a reasonable tradeoff between bias and variance
for many applications.

4.2. Evaluating regions

Another prerequisite to finding regions with the desired proper-
ties is a definition of region ‘goodness’. Let us map bucket confi-
dence P(E[Bj(m,i)] < T) to a discrete range [0 � � � 1000] and define
the hit of bucket Cj(m,i) as

hjðm;iÞ ¼ b1000PðE½Bjðm;iÞ� < TÞ þ 0:5c

(bXc denotes the largest integer that does not exceed X), the support
of bucket Cj(m,i) as

sjðm;iÞ ¼ 1000

(this constant was chosen to make the discretization error reason-
ably small), the hit of region Rm as
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Fig. 9. Some types of admissible (connected rectilinear) regions. When we look at an admissible region from left to right, its upper boundary must first increase and then
decrease monotonically, and its lower boundary must first decrease and then increase monotonically.
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Hm ¼
XgðmÞ
i¼1

hjðm;iÞ;

and the support of region Rm as

Sm ¼
XgðmÞ
i¼1

sjðm;iÞ ¼ 1000gðmÞ:

The key to efficient computation of optimized-confidence and opti-
mized-support admissible regions is the definition of region confi-
dence as

Hm ¼ Hm=Sm;

where Hm is the hit and Sm is the support of region Rm. Let us explore
the implications of these definitions in more detail.

4.2.1. Model-based and model-free analyses
Suppose, nj(m,i) = 6 samples have been collected for bucket

Cj(m,i) that consists of a single point. Let the sample mean bebBjðm;iÞ ¼ 5� 10�4 and the sample standard deviation be
R̂jðm;iÞ ¼ 8:87� 10�4. Furthermore, suppose that five of these sam-
ples have the BER below 10�3 and one has the BER above 10�3.
Then,

PðE½Bjðm;iÞ� < TÞ � F5
10�3 � 5� 10�4

8:87� 10�4=
ffiffiffi
6
p

 !
� 0:887:

A purely model-free approach would interpret the above simulation
results as ‘bucket Cj(m,i) will exhibit acceptable average perfor-
mance in 5 out of 6 cases.’ A strongly model-based approach would
interpret the simulation results as ‘we are 88.7% confident that
bucket Cj(m,i) exhibits acceptable average performance.’ Our inter-
pretation lies between the model-based approach and a model-free
approach and posits that ‘bucket Cj(m,i) will exhibit acceptable aver-
age performance in 887 out of 1000 cases.’ These interpretations
provide confidence estimates under different simplifying
assumptions.

The model-free interpretation does not take either sample var-
iance or sample distribution into account. This interpretation is
only reliable for a sufficiently large number of samples, which is
a luxury in our application. Our middle-ground interpretation
explicitly accounts for sample variance and sample distribution.
When sample size is small, our interpretation provides a statisti-
cally valid estimate of confidence that the bucket exhibits accept-
able average performance. For a single bucket, this interpretation is
as good as a strongly model-based interpretation, modulo a rea-
sonably small discretization error. However, our interpretation di-
verges from the model-based interpretation at the region level.

A strongly model-based analysis procedure would define a re-
gion random variable

Q m ¼
1

Wm

XgðmÞ
i¼1

wjðm;iÞBjðm;iÞ;

where fBjðm;iÞggðmÞi¼1 are bucket random variables, fwjðm;iÞggðmÞi¼1 are a
priori (positive) constant weights, and
Wm ¼
XgðmÞ
i¼1

wjðm;iÞ

is a normalization factor that maps these weights to probabilities of
bucket occurrence in the region. A procedure similar to that in Sec-
tion 2 would then be used to estimate P(E[Qm] < T) for a threshold T.
The result of this calculation can be interpreted as the probability
that region Rm exhibits acceptable average performance, conditional
on the temporal simulation assumptions, the bucketing prior prob-
abilities, and the region prior probabilities. However, as we shall see
later, this definition of region confidence violates a property that
permits an efficient data mining algorithm.

We think of region confidence in terms of average bucket con-
fidence over the whole region, namely,

Hm �
1

gðmÞ
XgðmÞ
i¼1

PðE½Bjðm;iÞ� < TÞ:

(If region size g(m) is large enough, we can reasonably expect the
discretization errors to cancel each other.) This interpretation of
Hm does not correspond to the strongly model-based probability
that region Rm exhibits acceptable average performance. Instead,
we define a region random variable Pm as the probability that any
bucket Cj(m,i) in region Rm exhibits acceptable average performance.
Then, we estimate the expected value E[Pm] across the region Rm by
the sample mean bPm � Hm of estimates of bucket confidences
fPðE½Bjðm;iÞ� < TÞggðmÞi¼1 .

