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ABSTRACT
We present ARMiCoRe, a novel approach to a classical bioin-
formatics problem, viz. multiple sequence alignment (MSA)
of gene and protein sequences. Aligning multiple biologi-
cal sequences is a key step in elucidating evolutionary rela-
tionships, annotating newly sequenced segments, and under-
standing the relationship between biological sequences and
functions. Classical MSA algorithms are designed to primar-
ily capture conservations in sequences whereas couplings, or
correlated mutations, are well known as an additional impor-
tant aspect of sequence evolution. (Two sequence positions
are coupled when mutations in one are accompanied by com-
pensatory mutations in another). As a result, better expo-
sition of couplings is sometimes one of the reasons for hand-
tweaking of MSAs by practitioners. ARMiCoRe introduces
a distinctly pattern mining approach to improving MSAs:
using frequent episode mining as a foundational basis, we
define the notion of a coupled pattern and demonstrate how
the discovery and tiling of coupled patterns using a max-flow
approach can yield MSAs that are better than conservation-
based alignments. Although we were motivated to improve
MSAs for the sake of better exposing couplings, we demon-
strate that our MSAs are also improvements in terms of
traditional metrics of assessment. We demonstrate the ef-
fectiveness of ARMiCoRe on a large collection of datasets.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]; I.5.2 [Design Method-
ology]: Pattern analysis

General Terms
Algorithms
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Multiple sequence alignment, coupled residues, pattern set
mining, coupled patterns, max-flow problems, bioinformtics.
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1. INTRODUCTION
Evolutionary pressures on genes and proteins have con-

strained their (DNA and protein) sequences over genera-
tions. As organisms evolve through sequence modifications,
mutations that have been evolutionarily selected for survival
would be preserved in the sequence record. It is hence of in-
trinsic biological interest to inspect the sequence record and
to unravel those mutations that have withstood the test of
time and have been beneficial to the species.

Multiple sequence alignment (MSA) of biological sequences
is a classical approach to understand evolutionary constraints.
It has been said that“one or two homologous sequences whis-
per, ..., a full [MSA] shouts out loud” [13]. A plethora of
MSA algorithms exists with origins ranging from discrete
algorithms [26] to probabilistic models, such as HMMs [15].

Isn’t MSA a Solved Problem?
Although sequence alignment has become a widely deployed
tool in bioinformatics, practically every MSA algorithm (e.g.,
ClustalW [26], Muscle [8], T-Coffee [18], and more) is de-
signed to model and expose conservation, which although
being a key evolutionary constraint, does not capture the
richness of how sequences evolve and diverge. As seen in
Fig. 1, two key forms of constraints are conservation and
coupling. Column 4 of Fig. 1 (d) illustrates a conserved col-
umn, i.e., all residues are ‘W.’ Columns 2 and 8 of Fig. 1 (d)
illustrate coupling, or compensatory mutations: whenever
column 2 is ‘L,’ column 8 is ‘T’; similarly whenever column
2 is ‘M,’ column 8 is ‘S.’ In a typical alignment (e.g., Fig. 1
(b)), conservations are manifest and couplings are obscured;
in fact, it is often accepted practice for biologists to ‘hand
tweak’ such an alignment to incorporate structural informa-
tion about sequences and thus obtain a better alignment.

Such tweaking is still somewhat of a black art and requires
significant domain expertise. We were motivated to design
an automated approach to better expose couplings in an
MSA; but in doing so, our approach also improves MSAs
according to traditional measures of assessment.

Contributions
• We present Alignment Refinement by Mining Coupled

Residues (ARMiCoRe), a pattern mining approach to the
problem of multiple sequence alignment. Using frequent
episode mining as a foundational basis, we define the no-
tion of a coupled pattern that elucidates covarying residues.
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Figure 1: Realignment of a hypothetical MSA using coupled pattern mining. Panel (b) is input to ARMiCoRe
and (d) is the improved alignment.

Coupled patterns are inferred using a levelwise approach
and subsequently ‘tiled’ using a max-flow algorithm. The
tiling is then used to direct the adjustment of a conserva-
tion based alignment to capture covarying residues.

• ARMiCoRe can be viewed as a novel application of pat-
tern set discovery [2] where the goal is not just to mine
interesting patterns (which is the purview of pattern dis-
covery) but to select among them to optimize a set-based
measure. ARMiCoRe can be used to tweak alignments
from any existing algorithm, to better expose couplings.
• As MSA is an established topic in bioinformatics, we sub-

ject ARMiCoRe to a thorough experimental evaluation
involving 108 protein families. We identify selective supe-
riorities of ARMiCoRe and demonstrate situations where
it outperforms state-of-the-art MSA algorithms.

