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Abstract—We propose a novel technique to mine powerful and
generalized boolean relations among flip-flops in a sequential circuit
for sequential equivalence checking. In contrast to traditional learning
methods, our mining algorithm can detect inductive invariants as well as
illegal state cubes. These invariants can be arbitrary boolean expressions
and can thus prune a large don’t care space during equivalence checking.
Experimental results demonstrate that these general invariants can be
very effective for sequential equivalence checking of circuits with no or
very few equivalent signals between them, with low computational costs.

Keywords: Sequential Equivalence Checking, BLOSOM, Re-
descriptions, Induction based proof

I. INTRODUCTION AND MOTIVATION

Integrated circuit design has progressed significantly over the last
few decades. Synthesis and optimization techniques have helped
improve performance, area, delay, and other measures. The success
of combinational equivalence checking (CEC) has contributed to ag-
gressive combinational logic synthesis and optimizations for circuits
with millions of logic gates. However, without powerful sequential
equivalence checking (SEC) techniques, the potential and extent of
sequential optimization is quite limited. In other words, the success
of SEC can unleash a plethora of aggressive sequential optimizations
that can take the circuit design to the next level. Currently, SEC
remains extremely difficult compared to CEC, due to the huge search
space of the problem.

In the literature, several definitions of SEC exist that differ in the
assumption(s) made w.r.t the operation of sequential circuit and the
surrounding environment. For circuits with reset states, there exists
a notion of reset equivalence, where two circuits are equivalent iff
they are equivalent after reset. However, this definition is a strict and
narrow form of equivalence and requires that a global reset sequence
exists for both circuits.

For circuits without reset, different notions of SEC exist such as
sequential hardware equivalence (SHE), safe replaceability, and 3-
valued safe replaceability. Pixley proposed the notion of SHE [1]
where two designs are equivalent if there exists a universal alignment
sequence that takes them to an equivalent state pair. The theory of
SHE is motivated by the desire to prove two designs equivalent
without reference to any intended environment, presence of reset
states or reset sequences. In this paper, we assume that the two circuits
can be brought to a known unique, specified state by applying a
synchronizing sequence. In the past few years, several methods have
been proposed to solve the problem of SEC. Binary decision diagrams
(BDDs) [2] have been used for symbolic techniques [3], [4]. These
symbolic finite state machine (FSM) traversal techniques are possible
only for small to medium sized circuits but become vulnerable
to memory explosion for designs with hundreds to thousands of
registers.

To reduce the complexity of SEC, structural similarity used earlier
for identifying equivalent internal signal pairs (EISP) for incremental
verification of combinational circuits have been explored for FSM
[5], [6]. In [5], sequential automatic test pattern generation (ATPG) is
used to identify equivalent flip-flops and EISP as constraints together
with an induction based proof to reduce the search space. For portions
of designs with different state encodings and not much similarity,
symbolic techniques are then applied, together with the constraints
learned earlier. Thus, incremental verification and FSM traversal are
integrated to verify designs which cannot be verified by each of these
approaches separately. In [6], greatest fixed point iteration is used to
identify functionally equivalent signals (ES) without explicit symbolic
state space traversal. However, with increasing use of sequential
optimization techniques, the probability of finding ES between two
designs will reduce, leading to a large don’t care space and increasing
problem complexity.

In this paper, we propose a novel low-cost approach for computing
general legal & illegal constraints to prune the search space effec-
tively. For example, consider the original design C1 with n flip-flops
(a1 to an) and an optimized design C2 with m flip-flops (b1 to
bm) as shown in Figure 1. If there exists a relation among flip-flops
(a1, a2, b1, b2) such that if a1 = 1 and a2 = 0 in C1 then b1 = 0
and b2 = 1 in C2 and vice versa (i.e. (a1 ∧ a2) ≡ (b1 ∧ b2)). Then,
adding this relation as a constraint will prune the search space by
preventing those states that violate it. The illegal states blocked from
this constraint are shown in Table I. Note that conventional ways
of finding internal signal equivalences will not uncover such general,
arbitrary relationships among signals. Our approach uses data mining
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Fig. 1. Example circuit

to obtain complex yet general boolean relations shown in Equation
1. However, with n+m variables, there is an exponential number of
possible boolean expressions, far too many to enumerate. To make the
search space tractable, one approach is to mine all frequent boolean
expressions, but instead of mining frequent expressions, we mine
minimal generators of the lossless subset called the closed boolean