How do these two definitions relate to each other? It is easy
to show that they are equivalent only under very restrictive
assumptions. Basically, we are assuming that the buckets are
mutually independent, that population variance is small, and
that the region is consistent, i.e., ‘good’ and ‘bad’ buckets are
never mixed in the same region. Let bucket random variables
fBjðm;iÞggðmÞi¼1 be mutually independent, let the estimates
fbR2

jðm;iÞg
gðmÞ
i¼1 of bucket variances be approximately equal to zero,

and let the estimates fbBjðm;iÞggðmÞi¼1 of bucket expected BEPs be
either all greater than the performance threshold T or all smaller
than the performance threshold T (i.e., all fT � bBjðm;iÞggðmÞi¼1 have
the same sign). Then, bucket confidences

PðE½Bjðm;iÞ� < TÞ � Fnjðm;iÞ�1
T � bBjðm;iÞbRjðm;iÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
njðm;iÞ
p

 !
;

1 6 i 6 g(m), will be either all approximately equal to zero
(bBjðm;iÞ > T), or all approximately equal to one (bBjðm;iÞ < T). There-
fore, region confidence Hm will be approximately equal to zero or
one. Likewise, the strongly model-based region confidence

PðE½Q m� < TÞ � FgðmÞ�1
T � bQ mbWm=

ffiffiffiffiffiffiffiffiffiffiffi
gðmÞ

p !
will be approximately equal to zero or one because the estimate bW2

m

of region variance is (see Section 2)

bW2
m ¼

1
W2

m

XgðmÞ
i¼1

w2
jðm;iÞ

bR2
jðm;iÞ � 0:
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The sign of T � bQ m determines whether P(E[Qm] < T) is approxi-
mately equal to zero or one. After a minor rearrangement of terms,

T � bQ m ¼
1

Wm

XgðmÞ
i¼1

wjðm;iÞðT � bBjðm;iÞÞ:

We assumed that fT � bBjðm;iÞggðmÞi¼1 have the same sign, so we have
shown that P(E[Qm] < T) �Hm. The equality is asymptotically exact
as all variance estimates fbR2

jðm;iÞg
gðmÞ
i¼1 approach zero. This argument

applies regardless of the distributions of fBjðm;iÞggðmÞi¼1 , as long as these
random variables are mutually independent.

4.3. Optimized regions

We now pursue the definition of optimized regions. Given a
slope s, 0 6 s 6 1, define the gain of region Rm, 1 6m 6 2M, as

GðRm; sÞ ¼ Hm � sSm;

where Hm is the region hit and Sm is the region support. Let an opti-
mized-gain admissible region Rs with respect to slope s, 0 6 s 6 1, be
an admissible region with the maximum gain G(Rs,s) over all
admissible regions (this region need not be unique). Optimized-gain
admissible regions are easy to define, compute, and analyze, but
hard to interpret. Common practice is to define optimized-confi-
dence and optimized-support admissible regions. Admissible region
R⁄ is an optimized-confidence admissible region with respect to a gi-
ven support threshold 1000g, 0 6 g 6M, if R⁄ has the maximum
confidence H⁄ = H⁄/S⁄ among all admissible regions with support
of at least 1000g. Likewise, admissible region R} is an optimized-
support admissible region with respect to a given confidence thresh-
old h, 0 6 h 6 1, if R} has the maximum support S} ¼ 1000gð}Þ
among all admissible regions with confidence of at least h. In other
words, we can either fix the region confidence h and find the largest
region R} with confidence of at least h, or we can fix the minimum
region size (support) 1000g and find the most confident region R⁄
with support of at least 1000g.

Observe that s in the definition of an optimized-gain admissible
region is the relative importance of support vs. that of confidence.
We can find a small region with high confidence or a large region
with small confidence, but both objectives cannot be maximized
simultaneously. Increasing s will increase the confidence of the
optimized-gain admissible region, but decrease its support. Like-
wise, decreasing s will decrease the confidence of the optimized-
gain admissible region, but increase its support. Therefore, we
can find approximate optimized-confidence and optimized-sup-
port admissible regions by a binary search for the value of s where
the respective threshold is barely satisfied. The search can stop at a
given level of precision Ds, where the lower bound on Ds can be
found in [18] (they show that the number of steps in this search
is logarithmic in the support 1000M of the bucket space). This algo-
rithm is approximate because an optimized-confidence (resp. opti-
mized-support) admissible region need not be an optimized-gain
admissible region for any value of s. Yoda et al. [18] argue that this
approximation is reasonable for large datasets.