2. RELATED WORK
Multiple sequence alignment has been studied extensively

for the past several decades (see [5] for reviews). A rich set
of features exist to classify MSA algorithms. One way to
classify them is as global alignment vs. local alignment al-
gorithms. Global alignment algorithms (e.g., ClustalW [26],
MUSCLE [8], T-coffee [18], and ProbCons [6]) match se-
quences over their full lengths, whereas local alignment al-
gorithms (e.g., DIALIGN [16] ) aim to align only the most
similar regions between sequences. A second way to classify
algorithms is in terms of the objective function (e.g., sum
of pairs score, entropy, circular sum) used to identify the
highest scoring alignment [5]. Finally, MSA algorithms can
be classified based on their underlying optimization scheme:
exact algorithms, progressive algorithms, and iterative al-
gorithms. An exact algorithm attempts to simultaneously
align all of the sequences and find an optimal alignment us-
ing an objective function [3]. The underlying problem has
been proved to be NP-complete [28] and, hence, impractical
for large numbers of sequences.
Progressive and Iterative Algorithms: Heuristic ap-
proaches to MSA are either progressive or iterative algo-
rithms. Progressive alignment algorithms (e.g., ClustalW [26]
and T-Coffee [18] ), typically more appealing, involve build-
ing a guide tree based on sequence similarity and progres-
sively aligning sequences following the order of the guide
tree. Variants on progressive alignment typically use guide
tree reestimation, modifying objective functions, and/or post-
processing [5]. In guide tree reestimation, algorithms com-
pute new distance matrices based on the initial MSA pro-
duced by progressive alignment, and the revised distance
matrix is used to create a new guide tree. MUSCLE [8] and
PROMALS [20] use this approach. Methods that modify the
objective function are referred to as consistency-based meth-

ods, e.g., T-Coffee [18], DIALIGN [16], ProbCons [6], and
PROMALS [20]. The third variant involves post-processing,
also known as iterative algorithms. In this approach, an
alignment is first produced rapidly and then refined through
a series of iterations until no more improvements can be
made [5]. Examples are MUSCLE [8] and DIALIGN [16].
Probabilistic Algorithms: Probabilistic algorithms ap-
proach MSA by modeling different aspects: evolutionary
models of indels , profile models, and hybrid models that
combine probabilistic models with progressive alignment tech-
niques. ProbCons [6] is a well known example that uses
maximum expected accuracy scoring to infer a model and
is especially useful for divergent sequences. A second exam-
ple [15] uses a pair of HMMs as the scoring strategy.
Constraint-based Algorithms: These approaches (a.k.a.
segment-based alignment algorithms) improve alignment qual-
ity by searching and incorporating information about ho-
mologs, conserved motifs/domains, and expert-supplied feed-
back about local similarity. Examples are COBALT [19],
DIALIGN [16], and PROMALS [20].

As rich as the above landscape of MSA algorithms is, none
of the above algorithms use covariation as a property to align
sequences. Coupling is often viewed as a feature that ‘comes
out’ of an alignment as opposed to a criterion or driver for
computing the alignment. A very recent work, published
in 2010 [11], is the lone exception which uses mutual in-
formation to detect coupled residues, and uses constraint
programming to realign sequences. As we will show, ARMi-
CoRe captures not just coupled residues but the richer class
of coupled patterns that tile the entire set of sequences;
this greater expressiveness leads to improved MSAs, both
in terms of exposing couplings, and in terms of traditional
metrics of assessment (see Section 5).

3. FORMULATION
We are given a collection S = {s1, . . . , sn} of n aligned

sequences (or strings), each of length m, over a finite alpha-
bet. As shown in Fig. 1 (b), the sequences in S are assumed
to have been aligned by a standard MSA method that typ-
ically favors conservation (and thus might contain gaps).
Each sequence si, i = 1, . . . , n, can hence be expressed as
si = 〈Ei1, . . . , Eim〉, Eij ∈ E ∪ {ϕ}, j = 1, . . . ,m, where E
denotes a finite alphabet and ϕ is the gap symbol. In the
case of DNA sequences, E = {A,C, T,G}, whereas for pro-
tein sequences, E comprises the 20 amino acid residues. We
can even for instance denote amino acids by their physico-
chemical properties so that the set of 20 amino acids can be
reduced to a smaller set of properties.

Definition 1. An indexed pattern α (of size `) is defined
by a pair of `-length sequences, (〈Aα1 , . . . , Aα` 〉, 〈δα1 , . . . , δα` 〉),
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Figure 2: Figure illustrating Example 2.

where each Aαj ∈ E, δαj ∈ Z+, j = 1, . . . , `, and δαj+1 > δαj ,
j = 1, . . . , (`− 1). We refer to 〈δα1 , . . . , δα` 〉 as the sequence
of positions over which α is defined.

The semantics of an indexed pattern α is essentially that
in a sequence s where α is said to occur, we expect that
Aαj will appear at position δαj (or very close to it) for every
1 ≤ j ≤ `.

Definition 2. A sequence s = 〈E1, . . . , Em〉 is said to
contain an ε-approximate occurrence of indexed pattern α
if there exists a map h : {1, . . . , `} → {1, . . . ,m}, strictly
increasing, such that ∀j, 1 ≤ j ≤ `, Eh(j) = Aαj and |h(j)−
δαj | ≤ ε.