TABLE I
EXAMPLE OF UNREACHABLE STATES (ASSUME n < m)

a1 b1 a2 b2 · · · an bn · · · bm

1 0 0 0 · · · X X · · · X
1 1 0 0 · · · X X · · · X
1 1 0 1 · · · X X · · · X
0 0 0 1 · · · X X · · · X
0 0 1 1 · · · X X · · · X
1 0 1 1 · · · X X · · · X

expressions that retains the complete frequency information of the
dataset. The reason for using the minimal generators is that they
are the simplest expressions that represent the same information as
the closed expressions. In addition to this we also discuss a mining
approach for finding illegal constraints based on low threshold value.

(a1 ∨ b2) ∧ (a1 ∨ b4) ≡ (b3 ∨ a2) ∧ (a1 ∨ a4) (1)

As per our observation, current circuit optimizations perform
limited sequential optimizations and thus there is a lot of structural
similarity between the original and optimized design. So, traditional
methods based on ES may be sufficient to prove them equivalent
(e.g., one circuit is a retimed version of the other). However, in
this paper we propose an approach that finds invariants capturing
the functionality of FSM and are not just restricted to equivalences.
We postulate that if our technique is available, more powerful
sequential optimizations can be applied and existing methods based
on equivalences will not be sufficient to prove the two designs
equivalent. We note that due to lack of the availability of these
powerful optimizations, the benchmarks we can use to test our
approach are limited. We generated few benchmarks with different
state encodings (gray & one-hot encoding) for a given design using
Synopsys Design Compiler. There was none or very few one-to-one
mapping among the flip-flops in the gray and one-hot encoded designs
and also limited structural similarity internally. Some of them cannot
be proved by equivalent signals whereas after adding the constraints
found by our mining approach they can be proved equivalent. We also
tested the effectiveness of our approach on the currently available
retimed benchmark circuits (where there is still significant structural
similarity), without considering internal signal equivalences to see
if the constraints found by our approach are effective enough. We
observed that for all benchmarks our approach is effective in proving
the circuits equivalent. However, we only report a few of those since
existing methods as well as our method can prove them equivalent
and thus they are not the main focus of the paper.
The rest of paper is organized as follows. Section 2 provides prelimi-
naries and background. Section 3 details the two proposed approaches
based on data mining and the overall proposed framework. Section
4 analyzes the experimental results. Section 5 concludes the paper.

II. PRELIMINARIES

A. Background on invariants

In recent years, boolean satisfiability (SAT) has improved signif-
icantly and SAT solver tools such as zChaff [7] and MiniSat [8]
have been developed which can efficiently handle large industrial
designs. In the context of SEC, SAT solvers have been used to
compute inductive invariants, such as internal equivalent signals [9].
Lu & Cheng [10] proposed a framework for SEC based on kth

invariants. The framework has three complementary components:
bounded model checker (BMC), invariant checker and sequential

SAT. BMC is used to identify and merge kth invariants for circuit
simplification and an inductive invariant is used to find true kth

invariants. If one of the true kth invariant is the miter circuit output
equal to 1, then circuits are equivalent. If not, then these kth invariants
are added as constraints to prune the search space of the Seq-SAT.

Another approach is using logic implications to capture relation-
ships among signals in the circuit. They are used for several applica-
tions in electronic design automation (EDA) problems such as design
verification [11], multi-level logic optimization [12], etc. Previous
works are based on computing different kinds of implications such
as static, indirect, extended backward [13] and so on. To extend the
learning, methods have been proposed to extract relationships among
two or more variables in the form of multi-variable relationships.
But computing such relations may require an exponential number of
combinations and thus low cost computational methods have been
investigated. A method for finding static multi-node implications
based on circuit structure information [14] has also been proposed.