Let us revisit the definition of region ‘goodness’. Geometrically,
the buckets with the same value of X are the columns and the
buckets with the same value of Y are the rows. An optimized-gain
admissible region can be computed in OðMXM2

YÞ time by a set of
rules of the following form. Recall that a region of type W gets
wider from left to right (see Fig. 9). Let RW(m, [s, t]) be the region
of type W with maximum gain fW(m, [s, t]) over all admissible re-
gions of type W that end in column m and span rows s through t
in this column. Then, either (a) m is the first column of RW(m, [s, t]),
or (b) RW(m, [s, t]) includes the region RW(m � 1, [s0, t0]) with the
maximum gain fW(m, [s0, t0]) over all admissible regions that end
in column m � 1 and span rows s0 P s through t0 6 t in this column.
Ref. [18] keeps the regions with maximum gain for every region
type and every triple (m, [s, t]) in a dynamic programming table.
These locally maximal regions then grow according to a set of rules
that compute an optimized-gain admissible region. This efficient
greedy algorithm for computing optimized-gain admissible regions
depends on the property of the gain function that we refer to as
monotonicity. Let 0 6 s 6 1 be a slope and Rm0 and Rm00 be two
admissible regions with gains GðRm0 ; sÞP GðRm00 ; sÞ. The gain func-
tion G(Rm,s) is monotonic if for any region Rk disjoint with both Rm0

and Rm00

GðRm0 [ Rk; sÞP GðRm00 [ Rk; sÞ;

where the union of regions is defined in the obvious way. It is easy
to see that our gain function

GðRm; sÞ ¼ Hm � sSm ¼
XgðmÞ
i¼1

b1000PðE½Bjðm;iÞ�

< TÞ þ 0:5c � 1000sgðmÞ

is monotonic because it is additive. However, a strongly model-
based gain function

GðMÞðRm; sÞ ¼ PðE½Qm� < TÞ � sgðmÞ=M

is not monotonic even if we assume independence of bucket ran-
dom variables fBjðm;iÞggðmÞi¼1 that make up Qm. To the best of our
knowledge, only monotonic gain functions are known to result in
practical algorithms for computing optimized-gain admissible
regions.

What happens when no estimates of mean and/or variance are
available for some bucket Ck? The answer to this question depends
on problem-specific considerations. As was demonstrated in Sec-
tion 3, it is sometimes possible to provide conservative estimates
for these values. For example, we have empirically shown that
the expected BEPs of some configurations {ck} are smaller than
T = 10�3 with confidence P(E[bk] < T) P 0.995. Likewise, we know
that as the effective SNR approaches negative infinity (in dB), the
BEP approaches 0.5, which is the probability of correctly guessing
the value of a random bit when the transmitter is turned off. Thus,
we can let P(E[bk] < T) = 0 for points with sufficiently small effec-
tive SNRs and a reasonable performance threshold T. If no such
estimates are available, we can simply omit the missing buckets
from the probability computation. This must be done with care be-
cause such buckets will contribute nothing to the confidence of the
region. This fact can be used to reduce the computational expense
of sampling.

This section has highlighted the sometimes contradictory objec-
tives that aggregation must satisfy: permit valid statistical inter-
pretations and afford structure that can be exploited by data
mining algorithms. Our approach has been a judicious mix of con-
cepts from both statistics and data mining. We showed that our
formulation of the data mining problem lies between the com-
pletely model-free approach and the strongly model-based ap-
proach. The next section applies the data mining methodology
described here to the example in Section 3.
5. Optimized-support regions for the STTD example

This section continues the example in Section 3. First, we show
that optimized-gain regions are both rectilinear and connected for
this example. It immediately follows that optimized-support and
optimized-confidence regions are also admissible. An optimized-
support admissible region is presented next. We show that the
elaborate region mining setup leads to simple engineering inter-
pretations. Finally, we look at the performance of data mining
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when the number of samples is small. Threefold cross-validation
shows that data mining performs well under these circumstances.

5.1. Justification of data mining for the STTD example

Let the average SNRs S1 = X and S2 = Y partition the space of con-
figurations in Fig. 2 into disjoint points (buckets) fckgM

k¼1,
1 6M 6 1600. We now give an intuitive argument to justify the
suitability of the data mining algorithm for the STTD study. With-
out loss of generality, consider only the points with X 6 Y, i.e.,
S1 6 S2. It is easy to extend all arguments to X > Y, but this adds lit-
tle to the discussion.