Example 1. α = (〈A,E,M,C〉, 〈5, 9, 15, 20〉) is an in-
dexed pattern of size ` = 4. An example sequence s that
contains an ε-approximate occurrence of α is shown below
(for ε = 1). Note that occurrences of symbols A, E, M and
C can be found within 1 position of the locations 5, 9, 15
and 20 respectively.

s = 〈
1

K
2

F
3

F
4

K
5

R
6

A︸ ︷︷ ︸
δ1=5

7

C
8

E
9

P
10

T︸ ︷︷ ︸
δ2=9

11

D
12

A
13

I
14

P
15

M
16

E︸ ︷︷ ︸
δ3=15

17

P
18

H
19

E
20

M
21

C︸ ︷︷ ︸
δ4=20

22

P
23

E〉

Definition 3. The ε-support of an indexed pattern α over
the collection S of sequences, denoted fε(α), is the number
of sequences in S that contain at least one ε-approximate
occurrence of α; the corresponding set of ε-supporting se-
quences is denoted by Uε(α) ⊆ S, fε(α) = |Uε(α)|.

Definition 4. A coupled pattern, ψ, of size k is defined
as a k-tuple, (α1, . . . , αk), where each αi, i = 1, . . . , k (re-
ferred to as a constituent of ψ) is an indexed pattern over
a common sequence of positions 〈δ1, . . . , δ`〉. The ε-support
of ψ over a collection S of sequences, denoted Fε(ψ), is de-
fined as the total number of ε-supporting sequences of its
constituents found in S, i.e., Fε(ψ) = | ∪αi∈ψ Uε(αi)|.

Example 2. Consider the collection of sequences, S =
{s1, . . . , s8}, defined in Figure 2. ψ = (α1, α2) is an ex-
ample coupled pattern of size 2, where α1 = (〈H,L, F,K〉,
〈5, 9, 15, 20〉) and α2 = 〈A,E,M,C〉, 〈5, 9, 15, 20〉 are in-
dexed patterns over the same sequence of positions 〈5, 9, 15, 20〉.
The ε-support of ψ over S, for ε = 1, is F1(ψ) = 8.

Our main intuition here is that when there is enough evi-
dence for a coupled pattern ψ in a given data set S, the as-
sociated sequence of positions (δ1, . . . , δ`) are coupled across
multiple sequences of S, in the sense that, mutations in one
position are accompanied by corresponding mutations in the
others. In Example 2, mutations of H to A in position 5,
would be accompanied by three other mutations, namely, L
to E in position 9, F to M in position 15 and K to C in
position 20. To facilitate the detection and measurement
of the evidence for a coupled pattern, we define the notion
of τ -coverage with respect to the pattern’s ε-supporting se-
quences.

Definition 5. Let S be a given collection of sequences
over E ∪ {ϕ}. Consider a coupled pattern ψ = (α1, . . . , αk)
and its corresponding sets, Uε(αi), i = 1, . . . , k, of ε-supporting
sequences. The τ -coverage of ψ in S with respect to its ε-
supporting sequences, denoted Γε(ψ, τ), is defined as follows:

Γε(ψ, τ) = max
D1,...,Dk

k∑
i=1

|Di| (1)

where Di ⊂ S, i = 1, . . . , k, such that the following hold:
Di ⊂ Uε(αi), Di ∩ Dj is empty for i 6= j, and |Di| ≥ τ .

Essentially, we want to compute mutually exclusive sets of
ε-supporting sequences for each of the k constituents of ψ,
such that each mutually exclusive set contains at least τ
sequences, while the total number of distinct sequences in
these sets is maximized.

Example 3. For the same example as before, with ε = 1,
we get the following sets of ε-supporting sequences for α1 and
α2: Uε(α1) = {s1, s2, s3, s4, s5} (f1(α1) = 5) and Uε(α2) =
{s5, s6, s7, s8} (f1(α2) = 4). Setting D1 = {s1, s2, s3, s4}
and D2 = {s5, s6, s7, s8} we get the 4-coverage of ψ with
respect to its 1-supporting sequences to be Γ1(ψ, 4) = 8.

Dominant pattern
Non-dominant pattern 1

Non-dominant pattern 2
Non-dominant pattern 3

+ve Seq

-ve Seq

Block 1

Block 2

Block 3

Figure 3: Generating a coupled pattern set from all
possible patterns.

There are two main challenges in the detection and use
of coupled patterns for improving multiple sequence align-
ment. First, given a data set S of (approximately aligned)
sequences, we need to find coupled patterns which have high
τ -coverage over S. Second, we need to use the high-coverage
coupled patterns discovered to improve the MSA relative to
the original alignment in S.