A data mining approach has recently been proposed [15] using
Apriori [16], a popular methodology for association rule mining to
compute potential three node invariants among signals. To further
reduce the mining cost, domain knowledge of circuit is used to
improve the quality of the discovered rules [17]. These static and
dynamic multi node implications can significantly enhance bounded
SEC.

B. Overview of Data Mining

Data mining is the process of discovering knowledge from complex
and information rich data sets. In particular the boolean pattern
mining problem can be potentially helpful for applications such as
market based analysis, bioinformatics, etc.

TABLE II
DATASET D

tid set of items
1 ACD
2 BC
3 ABCD
4 ADE

Let T denote the set of transaction identifiers and I denote a set of
items. Given a transaction (t, t.X) ∈ D, where t ∈ T and t.X ⊆ I ,
a transaction t satisfies an item/literal i ∈ I if i ∈ t.X and similarly
t satisfies the negation of a item/literal ī if the item i /∈ t.X . For
a literal l, the truth value of l in a transaction t is defined as Vt(l)
where

Vt(l) =

{
1 if t satisfies l
0 if t does not satisfy l

(2)

A boolean expression E is the logical AND or OR of one or more
clauses where each clause is either the logical AND or logical OR
of one or more literals. A transaction t satisfies a boolean expression
E if the truth value of E (Vt(E)) evaluates to true when each
literal l in E is replaced with Vt(l). The support s of E in the
dataset D is the number of transactions that satisfy E, i.e |t(E)|.
A boolean expression E is frequent if its support is more than
or equal to a user specified minimum support (min sup) value,
i.e. |t(E)| ≥ min sup. One can also define a maximum support
threshold (max sup) to disallow any expression with too high a
support or mine infrequent expressions. For example, in dataset D in
table II, there are a total of five items I = {A, B, C, D, E } and four
transaction ids T = {1, 2, 3, 4 }. The transaction t1 contains the set



of items {A, C, D } which is a subset of set of all the items in the
dataset. The transactions t1 and t3 satisfy the boolean expression (E)
{A∧C∧D} since Vt(E) evaluates to be true in both the transactions.
Also, if the min sup is 2 then E is a frequent boolean expression.

C. Mining minimal boolean expressions using BLOSOM

BLOSOM [18] allows for mining frequent boolean
AND/OR/CNF/DNF expressions and their minimal generators.
The closure operator on partially ordered set (P ) is a function
C : P → P such that C is monotone, idempotent, and extensive.
A set (y) is considered closed with respect closure operator (C) if
it satisfies the property C(y) = y. A set (x) is called a minimal
generator of a closed set (y) if it satisfies two properties.

1) The closure of set (x) is set (y).
2) No proper subset of (x) generates (y).
The minimal generators can be viewed as succinct descriptors of

data. When more than one minimal generator exists for the same
subset of data, we refer to them as redescriptions [19]. Redescriptions
can be thought of as a generalization of association rule mining from
finding implications to equivalences. For example, {A, C, D} is
a closed AND clause in Table II and the minimal generators for
this closed expression are {A, C} and {C, D}. So, they can be
represented in terms of redescription (Equation 3):

A ∧ C ≡ C ∧D (3)

D. SAT-based sequential equivalence checking

In SEC, the aim is to prove that the miter output (o), o = 0 (the
outputs of two circuits are the same) for all states reachable from the
alignment state. We note that SEC is a special case of unbounded
model checking (UMC) where the property is to verify if the miter
output is a constant ’0’ starting from any reachable state. To benefit
from a SAT engine, we regard the problem setup as follows: The
unrolled miter circuit is first translated into a boolean formula, with
its initial state unconstrained, and the objective is to see if the miter
output can be set to ’1’. We note that inductive analysis can be applied
in this setup so that only the miter output in the last time-frame
makes up the objective. More details on this will be given later. If
the formula is unsatisfiable, there exists no sequence of states (starting
from any arbitrary state) that can make the miter output ‘1’. However,
due to a large don’t care space of the system, there may exist a
counterexample that can violate the property from some arbitrary
initial state and thus one cannot conclude whether the property holds
or not. Thus, mining those key and effective constraints in terms
of minimal boolean expressions and adding them to prevent false
counterexamples can help in proving the two circuits equivalent as
quickly as possible.

