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ABSTRACT
Residue coupling in protein families is an important indica-
tor for structural and functional conservation. Two residues
are coupled if changes of amino acid at one residue location
are correlated with changes in the other. Many algorith-
mic techniques have been proposed to discover couplings in
protein families. These approaches discover couplings over
amino acid combinations but do not yield mechanistic or
other explanations for such couplings. We propose to study
couplings in terms of amino acid classes such as polarity,
hydrophobicity, size, and reactivity, and present two algo-
rithms for learning probabilistic graphical models of amino
acid class-based residue couplings. Our probabilistic graph-
ical models provide a sound basis for predictive, diagnostic,
and abductive reasoning. Further, our methods can take
optional structural priors into account for building graph-
ical models. The resulting models are useful in assessing
the likelihood of a new protein to be a member of a family
and for designing new protein sequences by sampling from
the graphical model. We apply our approaches to under-
stand couplings in two protein families: Nickel-responsive
transription factors (NikR) and G-protein coupled recep-
tors (GPCRs). The results demonstrate that our graphcial
models based on sequences, physicochemical properties, and
protein structure are capable of detecting amino acid class-
based couplings between important residues that play roles
in activities of these two families.
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Residue coupling, graphical models, amino acid classes, evo-
lutionary co-variation.
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1. INTRODUCTION
Proteins are grouped into families based on similarity of

function and structure. It is generally assumed that evolu-
tionary pressures in protein families to maintain structure
and function manifest in the underlying sequences. Two
well-known types of constraints are conservation and cou-
pling. The most widely studied constraint is conservation
of individual residues. Within a protein family, a particu-
lar residue position is conserved if a particular amino acid
occurs at that residue position for most of the members
in the family [3]. Conservation of residues usually occurs
at functionally and/or structurally important sites within a
protein fold (shared by the protein family). For example
in Figure 1(a), a multiple sequence alignment (MSA) of 10
sequences, the second residue is 100% conserved with occur-
rence of amino acid “W”.

A variety of recent studies have used MSAs to calcu-
late correlations in mutations at several positions within an
alignment and between alignments [15, 10, 19, 14]. These
correlations have been hypothesized to result from struc-
tural/functional coupling between these positions within the
protein [8]. Two residues are coupled if certain amino acid
combinations occur at these positions in the MSA more fre-
quently than others [15, 7]. For example, residues 3 and 8
are coupled in Fig. 1(d) because the presence of “K”(or“M”)
at the third residue co-occurs with“T”(or“V”) at the eighth
residue position. Going beyond sequence conservation, cou-
plings provide additional information about potentially im-
portant structural/functional connections between residues
within a protein family. Previous studies [15, 8, 10] show
that residue couplings play key roles in transducing signals
in cellular systems.

In this paper, we study residue couplings that manifest at
the level of amino acid classes rather than just the occur-
rence of particular letters within an MSA. Our underlying
hypothesis is that if structural and functional behaviors are
the underlying cause of residue couplings within MSAs, then
couplings are more naturally studied at the level of amino
acid properties. We are motivated by the prior work of
Thomas et al. [9, 10] which proposes probabilistic graphical
models for capturing couplings in a protein family in terms
of amino acids. Graphical models are useful for support-
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Figure 1: Inferring graphical models from an MSA of a protein family: (a)-(c) illustrate input to our models and (d),(e) illustrate two
different residue coupling networks.
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Figure 2: Taylor’s classification: a Venn diagram depicting
classes of amino acids based on physicochemical properties. Fig-
ure redrawn from [17].

ing better investigation, characterization, and design of pro-
teins. The above works infer an undirected graphical model
for couplings given an MSA where each node (variable) in
the graph corresponds to a residue (column) in the MSA and
an edge between two residues represents significant correla-
tion between them. Figure 1(a),(b) illustrates the typical
input (an MSA and a structural prior) and Figure 1(d) is
an output (undirected graphical model) of the procedure of
Thomas et al. In the output model (see Fig. 1(d)), three
residue pairs—(3,8), (6,7), and (9,10)—are coupled.

Evolution is the key factor determining the functions and
structures of proteins. It is assumed that the type of amino
acid at each residue position within a protein structure is
(at least somewhat) constrained by its surrounding residues.
Therefore, explaining the couplings in terms of amino acid
classes is desirable. To achieve this, we consider amino acid
classes based on physicochemical properties (see Fig. 2).