Problem 1 (Mining Coupled Patterns). Consider a
data set S of m-length sequences over E ∪ {ϕ} and a fixed
sequence of position indices, 〈δ1, . . . , δ`〉. Given user-defined
parameters, ε, K and τ (all non-negative integers) find a
coupled pattern of size k ≤ K over 〈δ1, . . . , δ`〉 which max-
imizes τ -coverage with respect to its ε-supporting sequences
in S.

The MSA realignment problem can be stated as follows.

Problem 2 (MSA Realignment). Given a data set
S of m-length sequences over E ∪ {ϕ} and a set of cou-
pled patterns Ψ = {ψ} in S each of which has τ -coverage
of Γε(ψ, τ) = γ over ε-supporting sequences, find a realign-
ment S ′ of the sequences in S where all patterns in Ψ have
a τ -coverage of Γε′(ψ, τ) ≥ γ for ε′ < ε.

In the above formulation, note that we require coupled
patterns discovered in the original (approximate) alignment
to still be manifest in the new alignment, but in a more
obvious manner. Ideally ε′ = 0 (which is the situation for
the example pattern in Fig. 1 (d)) but in practice we aim to
obtain ε′ < ε.



Algorithm 1 Cp-Miner(S,Ψl, τd, τ, ε,K)

Input: A set of aligned sequences S = {s1, s2, . . . , sn}, a
set of frequent coupled patterns Ψl of size l, dominant
residue conservation threshold τd, block coverage thresh-
old τ , column-window parameter ε, maximum size of a
coupled pattern, K.

Output: A set of frequent coupled patterns Ψl+1 of size
l + 1.

1. Ψl+1 ← φ
2. Cl+1 ←Candidate-Gen(Ψl)
3. Ψl+1

1 ← {ψ : ψdom = {α}, ∀α ∈ Cl+1}
4. for ψ ∈ Ψl+1

1 do
5. α← ψdom � dominant indexed pattern.
6. S+ ← {si : si has an ε-approx. occurence of α}
7. if |S+| ≥ nτd then
8. S− ← S − S+

9. I ← ∀ε-approximate indexed patterns from S−
10. I′ ← {α : fε(α) ≥ τ,∀α ∈ I}
11. if I′ 6= φ and |I′| ≤ K then
12. ψ ← ψ ∪ I′
13. if ψ is significant then
14. Ψl+1 ← Ψl+1 ∪ ψ
15. return Ψl+1

4. ALGORITHMS
In this section, we present ARMiCoRe, a new method for

aligning multiple sequences based on coupling relationships
that may exist between residues found in two or more se-
quence positions. The method consists of two main steps.
We start by discovering high-support coupled patterns over
various choices of position sequences (described in Sec. 4.1).
Finally, in Sec. 4.3, we derive an alternative alignment S ′
for S based on both the original ungapped sequences and
the just-discovered coupled patterns.

4.1 Discovering Coupled Patterns
The first step of ARMiCoRe is to choose the sequence po-

sitions over which to mine coupled patterns. Then standard
level-wise methods (Apriori) are used to discover coupled
patterns (restricted to the chosen sequence positions) with
sufficient support (cf. Sec. 4.1.1). While level-wise searching
for coupled patterns ARMiCoRe looks for patterns that have
at most K constituents ignoring τ -coverage (cf. Sec. 4.1.2).
Then ARMiCoRe applies a statistical significance test to fil-
ter out uninteresting coupled patterns (cf. Sec. 4.1.3). This
gives us the pattern set, Ψl = {ψ1, . . . , ψ|Ψ|}, of `-size in-
dexed patterns, each with support at least τ , each has at
most K constituents, and each defined over a common se-
quence of positions, 〈δ1, . . . , δ`〉. Each subset of indexed pat-
terns in ψ can thus be a potential candidate for a τ -coverage
coupled pattern. Finally, ARMiCoRe applies a max-flow ap-
proach to get the τ -coverage of each ψ (cf. Sec. 4.1.4).

A lower-bound τ on the sizes |Di| of the blocks corre-
sponding to each constituent of a coupled pattern (see Defi-
nition 5) automatically enforces an upper-bound

⌊
n
τ

⌋
on the

size, k, the coupled pattern. At first, it might appear as if
the user only needs to prescribe τ to detect interesting pat-
terns (since an upper-bound on k is implied). However, we
have observed that in the couplings that are already known
in biological data sets, the number of constituents are typ-
ically far fewer than

⌊
n
τ

⌋
. Hence, in our framework, the

user must specify both an upper-bound K for k as well as a
lower-bound τ on the block-sizes |Di| of coupled patterns.

We now describe the steps in ARMiCoRe for finding a
subset of indexed patterns that implies a coupled pattern, of
size at most K, and which maximizes the τ -coverage over its
ε-supporting sequences. The main hardness in the problem
arises from having to maximize coverage with a τ constraint
while restricting the number of constituent patterns to no
more than K. Hence, we decouple the two problems and
show that the individual problems can be solved efficiently.
Specifically, we show that by ignoring the τ constraint, the
problem of maximizing coverage is a sub-modular function-
maximization problem with cardinality constraint. We pro-
pose Algorithm 1,2 for generating all possible coupled pat-
terns of size at most K. On the other hand, after selecting
coupled patterns of size at most K, maximizing coverage
with the τ constraint reduces to a max-flow problem.