III. PROPOSED SEQUENTIAL EQUIVALENCE CHECKING

FRAMEWORK

A. Mining multi node illegal constraints

1) Constraint mining framework: First a miter circuit is con-
structed and simulated for M random input vectors. The logic values
on the flip-flops in the circuit are recorded in the mining database such
that one dimension lists the flip-flops and the other dimension lists
the random input vector number. Unlike previous works on finding
two or three node relations, which might be potentially true in the
database, we mine potential one, two, three and up to four node
relations among flip-flops which are missing from the database.

Given the mining database for the circuit in Table III, the first step
is to compute the probability of each flip-flop fi having logic 1 (Pi

1)
or logic 0 (Pi

0) using equation (4) or (5).

TABLE III
MINING DATABASE EXAMPLE

Vector# f1 f2 f3 f4

1 0 1 1 1
2 0 0 0 1
3 1 1 1 0
4 1 1 0 0
5 0 1 0 0
6 0 0 0 0

Pi
0 =

M∑
i=0

(fi = 0)/M (4)

Pi
1 =

M∑
i=0

(fi = 1)/M (5)

If (Pi
1) or (Pi

0) for flip-flop fi is 0 than it is a potential 1-node
illegal constraint. To compute potential 2 node illegal constraint, if
the probability of getting a logic ’0’ or ’1’ on both flip-flops (fi

and fj) is below threshold then that logic value combination on the
flip-flop pair is searched in the mining database. If it is missing,
then it is a potential 2-node illegal constraint. Similarly, for n node
illegal constraints, the probability of not getting any of the (2n)
combinations (filtered by threshold criteria) for the flip-flops are
computed. For instance, in Table III, assuming the threshold as 0.4,
the probability of getting a ’0’ on f2 and a ’1’ on f3 is 0.3 (<
threshold). Thus, if ”01” on f2f3 is missing from the database then
it is a potential 2-node illegal constraint. The benefit of this approach
is its low computational cost because the database is searched only
for combinations with probability lower than threshold instead of all
the exponential number of combinations possible. To further reduce
the mining cost, we propose a two step approach for computing these
constraints only among subset of flip-flops out of total (n) flip-flops.
In the first step, we compute all the equivalent flip-flop pairs (m). In
the second step we create a mining database consisting of the non
equivalent flip-flops(n−m) and only one flip-flop from the equivalent
pair (m/2) having a low observability value. Lower observability
value means it is easier to observe and thus most likely to affect the
primary outputs of the miter circuit. So, the constraints are computed
only among subset of flip-flops (n−m/2) thus reducing the number
of constraints and the time to verify them.

For example, for a circuit with (n) flip-flops
(fi, fj , fk, fl, fm, · · · , fn), if flip-flops fi and fj are equivalent,
then fi with higher observability value (less observable) compared
to fj can be removed from the mining database. If there exists
an illegal constraint fifjfkfmfn = 00110 in the circuit, then the
combination 0110 on fjfkfmfn will be missing from the database
and will be captured as a potential illegal constraint. However, if fi

is not removed from the database then two additional and redundant
illegal constraints 01110 & 10110 will also be captured, leading to
an increase in the count of constraints.

2) Validity check of mined constraints: Each mined illegal con-
straint is verified using the assume-then-verify approach until a fixed
point is reached. The miter is unrolled for two time-frames and all
the constraints are assumed true in the first time-frame. The initial
state variables (pseudo-primary inputs) are unconstrained in the first
time-frame and each potential invariant is verified one by one in the
second time-frame. If the constraint is a true illegal constraint then
there exists no sequence of states that can satisfy the instance and
the SAT solver returns UNSAT else it returns SAT. For example, if
the potential illegal constraint is ab̄c, then ā0 +b0 + c̄0 (a,b,c are flip-



flops and subscripts indicate time-frame) is added to the original CNF
formula in the first time frame and three clauses (a1), (¬b1), (c1) are
added in the second time frame. If SAT solver returns a SAT solution
that satisfies the constraint, then it is dropped and the satisfying
assignment is used to discard those potential constraints yet to be
verified. However, if the solver returns UNSAT, then it is a true illegal
constraint and any constraint that is a superset of it is dropped. For
example, if fi = 0 and fj = 0 is a true illegal constraint in the
current iteration of induction, then all the potential three/four node
constraints such as fi = 0 & fj = 0 & fk = 1, which are a superset
of it are also dropped. This incremental verification step significantly
reduces the time needed to verify them.