Graphical models can be made more expressive if we rep-
resent the couplings (edges in the graphs) in terms of un-
derlying physicochemical properties. Figure 1(c) is a Venn
diagram of three amino acid classes–polarity, hydrophobic-
ity, and size. Figure 1(e) illustrates three couplings in terms
of amino acid classes. For example, residue 3 and residue
8 are coupled in term of “polarity-polarity”, which means
correlated changes of polarities occur at these two positions
– a change from polar to nonpolar amino acids at residue
3, for instance, induces concomitant change from polar to
nonpolar amino acid at residue 8. Similarly, residue 6 and
residue 7 are also correlated since a change from hydropho-
bic to hydrophilic amino acids at residue 6 induces a change



from big to small amino acids at residue 7. There is no edge
between residue 5 and residue 7, however, because they are
independent given residue 6. Hence, the coupling between
residue 5 and residue 7 is explained via couplings (5,6) and
(6,7). This is one of the key features of undirected graphical
models as they help distinguish direct couplings from indi-
rect couplings. Note that the coupling between residue 9 and
residue 10 (originally present in Fig. 1(d)) does not occur in
Figure 1(e) due to class conservation in residues 9 and 10.
Also note that the coupling between residue 5 and residue
6 in Figure 1(e) is not apparent in Figure 1(d). Class-based
representations of couplings hence recognize a different set
of relationships than amino acid value-based couplings. We
show how the class-based representation leads to more ex-
plainable models and suggest alternative criteria for protein
design.

The key contributions of this paper are as follows:

1. We investigate whether residue couplings manifest at
the level of amino acid classes and answer this question
in the affirmative for the two protein families studied
here.

2. We design new probabilistic graphical models for cap-
turing residue coupling in terms of amino acid classes.
Like the work of Thomas et al. [10] our models are pre-
cise and give explainable representations of couplings
in a protein family. They can be used to assess the
likelihood of a protein to be in a family and thus con-
stitute the driver for protein design.

3. We demonstrate successful applications to the NikR
and GPCR protein families, two key demonstrators for
protein constraint modeling.

The rest of the paper is organized as follows. We review
related literature in Section 2. Methodologies for inferring
graphical models are described in Section 3. Experimental
results are provided in Section 4 followed by a discussion in
Section 5.

2. LITERATURE REVIEW
Early research on correlated amino acids was conducted

by Lockless and Ranganathan [15]. Through statistical anal-
ysis they quantified correlated amino acid positions in a pro-
tein family from its MSA. Their work is based on two hy-
potheses, which are derived from empirical observation of
sequence evolution. First, the distribution of amino acids
at a position should approach their mean abundance in all
proteins if there is a lack of evolutionary constraint at that
position; deviance from mean values would, therefore, indi-
cate evolutionary pressure to prefer particular amino acid(s).
Second, if two positions are functionally coupled, then there
should be mutually constrained evolution at the two posi-
tions even if they are distantly positioned in the protein
structure. The authors developed two statistical parameters
for conservation and coupling based on the above hypoth-
esis, and use these parameters to discover conserved and
correlated amino acid positions. In their SCA method, a
residue position in an MSA of the family is set to its most
frequent amino acid, and the distribution of amino acids at
another position (with deviant sequence at the first posi-
tion removed) is observed. If the observed distribution of
amino acids at the other position is significantly different

from the distribution in the original MSA, then these two
positions are considered to be coupled. Application of their
method on the PDZ protein family successfully determined
correlated amino acids that form a protein-protein binding
site.

Valdar surveyed different methods for scoring residue con-
servation [17]. Quantitative assessment of conservation is
important because it sets a baseline for determining cou-
pling. In particular, many algorithms for detecting corre-
lated residues run into trouble when there is an ‘in between’
level of conservation at a residue position. In this survey,
the author investigates about 20 conservation measures and
evaluates their strengths and weaknesses.

Fodor and Aldrich reviewed four broad categories of mea-
sures for detecting correlation in amino acids [11]. These cat-
egories are: 1) Observed Minus Expected Squared Covari-
ance Algorithm (OMES), 2) Mutual Information Covariance
Algorithm (MI), 3) Statistical Coupling Analysis Covari-
ance Algorithm (SCA; mentioned above), and 4) McLachlan
Based Substitution Correlation (McBASC). They applied
these four measures on synthetic as well as real datasets
and reported a general lack of agreement among the mea-
sures. One of the reasons for the discrepancy is sensitivity to
conservation among the methods, in particular, when they
try to correlate residues of intermediate-level conservation.
The sensitivity to conservation shows a clear trend with al-
gorithms favoring the order McBASC > OMES > SCA >
MI.