4.1.1 Level-wise Coupled Pattern Mining
Our basic idea here is to organize the search for coupled

patterns around the (semi) conserved columns of the cur-
rent alignment. Level 1 patterns are comprised of individual
columns, level 2 patterns are comprised of pairs of level 1
patterns, and so on.

For choosing a (semi) conserved column, we employ a
dominant residue conservation threshold τd (see Line 7 of Al-
gorithm 1). We use class-based conservation so that amino
acid residues that have similar physico-chemical properties
are considered conserved. Class-based conservation can be
estimated using the Taylor diagram [23] or by k-means clus-
tering of substitution matrices such as Blosum62 [10]. We
have explored both approaches and found the latter to work
better (with a setting of 7 non-overlapping clusters).

Amino acids in and around the semi-conserved columns
(to within a window length of ε) are organized into positive
and negative sets of sequences describing the dominant com-
bination and other, non-dominant, ones (see Fig. 3 (left)).
As we construct level-2 and greater patterns, we take care
to ensure that ε does not yield window lengths that cross
another semi-conserved column.

Algorithm 2 Candidate-Gen(S,Ψl)

Input: A set of frequent coupled patterns Ψl of size l.
Output: A set of indexed patterns Cl+1 of size l + 1.
1. Cl+1 ← φ
2. Al ← {α : α = ψdom, ∀ψ ∈ Ψl} � ψdom denotes an

indexed pattern of the most frequent residue.
3. for all αi, αj ∈ Al do
4. if there is a prefix match of length l − 1 between

δαi and δαj then
5. αk ← Merge(αi, αj)
6. for all αt ∈ Al and αk containing αt do
7. αsubk ← αt � listing subpatterns
8. Cl+1 ← Cl+1 ∪ αk
9. return Cl+1

4.1.2 High ε-support using at most K Constituents
We now present the approach taken by ARMiCoRe to

solve the problem of maximizing coverage by enforcing only
the upper-bound K (user-defined) on the number of con-
stituents of ψ while ignoring the τ constraint. We will test
for τ -coverage later as a post-processing step (see Sec. 4.1.4).



Figure 4: Network G used in the max-flow step.
Note that at τ = 0, τ -coverage is same as ε-support, and
this can be shown to be both monotonic and sub-modular
with respect to its constituents. That is, if A and B are
two subsets of ψ, such that A ⊂ B, then it can be shown
that: Γε(A∪α, 0) ≥ Γε(A, 0), and, Γε(A∪α, 0)−Γε(A, 0) ≥
Γε(B ∪ α, 0) − Γε(B, 0). Consequently, we can use a greedy
algorithm which guarantees a (1− 1

e
)-approximate solution

[17]. In other words, we would find a subset of ψ whose
ε-support (or 0-coverage) is within a factor of (1− 1

e
) of the

optimal subset.

4.1.3 Significance Testing of Coupled Patterns
For level-2 patterns and greater, we perform a 2-fold sig-

nificance test, the first focusing on the dominant pattern and
the second focusing on the non-dominant patterns. For the
dominant pattern, we compute the probability, and thus the
p-value, of encountering the dominant pattern given the col-
umn marginals. For the non-dominant patterns, we conduct
a standard enrichment analysis using the hypergeometric
distribution to determine if the symbols in the non-dominant
pattern are over-represented.

4.1.4 Checking τ-coverage using Max-Flow
Once we have generated ψ with high ε-support we proceed

to check if a non-zero τ -coverage is feasible (Recall that the
coverage will either be zero or the full ε-support correspond-
ing to the chosen subset of ψ). This problem reduces to
a standard max-flow problem for which efficient (poly-time)
algorithms exist. We now present the reduction of this prob-
lem to max-flow (see Fig. 4).

Let G = (V,E) be a network with v∗, v] ∈ V denoting
the source and sink of G respectively. In addition to v∗
and v], there is a unique node in V corresponding to each
indexed pattern αi ∈ ψ and also to each sequence sj ∈ S,
i.e., V = {v∗, v]}∪ψ∪S. Three kinds of edges are in set E:

1. e∗i ∈ E, representing an edge from the source node v∗
to the pattern node, αi ∈ V. We will have e∗i ∈ E,
∀αi ∈ ψ

2. ej] ∈ E, representing an edge from the sequence node
sj ∈ V to the sink node v]. We will have ej] ∈ E,
∀sj ∈ S

3. eij ∈ E, representing an edge from pattern node αi ∈
V to the sequence node sj ∈ S, whenever the algo-
rithm assigns sj to Di (see Definition 5). We will have
eij ∈ E, ∀αi ∈ ψ, sj ∈ S such that sj is assigned to the
block Di that corresponds to the ith pattern αi ∈ ψ.