We use zChaff [7] as the underlying SAT solver because it supports
incremental SAT solving such that clauses can be added and deleted
from the database after each run of the solver based on their group
ID. These true global illegal constraints are added in each time frame
during equivalence checking and can help in proving the circuits
equivalent as quickly as possible.

B. Mining redescriptions using BLOSOM

1) Constraint mining framework: Most potential constraints found
today are restricted to either two or three node boolean relations in
conjunctive form. One of the reasons is that it becomes computa-
tionally expensive to exhaustively find all possible relations among
flip-flops in circuits. So, we propose to mine complex minimal
boolean expression with BLOSOM. The mined relations are general
constraints among flip-flops that can constrain a bigger subset of the
boolean space then those simple conjunctive-type constraints. First,
the mining database is constructed such that flip-flops with higher
observability value from each equivalent pair are removed from the
database. Then BLOSOM is run on the database with different mini-
mum and maximum support values to obtain potential constraints in
the form of redescriptions/equivalences among boolean expressions.
For example, the redescription (equation 6) represents equivalences
between minimal generators (fi∧fj ∧fk) and (fl∧fm∧fn) for the
same closed set in the dataset. If it is proved as a true constraint then
the following relations 1110XX , 111X0X , 111XX0, 0XX111,
X0X111 and XX0111 on these six flip-flops represent the don’t
care set and constrain a large subset of boolean space.

fi ∧ fj ∧ fk ≡ fl ∧ fm ∧ fn (6)

(fi ∨ fj) ∧ (fk ∨ fi) ≡ (fl ∨ fm) ∧ (fn ∨ fm) (7)

The second form of redescription (equation 7) represents equivalences
between minimal generators in minimal boolean CNF expressions
form. Thus if fi is 1 or fj is 1 and fk is 1 or fi is 1 then fl

is 1 or fm is 1 and fn is 1 or fm is 1 and vice versa. These
kind of constraints cannot be obtained by the previous data mining
techniques. Interestingly, we observed that some of these constraints
may be redundant or unnecessary for our purposes. We categorize
them into four types that can be discarded to verify as small set of
potential constraints as possible yet powerful enough to prune the
search space effectively. It also reduces the time needed to verify
these mined relations.

Type 1:
If two redescriptions (eg. 8) and (eg. 9) for the two closed sets are
proven true then any redescription which is a conjunction of these
two redescriptions (eg. 10) is discarded.

f1 ∨ f2 ≡ f3 ∨ f4 (8)

f5 ∨ f1 ≡ f4 ∨ f6 (9)

(f1 ∨ f2 ≡ f3 ∨ f4) ∧ (f5 ∨ f1 ≡ f4 ∨ f6) (10)

Type 2:
Given the redescription (eg. 12) for the closed set, any redescription
(eg. 11) that contains the same variables, but with some or all of them
are repeated on either side of the redescription, can be discarded.

f1 ∧ f2 ≡ f1 ∧ f2 ∧ f3 (11)

f1 ∧ f2 ≡ f3 (12)

Type 3:
If a redescription containing n variables is proven true then any
redescription containing the same n variables, but with some of them
swapped on either side of the redescription, can be discarded. For
instance in (eg. 13) f3 and f6 are swapped as shown in (eg. 14).

f1 ∧ f2 ∧ f3 ≡ f4 ∧ f5 ∧ f6 (13)

f1 ∧ f2 ∧ f6 ≡ f4 ∧ f5 ∧ f3 (14)

Type 4:
If a redescription of size n (n is the count of variables in the
equivalence relation) covers less than (n−1) different variables then
it is discarded to keep the count of potential equivalences low. In
example (15) the redescription size is six but it only covers four
flip-flops so it is discarded.