Although current research is successful in discovering con-
served and correlated amino acids, they fail to give a formal
probabilistic model. Thomas et al. [10] is a notable expec-
tion. This paper differentiates between direct and indirect
correlations which previous methods did not. Moreover, the
models discovered by this work can be extended into dif-
ferential graphical models which can be applied to protein
families with different functional classes and can be used
to discover subfamily-specific constraints (conservation and
coupling) as opposed to family-wide constraints.

The above research on coupling and conservation do not
aim to model evolutionary processes directly. Yeang and
Haussler, in contrast, suggest a new model of correlation in
and across protein families employing evolution [19]. They
refer to their model as a coevolutionary model and their key
claims are: coevolving protein domains are functionally cou-
pled, coevolving positions are spatially coupled, and coe-
volving positions are at functionally important sites. The
authors give a probabilistic formulation for the model em-
ploying a phylogenetic tree for detecting correlated residues.

A more recent work, by Little and Chen [14], studies cor-
related residues using mutual information to uncover evo-
lutionary constraints. The authors show that mutual in-
formation not only captures coevolutionary information but
also non-coevolutionary information such as conservation.
One of the strong non-coevolutionary biases is stochastic
bias. By first calculating mutual information between two
residues which have evolved randomly (referred to as ran-
dom mutual information), the authors then study relation-
ships with other mutual information quantities to detect the
presence of non-coevolutionary biases.

3. METHODS
A multiple sequence alignment S allows us to summarize

each residue position in terms of the probabilities of encoun-
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Figure 3: Expansion of a multiple sequence alignment into an ‘inflated MSA’. Two classes—polarity and hydrophobicity—are used for
illustration. Each column in the MSA is mapped to three columns in the expanded MSA.

tering each of the 20 amino acids (or a gap) in that position.
Let V = {v1, . . . , vn} be a set of random variables, one for
each residue position. The MSA then gives a distribution
of amino acids for each random variable. We present two
different classes of probabilistic graphical models to detect
couplings. These inferred graphical models capture condi-
tional dependence and independence among residues, as re-
vealed by the MSA. The first approach uses an undirected
graphical model (UGM), also known as a Markov random
field. The second method employs a specific hierarchical la-
tent class model (HLCM) which is a two-layered Bayesian
network.

3.1 UGMs from Inflated MSAs
This approach can be viewed as an extension of the work

of Thomas et al. [10]. It induces an undirected graphical
model, G = (V,E), where each node, v ∈ V , corresponds to
a random variable and each edge, (u, v) ∈ E, represents a di-
rect relationship between random variables u and v. In our
problem setting, a node of G corresponds to a residue posi-
tion (a column of the given MSA) and each edge represents a
coupling between two residues. In this method, we redefine
the approach of Thomas et al. [10] to discover MSA residue
position couplings in terms of amino acid classes rather than
residue values.

3.1.1 Inflated MSA
We augment the MSA S of a protein family by introducing

extra ‘columns’ for each residue. Let l be the number of
amino acid classes and Ai be the alphabet for the ith class
where 1 ≤ i ≤ l. Legal vocabularies for the classes can be
constructed with the help of Taylor’s diagram (see Fig. 2).
For example, possible classes are polarity, hydrophobicity,
size, charge, and aromaticity. Moreover, we may consider
the amino acid sequence of a column as a “amino acid name”
class. These classes take different values; e.g., the polarity
class takes two values: polar and non-polar. Each column of
S is mapped to l subcolumns to obtain an inflated MSA Se
where the extra columns (referred to as subcolumns) encode
the corresponding class values. We use vik to denote the
kth subcolumn of residue vi. Figure 3 illustrates the above
procedure for obtaining an inflated alignment Se. (A gap
character in S is mapped to a gap character in Se.)

3.1.2 Detecting Coupled Residues
Couplings between residues can be quantified by many

statistical and information-theoretic metrics [11]. In our
model, we use conditional mutual information because it
allows us to separate direct from indirect correlations. Re-
call that the mutual information (MI), I(vi, vj), between
residues vi and vj is given by:

I(vi, vj) =
X
a∈A

X
b∈A

P (vi = a, vj = b)

· log
P (vi = a, vj = b)

P (vi = a)P (vj = b)

(1)

where the probabilities are all assessed from S. If I(vi, vj) is
non-zero, then they are dependent, and each residue position
(vi or vj) encodes information that can be used to predict the
other. In the original graphical models of residue coupling
(GMRC) model [10], Thomas et al. use conditional mutual
information:

I(vi, vj |vk) =
X
c∈A∗

X
a∈A

X
b∈A

P (vi = a, vj = b|vk = c)

· log
P (vi = a, vj = b|vk = c)

P (vi = a|vk = c)P (vj = b|vk = c)

(2)

to construct edges, where the conditionals are estimated by
subsetting residue k to its most frequently occurring amino
acid types (A∗ ⊂ A). The most frequently occurring amino
acid types are those that appear in at least 15% of the origi-
nal sequences in the subset. As discussed [15], such a bound
is required in order to ensure sufficient fidelity to the original
MSA and allow for evolutionary exploration.

For modeling residue position couplings in terms of amino
acid classes, we use Eq. 2. As each residue in Se has l
columns, we consider all O(l2) pairs of columns for estimat-
ing mutual information between two residues. For calculat-
ing conditional mutual information in an inflated MSA, we
condition a residue to its most appropriate class. The most
appropriate class is the one that reduces the overall network
score the most. The modified equation for conditional mu-
tual information is as follows:

Ie(vi, vj |vkr) =

lX
p=1

lX
q=1

Ie(vip, vjq|vkr) (3)

where



Ie(vip, vjq|vkr) =
X
c∈A∗r

X
a∈Ap

X
b∈Aq

P (vip = a, vjq = b|vkr = c)

· log
P (vip = a, vjq = b|vkr = c)

P (vip = a|vkr = c)P (vjq = b|vkr = c)
(4)

Here Ai denote the alphabet of the ith amino acid class
where 1 ≤ i ≤ l. The conditional variable vk is set to the
rth class. If Ie(vi, vj |vkr) = 0, then it implies that residue
vi and vj are independent conditioned on the rth class of
vk. Observe that we can subset the residue vk to any class
out of l classes. We take the minimum of Ie(vi, vj |vkr) for
1 ≤ r ≤ l to obtain the final mutual information between vi
and vj .

3.1.3 Normalized Mutual Information
In an inflated MSA, the subcolumns corresponding to a

residue take values from different alphabets of different sizes.
Let vip and vjq be two subcolumns that take values from al-
phabets Ap and Aq respectively. To understand the effect of
the sizes of alphabets in mutual information score, we cal-
culate pairwise mutual information of subcolumns for every
residue pair and produce a scatter plot (see Fig. 4(a)).

In Fig. 4(a), we see that MI(A,A) is dominating over
MI(P, P ), MI(H,H), and MI(S, S). This is expected,
because amino acids are of 21 types whereas polarity, hy-
drophobicity, and size have 3 types. We adopt the following
equation to normalize mutual information scores proposed
by Yao [18]:

Inorm(vip, vjq|vkr) =
I(vip, vjq|vkr)

min(H(vip|vkr), H(vjq|vkr)
(5)

where H(vip|vkr) and H(vjq|vkr) denote the conditional en-
tropy.

3.1.4 Learning UGMs
Given an expanded MSA Se, we infer a graphical model

by finding decouplers which are sets of variables that makes
other variables independent. If two residues vi and vj are
independent given vk, then vk is a decoupler for vi and vj .
In this case, we add edges (vi, vk) and (vj , vk) to the graph.
Thus the relationship between vi and vj is explained transi-
tively by edges (vi, vk) and (vj , vk). Moreover, we can con-
sider a prior that can be calculated from a contact graph of
a representative member of the family. A prior gives a set of
edges between residues which are close in three-dimensional
structure. When a residue contact network is given as a
prior, we consider each edge of the residue contact network
as a potential candidate for couplings. Without a prior, we
consider all pairwise residues for coupling. Algorithm 1 gives
the formal details for inferring a graphical model.

Our algorithm builds the graph in a greedy manner. At
each step, the algorithm chooses the edge from a set of pos-
sible couplings which scores best with respect to the current
graph. The score of the graph is given by:

SUGM (G = (V,E)) =
X
vi∈V

X
vj /∈N(vi)

Ie(vi, vj |N(vi)) (6)

where N(vi) is the set neighbors of vi.

Algorithm 1 GMRC-Inf(S, P )

Input: S (multiple sequence alignment), P (possible edges)
Output: G (a graph that captures couplings in S)

1. V = {v1, v2, . . . , vn}
2. E ← φ
3. s← SUGM (G = (V,E))
4. for all e = (vi, vj) ∈ P do
5. Ce ← s− SUGM (G = (V, {e}))
6. while stopping criterion is not satisfied do
7. e← arg maxe∈P−E Ce
8. if e is significant then
9. E ← E ∪ {e}

10. label e based on the score
11. s← s− Ce
12. for all e′ ∈ P − E s.t e and e′ share a vertex

do
13. Ce′ ← s− SUGM (G = (V,E ∪ {e′}))
14. return G = (V,E)

P

P

H

S

?