For any edge e ∈ E, let LB(e) and UB(e) denote, respec-
tively, the lower and upper bounds on the capacity of edge
e. Given a coupled pattern ψ, the computation of its τ -
coverage, Γε(ψ, τ), reduces to the computation of max-flow
for the network G under the following capacity constraints:

1. LB(e∗i) = τ , UB(e∗i) =∞, ∀αi ∈ ψ

2. LB(ej]) = 0, UB(ej]) = 1, ∀sj ∈ S
3. LB(eij) = 0, UB(eij) = 1, ∀αi ∈ ψ, sj ∈ S

We can now use any max-flow algorithm, such as [9] to ob-
tain the max-flow in G subject to the stated capacity con-
straints. The flow returned will give us Γε(ψ, τ).

4.2 Complexity Analysis
The runtime for finding all possible coupled patterns de-

pends on the number of sequences (n), the alignment length
(m), the column-window threshold (ε), and the maximum
size of the indexed pattern (l). Let p be the number of semi-
conserved columns found in level 1 indexed pattern mining.
Then the running time for generating all possible coupled
patterns is O(nm+ l(p3 + lp2nε)). Since p ∼ O(m), the run-
ning time is O(l(m3+lm2nε)). Finding a τ -coverage coupled
pattern depends on the number of nodes (O(n+K)) and the
number of edges (q) in the max-flow network for which the
running time is O((n+K)q log((n+K)2/q)) [9].

4.3 Updating the Alignment
There are various ways to adjust the given alignment. One

strategy is to modify the substitution matrix but this is a
global approach and does not lend itself to the local shifting
of columns as suggested by coupled pattern sets. We in-
stead adopt a constraint-based alignment strategy, based on
COBALT [19], which can flexibly incorporate domain knowl-
edge. Constraints in COBALT are specified in terms of two
segments from a pair of sequences that should be aligned
with each other in the final result. To convert coupled pat-
terns into constraints, we can adopt various strategies. One
approach is to, for each pair of sequences, identify a pair
of column positions that should be realigned based on the
coupled pattern set. We then map these two positions in
the alignment to the corresponding positions in the original
(ungapped) sequences. (These two positions in terms of the
original sequences thus constitute a segment pair of size one
that should be realigned.) Taking all pairs of sequences in
this manner would generate a huge number of constraints.
We can reduce the number of constraints by considering con-
secutive pair of sequences. Another approach is to take a
subset of sequences, say S1, for whom the residues match
over a column in the coupled pattern. We then take each
of the sequences for whom residues do not match over that
column in the coupled pattern, and create constraints by
pairing the sequence with each of the sequences from S1.
COBALT guarantees a maximal consistent subset of these
constraints to be occurred in the final alignment. The run-
time for an alignment using COBALT is data-centric [19].

5. EXPERIMENTAL RESULTS
In this section, we assess ARMiCoRe on benchmark datasets.

Due to space limitations, we provide only representative re-
sults illustrating selective superiorities of ARMiCoRe. Our
goals are to answer the following questions:

1. How does ARMiCoRe fare against classical algorithms
on benchmark datasets? Here we choose ClustalW and
COBALT, two representative MSA algorithms. (see
Section 5.3)

2. Can ARMiCoRe extract coupled patterns that capture
evolutionary covariation in protein families? (see Sec-
tion 5.4)

3. Can domain expertise be used to drive the computa-
tion of improved alignments? (see Section 5.5)



Table 1: Comparison of ARMiCoRe against ClustalW over all BaliBase datasets (using only core regions).
The average scores are shown here. RV20* is curated from RV20 by removing orphan sequences.

Dataset
Q-Score TC Score Shift Score Modeler Score

ClustalW ARMiCoRe ClustalW ARMiCoRe ClustalW ARMiCoRe ClustalW ARMiCoRe
RV12 0.84 0.89 0.51 0.61 0.73 0.81 0.69 0.79
RV20 0.84 0.79 0.24 0.15 0.83 0.78 0.81 0.78
RV20* 0.88 0.90 0.54 0.57 0.88 0.88 0.85 0.87
RV30 0.68 0.58 0.23 0.13 0.65 0.58 0.63 0.63

Table 2: Comparison of ARMiCoRe against ClustalW over the OXBench alignments.

Alignments
Q-Score TC Score Shift Score Modeler Score

ClustalW ARMiCoRe ClustalW ARMiCoRe ClustalW ARMiCoRe ClustalW ARMiCoRe
12s107 0.99 0.98 0.80 0.86 0.93 0.92 0.87 0.87
12s108 0.97 0.99 0.85 0.94 0.88 0.89 0.79 0.80
12t109 0.96 0.96 0.76 0.80 0.87 0.87 0.78 0.78
12t113 0.95 0.91 0.82 0.56 0.78 0.76 0.65 0.63
12t116 0.94 0.87 0.53 0.33 0.76 0.73 0.62 0.61
...