f1 ∧ f2 ∧ f3 ≡ f1 ∧ f2 ∧ f4 (15)

Removing these four types of redescriptions reduces the mined
constraints significantly and the remaining constraints are powerful
enough to prove the two circuits equivalent as can be observed
from the experimental results. We also provide the count for these
four types of redescriptions in the experimental results. For large
circuits, running BLOSOM with lower minimum support might lead
to significant number of redescriptions due to exponential complexity
with increasing count of variables. So, the database is divided into
multiple small databases and BLOSOM is run on each of these
databases, once with a lower minimum support and a lower maximum
support and the second time with a higher minimum support and
a higher maximum support. However, constraints computed from
a small database that violate transactions in the remaining small
databases (called the filtering databases) are dropped.

2) Validity check of mined boolean relations: To reduce the time to
verify the constraints an approach similar to verification of potential
illegal constraints is used. When using assume-then-verify based
proof, if the SAT solver returns the SAT solution then it is used
to discard any constraint that satisfies it. However, if the SAT solver
returns UNSAT then the constraint is true for a subset of boolean
space in the current iteration of induction and any constraint that is
at least true in that boolean space is also true in the current iteration
and thus skipped from verification.

The miter circuit is unrolled for two time frames and assume-then-
verify is used to verify the mined relations in conjunctive normal form
(CNF). These mined relations cannot be directly converted to CNF
clauses. So, extra AND and OR gates are added for each relation
being verified. For example, if the potential constraint is (f̄i ∨ f̄j)
∧ (f̄m) → (fk) ∧ (f̄l ∨ fp) then OR gates (o1), (o2), (o3), (o4) are
added for f̄i ∨ f̄j and f̄l ∨ fk in the first and second time-frames
and their corresponding OR clauses are added to the original CNF
database. Next (o1) is ANDed with flip-flop f̄m and an AND gate
(a1) is added in the first time-frame. Similarly, (o2) is ANDed with



flip-flop (fk) and an AND gate (a2) is added in the first time-frame.
The corresponding AND gates (a3), (a4) are added in the second
time-frame. The AND clauses for (a1), (a2), (a3), (a4) are added
to the original CNF database. This is also represented by figure 2.
The gates (a1) and (a2) represent the boolean expressions on left and
right hand side of the implication in the first time-frame. We then add
the clause (ā1 + a2) to the original CNF formula for the first time
frame and add the two clauses (a3), (ā4) for the second time-frame.
If the SAT solver returns UNSAT, then it is a true global constraint
else it is dropped.
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Fig. 2. Two time frame unrolled miter with extra gates for implication

C. Application to sequential equivalence checking

The true constraints learned are now applied to (unbounded)
sequential equivalence checking based on an inductive reasoning
framework by adding them in all time-frames. For instance, if an
illegal constraint is ā0 + b0 + c̄0 (a,b,c are flip-flops and subscripts
indicate time-frame) and the miter is unrolled for two time-frames
then it is replicated to second time-frame as ā1 + b1 + c̄1. In the
SEC model, the miter circuit in each time frame consists of both
the original and the optimized circuits and is unrolled for k time-
frames. First, the base case of induction is done where the pseudo
primary inputs are constrained to the initial state and the miter output
is checked for ’1.’ If the SAT solver returns SAT then the circuits
are not equivalent. The assignment to the primary inputs serves as a
witness to their inequality. If it is UNSAT, then the induction step is
done, where the miter is unrolled for k time-frames with the initial
state left unconstrained. The miter output is assumed to be ’0’ in the
first k − 1 time-frames and the output is checked for 1 in the last
time-frame. The proven mined relations by our approach are added to
all the k time-frames. If the SAT solver returns UNSAT, then the two
circuits are equivalent for all reachable states. However, if it returns
SAT, then the SAT solution could be a false or true counterexample
and nothing can be concluded. So, the miter is unrolled deeper for
k+1 time-frames and the process is repeated until SAT solver returns
UNSAT (the two circuits are equivalent) or an upper bound is reached
(assumed 20 in our experiments).