Let c1 at (x1,y1) and c2 at (x2,y1), x1 < x2 < y1, be two points in an
optimized-gain region (of arbitrary shape) for some slope 0 < s < 1
(see Fig. 10). This means that the confidences of these points are
one, and thus the expected BEPs of these points are smaller than
the performance threshold T. When x1,x2 < y1 and y1 is fixed, the
BEP is a monotonically decreasing function of x—increasing x de-
creases the power imbalance and increases the effective SNR, so
the BEP must decrease. Therefore, the expected BEP of any point
cu at (xu,y1), x1 < xu < x2, is below the performance threshold T.
Thus, the confidences of points {cu} are one and these points must
also be in the optimized-gain region Rs. Three more symmetric
arguments of this kind show that optimized-gain regions are
rectilinear.

Likewise, let c1 at (x1,y1) and c2 at (x2,y2), x1 < x2 < y1 < y2, be two
points in an optimized-gain rectilinear region (refer to Fig. 10).
Since c1 is in the optimized-gain region and x1 < x2, the point at
(x2,y1) is also in this region because it has a smaller BEP than c1.
Since the optimized-gain region is rectilinear, there is a horizontal
path from (x1,y1) to (x2,y1) and a vertical path from (x2,y1) to
(x2,y2). Thus, there is a Manhattan path from (x1,y1) to (x2,y2).
Arguments of this kind show that optimized-gain rectilinear re-
gions must be connected as long as they are ‘wide enough’.

To summarize, we have shown that optimized-gain (and thus
optimized-support and optimized-confidence) regions are admis-
sible. The data mining algorithm described in Section 4, which re-
sults in optimal admissible regions, is thus appropriate for the
STTD example. We now show and interpret data mining results.

5.2. Optimized-support admissible regions

Fig. 11 shows an optimized-support admissible region for the
confidence threshold h = 0.99. Intuitively, this is the largest admis-
sible region where we can claim, with confidence of at least 0.99,
that configurations exhibit acceptable performance. This claim is
conditional on temporal simulation assumptions and on mutual
independence of configurations in the region. The shape of this re-
gion confirms that, under a fixed effective SNR, the BEP is minimal
when the average SNRs of the two branches are equal. The width of
this region shows the largest acceptable power imbalance. For this
example, the system tolerates power imbalance of up to 12 dB.
However, the width of the optimized region is not uniform. The re-
gion is narrower for small effective SNRs and wider for large effec-
tive SNRs. This means that configurations with low effective SNRs
are more sensitive to power imbalance than configurations with
high effective SNRs. None of these observations are news to an in-
formed reader. The contribution of data mining in this context is
not qualitative discoveries; it is statistically significant quantitative
results.

Let us see how the data mining algorithm performs when data
is scarce. The initial sample of the configuration space in Fig. 2
(top) contains one sample value per bucket. The statistically signif-
icant sample in Fig. 2 (bottom) contains at least two additional
sample values per bucket (recall that we required at least two sam-
ple values to estimate bucket variance r2

k ). Therefore, threefold
cross-validation is the most elaborate cross-validation procedure
that this dataset affords. The regions in the top left, bottom left,
and top right of Fig. 12 have been computed for sample values in
Fig. 2 (top) and the first two sample values per bucket in Fig. 2
(bottom). Each of these regions has been computed with two out
of the three sample values per bucket. The region in the lower right
has been computed with all data in Fig. 2 (bottom). All four regions
are optimized-support admissible regions with the confidence
threshold h = 0.95. The regions are overlaid on top of the color-
coded bucket confidence values. Red (dark) corresponds to low
confidence and white (light) corresponds to high confidence that
configuration ck exhibits acceptable average performance w.r.t.
the voice quality threshold T = 10�3.

The regions in all subfigures of Fig. 12 are identical except for
the lower left corner. This is not surprising because this part of
the configuration space exhibits high relative variance. Also, the
data is symmetric but the regions are asymmetric in the lower-left
corner. Recall that optimized-gain admissible regions, and thus
optimized-support admissible regions, are not unique. The ties in
region gains are broken arbitrarily. Therefore, region asymmetry
is an additional indicator of region instability.