...
...

...
...

...
...

...
...

588t28 1.00 0.99 0.97 0.97 0.89 0.89 0.80 0.81
22s38 0.95 0.95 0.82 0.81 0.81 0.81 0.69 0.69
22t50 0.96 0.95 0.86 0.83 0.79 0.78 0.64 0.64

588 0.98 0.98 0.83 0.8 0.88 0.89 0.80 0.81
12 0.86 0.87 0.00 0.10 0.5 0.53 0.34 0.37

5.1 Datasets
We evaluate our method using three well-known bench-

mark datasets: BaliBase3 [27], OXBench [21], and SABRE [7].
The BaliBase3 benchmark is created for evaluating both
pairwise and MSA algorithms. We use only those align-
ments from BaliBase that have at least 25 sequences, which
yields 48 alignments from three reference sets: RV12, RV20,
and RV30. (We chose a threshold of 25 sequences in order to
maintain the fidelity of couplings within a sequence family.)
The alignments in the reference set RV12 are composed of se-
quences that are equidistant and have 20-40% identity. The
reference set RV20 contains alignments that are composed of
highly divergent orphan sequences. The reference set RV30
contains alignments that are composed of sequence groups
each of whom have less than 25% identity. OXBench has
3 reference sets and the master set contains 673 alignments
that have sequences ranges from 2 to 122. From the master
set, we chose a subset that have at least 25 sequences (yields
22 alignments). SABRE contains 423 alignments that have
sequences ranges from 3 to 25. We choose a subset of 6
sequences that have at least 20 sequences.

Other than these benchmark datasets, we use families of
proteins couplings: GPCR, WW, and PDZ. G-protein cou-
pled receptors are a key demonstrator of allosteric communi-
cation and serve to transduce extracellular stimuli into intra-
cellular signals [14]. The entire GPCR family is subdivided
into 16 subfamilies (alignments). We use 6 alignments from
this set, each of whom involve at least 30 sequences: Amine,
Rhodopsin, Peptide, Olfactory, Nucleotide, and Prostanoid.
The PDZ family has only one alignment and the WW family
has three subfamilies: native, CC, and IC.

5.2 Scoring Criteria
We use four different scoring criteria to assess the quality

of a test alignment with respect to a reference alignment.

1. Q-Score [8]: This score, a.k.a. sum-of-pairs score, can
be defined as follows. Let T be the number of aligned

residue pairs in the reference alignment and L be the
number of aligned residues pairs in the reference align-
ment that are also correctly aligned in the test align-
ment. Then, Q-score = L

T
.

2. Total Column Score (TC) [27]: This score is the frac-
tion of columns in a reference alignment that are iden-
tical in a test alignment.

3. Modeler Score [22]: Let R be the number of aligned
residue pairs in a test alignment and L be the number
of aligned residue pairs in the reference alignment that
are also correctly aligned in the test alignment. Then,
Modeler score = L

R
.

4. Cline Shift Score [4]: While the above three scores eval-
uate only correctly aligned residues or residue pairs,
the Shift score also penalizes misalignments. See [4]
for more details.

5. Coupled Column Score (C-Score): None of the above
four scores measure how many of the coupled columns
(colums that are participating in the couplings) of a
reference alignment are retained in the test alignment.
We propose a score to measure the fraction of retained
coupled columns based on probabilistic graphical mod-
els (PGMs). PGMs can encode couplings of an align-
ment [24] where nodes denote columns of the alignment
and edges denote couplings between two columns. To
calculate the C-Score, we create a PGM for a refer-
ence alignment, and then count the number of columns
(V ) that are participating in couplings. For these V
coupled columns in the reference alignment, we count
how many (V ′) of them are retained in the test align-
ment. A column in the reference alignment is consid-
ered to be retained in the test alignment if the number
of mismatched residues are fewer than 10%. These two
counts give us C-Score = V ′

V
.

For all the above measures, higher values are better. The
five measures yield a maximum score of 1. Shift Score gives
a minimum score −0.2 and the rest give 0 as minimum score.



Table 3: Comparison of ARMiCoRe against ClustalW over the SABRE alignments.

Alignments
Q-Score TC Score Shift Score Modeler Score

ClustalW ARMiCoRe ClustalW ARMiCoRe ClustalW ARMiCoRe ClustalW ARMiCoRe
sup 038 0.82 0.88 0 0 0.17 0.19 0.10 0.12
sup 092 0.20 0.30 0 0 0.05 0.07 0.03 0.05
sup 108 0.89 0.93 0 0.35 0.46 0.48 0.31 0.32
sup 126 0.51 0.59 0 0 0.19 0.23 0.12 0.14
sup 167 0.61 0.50 0 0 0.27 0.23 0.17 0.14
sup 215 0.11 0.18 0 0 0.00 0.01 0.00 0.01

Table 4: Comparison of ARMiCoRe against
ClustalW and COBALT over the CC subfamily of
WW protein family.