As observed from our experimental results, we are able to prove
all the circuits equivalent by adding the true relations found by our
method. Thus, we conclude that these general invariants are very
powerful and effective in constraining a large portion of the search
space and preventing false counterexamples in the inductive step of
our SEC.

IV. EXPERIMENTAL RESULTS

The proposed technique was implemented in C++. All tests were
performed on a Intel Core i7 processor, 3.33GHz, with 6GB of RAM,
running Linux Ubuntu v9. The ISCAS’89 benchmarks along with
their retimed and optimized version obtained either using our script
or ABC package [20] are used in our framework. For some of these
benchmarks adding equivalent flip-flops as constraints was sufficient

to prove them equivalent and so we have not included them in the
experimental results and only report few of hard-to-verify instances.
Please note that although these benchmarks can also be proved
with internal equivalent signals, we avoid injection of these internal
equivalences to show the power of our approach. For the retimed
circuits that can be proved by previous works and our approach,
we only report three of them since that is not the focus of the
paper. We were also able to generate few ITC99 benchmarks in our
framework where the original design was optimized using gray & one
hot encoding followed by state minimization using Synopsys design
compiler. These optimized designs have the same functionality as the
original design, but had very limited structural similarity. Currently,
due to limited availability of these benchmarks that employ powerful
sequential optimizations (beyond retiming and simple optimizations),
we resort to such an experimental setup. However, should there be
more circuits with few or no internal equivalences, we believe our
method will offer tremendous value to the current state of art.

Table IV shows the results of using mined general boolean relations
for SEC on two different kinds of benchmarks as described above.
The first column lists the benchmarks. Those benchmarks marked in
bold are optimized ITC99 benchmarks with different state encodings.
The second column reports the flip-flops in the original versus
optimized circuit. The third column reports the true equivalent flip-
flop pairs. The fourth column reports the true internal equivalent
signals found. The fifth column reports the subset of flip flops in the
mining database after removing one flop from equivalent pair. The
sixth column reports if the circuit is provable by internal equivalent
signal and flip flop pairs. The seventh column reports if circuit is
provable by ABC tool [20]. The eighth and ninth column reports
the minimum and maximum support used for mining constraints
from the mining database. The tenth column reports the maximum
count of flip-flops included in a term in the redescription. The
eleventh column reports if the four types of redescriptions (section
III B) are removed from all the redescriptions obtained from blosom.
The twelfth column reports the count of these redescriptions. The
thirteenth column reports the count of potential constraints and the
fourteenth column reports the true invariants. The last column reports
the total time for mining and proving the potential constraints, adding
them to the unrolled miter circuit, and the final SEC checking of the
miter output for 1 after adding these constraints. We were able to
prove all benchmarks equivalent using our approach.

The results show that some of the ITC99 benchmarks could not be
proved equivalent just by internal equivalences and equivalent flip-
flop pairs, but could be proved equivalent by our approach. This
reflects the effectiveness of our approach based on general boolean
expressions where a small number of constraints were effective in
proving the two circuits equivalent. For example, in b08 gray onehot,
the b08 circuit with gray-code state encoding was verified against
b08 with one-hot encoding. In this instance, one circuit had 21 FFs
while the other had 23. There were no equivalent flip-flop pairs.
Including the equivalent outputs, there were a total of 683 equivalent
signal pairs (none of which involved flip-flops). Because there were
no equivalent flip-flops, all 44 (21+23) flip-flops were used in our
mining framework. The two circuits could be not proved equivalent
using equivalent flip-flops and internal signals, as well as using ABC
as reported under P1 and P2 columns respectively. Next, a min-
support of 300 and max support of 10000 were used to mine potential
relations among flip-flops. We had used 4 types of redescription filter
as indicated under the column R2, with which 4109 implications were
found redundant and removed from those found by BLOSOM. The
remaining 756 potential implications were validated using an assume-



TABLE IV
MINING AND VERIFICATION RESULTS USING BLOSOM (USING SUBSET OF FLIP-FLOPS.)