Fig. 12 also shows that additional data improves image contrast
but does not significantly affect region shape. Collecting additional
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Fig. 12. Cross-validation of optimized-support admissible regions with the confidence threshold h = 0.95. The regions in top left, bottom left, and top right have been
computed with nk = 2 independent samples per bucket. There are 758 ± 2 buckets (47% of all data) per such region. The region in the bottom right has been computed from the
statistically significant data in Fig. 2 (bottom). It consists of 766 buckets (48% of all data). Red (dark) corresponds to low bucket confidence and white (light) corresponds to
high bucket confidence w.r.t. the voice quality threshold T = 10�3.
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sample values separates the points into ones with low confidence
and ones with high confidence. A curious side effect occurs when
the difference in confidence estimates of low-confidence points
falls below the discretization error (1/1000). In this case, the ‘con-
fidence slack’ 1 � h is allocated to arbitrary points with low confi-
dence. One way to correct this situation is to raise the confidence
threshold h—after all, more accurate data should afford stronger
claims. Another alternative is to lower the discretization threshold.
In general, optimized regions work best when the data is noisy. A
contour plot will suffice when the data is highly accurate.

It can also be seen that the high contrast created by the sharp
edge of the tolerance region is advantageous to data mining. The
region is stable where the contrast is high. When the image is
blurred, data mining tries to avoid the questionable boundary
points.

To summarize, this section has demonstrated that optimized-
gain regions are rectilinear and connected for a non-trivial space
of wireless system configurations. We have also shown that opti-
mized-support admissible regions are easy to interpret. Finally,
we have shown that data mining works well when sample sizes
are small.
6. Discussion and future work

We have demonstrated a hierarchical formulation of data min-
ing suitable for assessing performance of wireless system configu-
rations. WCDMA simulation results are systematically aggregated
and redescribed, leading to intuitive regions that allow the engi-
neer to evaluate wireless system configuration parameters. We
have shown that the assumptions about region shape and
properties made by data mining algorithms can be valid in the
wireless design context; the patterns mined hence lead to explain-
able and statistically valid design conclusions. As a methodology,
data mining is thus shown to be extremely powerful when coupled
with statistically meaningful performance evaluation.

This work is the first (known to the authors) application of data
mining methodology to solve problems in wireless system design.
Therefore, a large number of extensions are possible and called for.
We outline possible extensions at the three levels of aggregation:
points, buckets, and regions.

At the point level, it may be advantageous to model temporal
simulations more precisely. This paper assumes a ‘large enough’
number of frames per simulation and works with the distribution
of estimated BEPs. We have shown reasonable analytical and
empirical evidence that this distribution is Gaussian. The advan-
tage of this problem formulation is the independence of spatial
aggregation from the assumptions of temporal simulation. This
helps introduce wireless engineers to the methodology of data
mining for studying design problems. However, a stronger model
of temporal simulation (e.g., Markov chains in [17]) may yield
appreciable gains in software performance. This direction is worth
pursuing because few research groups have access to parallel com-
puting facilities of the scale used in this work. For instance, the ini-
tial sample of the configuration space in Fig. 2 (top) would take
1 year of computation time on a modern workstation. The study
presented in this paper would clearly be impossible without signif-
icant computational power.

Aggregation of points into buckets is the least developed part of
this work. Suppose that we would like to simulate the effects of
interference on configuration performance. Assume that the distri-
bution of the average strengths of the interfering signals is known
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a priori (e.g., estimated by ray tracing). We can either make this dis-
tribution known to the temporal simulation, or, alternatively, run
several temporal simulations for different strengths of interfering
signals. The former is more accurate and computationally more effi-
cient, but the latter is more generic and simpler to implement. Buc-
keting of simulation results with varying simulation parameters is
intended to approximate the performance of a single device under
varying conditions. This paper does not employ such bucketing but
instead builds all the necessary kinds of parameter variation into
the temporal simulation (which can be argued to be the right way
to do it). However, bucketing may be necessary when one has to
work with a given dataset (e.g., measurements). Bucket space can
be viewed as a configuration space for a more complex temporal
simulation. Therefore, an in-depth treatment of bucketing is orthog-
onal to the primary topic of this paper, which is data mining.

Significant work remains to be done at the region level as well. For
instance, the assumption of small variance could conceivably be re-
laxed. One can also pursue the relatively difficult task of incorporat-
ing strongly model-based prior knowledge into the data mining
algorithm, or the somewhat easier task of applying different kinds
of region mining algorithms to problems in wireless system design.

Defining additional case studies is another obvious direction for
future work. We have studied a relatively small part of the param-
eter space of modern wireless systems. More studies of this type
must be performed to highlight the merits and the shortcomings
of data mining in this domain.

Finally, the strict staging of data collection and data mining can
be relaxed. One can fruitfully interleave the two activities and have
the results of data mining drive subsequent data collection [12]. In
data-scarce domains, it would be advantageous to focus the data
collection effort on only those regions deemed most important to
support a particular data mining objective. Methodologies for clos-
ing-the-loop in this manner are becoming increasingly prevalent
[11]. This will also help define alternative criteria for evaluating
experiment designs and layouts.
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