Score ClustalW COBALT ARMiCoRe

Q-Score 0.89 0.85 0.96
TC Score 0.51 0.35 0.51
Shift Score 0.93 0.91 0.97
Modeler Score 0.90 0.91 0.97
C-Score 0.71 0.88 1.00

Table 5: Comparison of ARMiCoRe against
ClustalW and COBALT over the PDZ family.

Score ClustalW COBALT ARMiCoRe

Q-score 0.85 0.82 0.87
TC Score 0 0.1 0
Shift score 0.89 0.87 0.9
Modeler Score 0.85 0.89 0.88
C-Score 0.67 0.81 0.81

5.3 Comparison with ClustalW
We evaluate ARMiCoRe on the datasets described earlier:

benchmark and alignments with couplings. For each of these
alignments, we remove gaps and realign with ClustalW in
default settings (using the PAM matrix). ARMiCoRe is run
on each of the ClustalW alignments to generate coupled pat-
terns and use the coupled patterns to generate constraints,
which are used by COBALT to create an improved align-
ment. We then compare our scores with ClustalW.

Performance of ARMiCoRe on the BaliBase benchmark is
given in Table 1. ARMiCoRe shows superior performance
over ClustalW on all of the four measures in the RV12
reference set. Note that the performance of ARMiCoRe
on RV20 and RV30 is worse than that of ClustalW in all
four measures. This is because RV20 and RV30 pool to-
gether sequences with poor similarity and thus coupled pat-
terns are not a driver for obtaining good alignments. To
test this hypothesis, we removed the orphan sequences from
RV20 (RV20*) and as Table 1 shows, the performance of
ARMiCoRe is better along three of the four measures. Ta-
ble 2 describes the results of ARMiCoRe for the OXBench
benchmark, once again revealing a mixed performance on
a dataset with high sequence diversity. Finally, Table 3 de-
picts the superior performance of ARMiCoRe over ClustalW
in 5 alignments out of 6 alignments in SABRE dataset.

5.4 Modeling Correlated Mutations
We describe the effect of ARMiCoRe on three families

that are known to exhibit correlated mutations. We focus
on the CC subfamily of the WW domain, the PDZ family,

Table 6: Comparison of ARMiCoRe against
ClustalW and COBALT over the Nucleotide sub-
family of GPCR protein family.

Score ClustalW COBALT ARMiCoRe

Q-Score 0.74 0.68 0.79
TC Score 0.46 0.34 0.45
Shift Score 0.79 0.74 0.83
Modeler Score 0.74 0.77 0.80
C-Score 0.52 0.50 0.63

and the Nucleotide subfamily of the GPCR family. Based on
C-Score, we evaluate the Performance of ARMiCoRe against
ClustalW and COBALT. As shown in Tables 4, 5, and 6,
ARMiCoRe is consistently better on at least three measures.

Load
Alignment

Evaluate
Alignment

Choose
Coupling(s)

Mine
Patterns

Realign
Sequences

Figure 5: An overview of user interaction with
ARMiCoRe.

(a) (b)

Figure 6: Interfaces for mining coupled patterns.
(a) An input alignment. (b) Selection of coupled
patterns with colored plot of corresponding residues.

5.5 User Interaction in Choosing Couplings
We have developed GUIs for ARMiCoRe that allow users

to interactively choose patterns from a set of significant cou-
pled patterns and use them to realign sequences. This en-
ables biologists to bring specific domain knowledge in expos-
ing couplings in the realignment. A typical workflow with
ARMiCoRe is illustrated in Fig. 5. A user begins an exper-
iment by loading an initial alignment (see Fig. 6(a)). He or
she may decide to improve the alignment using the coupled
pattern mining module based on the quality scores measured



in the evaluation module. The coupled pattern mining mod-
ule facilitates tuning various parameters and gives a set of
significant coupled patterns as output. From the pool of
coupled patterns, a domain expert can choose meaningful
patterns (see Fig. 6(b)) and use them in the realignment
module. The realignment module gives a new alignment,
which can be evaluated in the evaluation module. A user
may repeat the realignment step by choosing different pat-
terns or the mining step by tuning the parameters.

6. DISCUSSION
Evolutionary constraints on genes and proteins to main-

tain structure and function are revealed as conservation and
coupling in an MSA. The advent of cheap, high-throughput
sequencing promises to provide a wealth of sequence data
enabling such applications, but at the same time requires
methods such as ARMiCoRe to improve the alignments and
inferred constraints upon which they are based. The align-
ments obtained by ARMiCoRe can be leveraged to design
or classify novel proteins that are stably folded and func-
tional [1, 25], as well as to predict three-dimensional struc-
tures from sequence alone [12]. Our work also demonstrates
a successful application of pattern set mining where the goal
is not just to find patterns but to cover the set of sequences
with discovered patterns such that an objective measure is
optimized. The ideas developed here can be generalized to
other pattern set mining problems in areas like neuroscience,
sustainability, and systems biology.
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