Benchmark FFs (x/y) #
Equiv
FF
pairs

# Internal
Equiv
pairs

Subset
of flops

P1 P2 Min
sup-
port

Max
support

M R2 Red impl Poten-tial
impl

True
impl

Time
(sec)

s444 2 3 25/30 2 1746 37 Yes Yes 1 1000 4 Yes 184 606 64 8.8
s526 orig 3 21/49 8 529 66 Yes Yes 350 1000 6 Yes 17481 32166 4450 432.7
s5378 orig opt 179/203 620 - 321 Yes Yes 1 1000 4 Yes 82250 164843 135453 12036
b01 gray hot 5/10 0 195 15 No No 1 100 6 Yes 161 144 92 0.23
b02 gray hot 4/8 0 54 12 No No 1 100 6 Yes 88 112 81 0.19
b03 gray hot 30/31 0 47639 61 Yes Yes 100 200 6 Yes 294 410 122 2.52
b04 gray hot 69/70 10 917 134 Yes Yes 710 10000 6 Yes 7604 1660 395 26.3
b05 gray hot 32/34 3 - 65 No No 1 100 6 Yes 206781 3452 1105 139.4
b06 gray hot 9/13 2 2205 20 Yes No 1 100 6 Yes 16208 686 411 1.59
b07 gray hot 51/53 110 118880 49 No No 1 100 6 Yes 3746 18968 4344 814.1
b08 gray hot 21/23 0 683 44 No No 300 10000 6 Yes 4109 756 215 3.22
b09 gray hot 28/30 0 18161 58 Yes No 1 10000 6 Yes 31351 189702 4407 2298
b10 gray hot 17/24 0 1150 41 No No 100 10000 8 Yes 123013 801246 73924 31841
b11 syn gray 30/30 0 - 60 Yes Yes 85 10000 6 Yes 28447 93350 14538 197.3
b13 gray hot 29/34 16 2084 55 No No 25 10000 6 Yes 44432 122640 19965 8202

P1 - Provable by internal equivalent signals and equivalent flip-flop pairs. R2 - Count of four types of redescriptions obtained from BLOSOM.
P2 - Provable by ABC tool from Berkley. [20] M - Maximum number of flip-flops in each boolean term. ’-’ - indicates time out in 12 hours.

then-verify flow, out of which 215 were found to be true implications.
Then, these relations were used in a SEC setup. The total execution
time, including mining all the way to SEC was just 3.22 seconds!

Next, for those ISCAS89 benchmarks (original vs. retimed ver-
sions), we were able to prove all the benchmarks equivalent. For
example, consider s444 2 3, with 25 and 30 flip-flops, there were 2
equivalent flip-flop pairs. Note that a flip-flop FFi in one circuit could
be equivalent to multiple flip-flops in the other circuit. Also, there
were 1746 internal equivalent signals, including the corresponding
output signals of the two circuits. We note that internal equivalences
and flip-flop equivalences were sufficient to prove the two circuits
equivalent, as shown under the P1 column. The remaining columns
could be interpreted in a similar manner as we had done earlier.
Finally, the two circuits could be proved equivalent in only 8.8
seconds including the time to mine the relations, add then to the
SEC framework and prove the two circuits equivalent. Note that in
this case, we did not use any internal equivalences during SEC, so
that we can test if general boolean expressions were powerful enough.
Moreover, in most of benchmarks, setting a higher minimum support
reduces the implication count and these implications are sufficient to
prove the circuits equivalent in a significantly less time. Note: The
benchmark s35932 is not included in the results since the original
and optimized version obtained by ABC package [20] can be proved
equivalent just with equivalent flip-flop pairs alone.

V. CONCLUSION

We presented a novel technique for mining complex multi-node
boolean relations among flip-flops in sequential circuits. Both illegal
constraints among a subset of flip-flops and complex boolean relation-
ships among flip-fops were mined. To the best of our knowledge, this
is first of such mining of general boolean expressions for SEC. These
relationships can constrain the search space much more effectively
than existing approaches. Experimental results show the potential and
effectiveness of our mining approach. Our future work is based on
extracting quality constraints to reduce the count of these implications
which will further reduce the verification time for larger designs.
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