?

Figure 5: Class labeling of coupled edges. The blue edges are
already added to the network and dashed edges are not. The
red edge is under consideration for addition in the current
iteration of the algorithm. The “?” takes any of the four
classes: polarity (P), hydrophobicity (H), size (S), or the
default amino acid values (A).

The calculation of conditional mutual information and
labeling of edges with different properties is illustrated in
Fig. 5. In Fig. 5, we consider edge (vi, vk) for addition to
the graph where vi already has two neighbors vl and vm.
The edge (vi, vl) has the label S-H which means the cou-
pling models vi with respect to size and vl with respect to
hydrophobicity. Similarly, the edge (vi, vm) has the label
P-P which means the coupling between vi and vm can be de-
scribed with respect to their polarities. To evaluate the edge
(vi, vk), we condition on vm and vl first and then condition
vk on any of the properties. We then sum up all Ie(vi, vj),
where vj /∈ {vl, vm, vk}. The subsetting class of vk for which
we obtain a maximum for

P
Ie(vi, vj) is the label that we

finally assign to vk (the question mark in Fig. 5) if the edge
(vi, vk) is added. Similarly, we do the same calculation for
vk while subsetting only vi, as the residue vk does not have
any neighbors in the current network.

Algorithm 1 can incorporate various stopping criteria: 1)



Figure 4: Effect of alphabet length on mutual information. Here, A,P,H,S denote amino acid, polarity, hydrophobicity, and size column
respectively. (a) Scatter plot of mutual information for every residue pair without normalization. (b) Scatter plot of mutual information
for every residue pair with normalization. Notice the different scales of plots between (a) and (b).

stop when a newly added edge does not contribute much to
the score reduction of the graph, 2) stop when a designated
number of edges have been added, and 3) stop when the
likelihood of the model is within acceptable bounds. We use
the first criterion in our model. With naive implementation
of Algorithm 1 the running time is O(dn2) where n is the
number of residues in a family and d is the maximum degree
of nodes in the prior. By caching and preprocessing the
complexity can be reduced to O(dn).

3.2 Hierarchical Latent Class Models
A latent class model (LCM) is a hidden-variable model

which consists of a hidden (class) variable and a set of ob-
served variables [13]. The semantics of an LCM are that the
observed variables are independent given a value of the class
variable. Let u and v be two observed variables. The latent
class model of u and v introduces a latent variable z, so that

P (u, v) =
X
k

P (z = k)P (u|z = k)P (v|z = k) (7)

When the number of observed variables increases, the
LCM model performs poorly due to the strong assumption of
local independence. To improve the model, Zhang et al. pro-
posed a richer, tree-structured, latent variable model [20].
Our hierarchical model is a restricted case of the model pro-
posed by Zhang et al. We propose a two-layered binary
hierarchical latent class model where the lower layer con-
sists all the observed variables and the upper layer consists
of hidden class variables. In our problem setting, observed
variables correspond to residues and the hidden class vari-
ables take values from all possible permutations of pairwise
amino acid classes. Figure 6 illustrates a hypothetical hier-
archical latent class model.

Let Z be the set of all hidden variables and V be the set
of observed variables. The joint probability distribution of
the model is as follows:

P (Z)

nY
i=1

P (vi|Pa(vi)) (8)

:
s1 CYL

 s2 HYL
 s3 CYL
 s4 HYL
 s5 CYL
 s6 HFL
 s7 VFA
 s8 LFA
 s9 VFA
 s10 LFA

p
ol
ar
it
y size

p
olarity

p
ol
ar
it
y

Figure 6: A hypothetical residue coupling in terms of amino acid
classes using a two-layered Bayesian network.

where Pa(vi) denotes the set of parents of vi.

3.2.1 Learning a HLCM
We learn this model in a greedy fashion as before. We

define the following scoring function:

SHLCM(G = ({V,Z}, E)) =
X
vi∈V

X
vj /∈Pa(vi)

Ie(vi, vj |Pa(vi))

(9)
where Pa(vi) is the set neighbors of vi. When we condi-
tion on the parent nodes, we use a 35% support threshold
for the sequences. This support threshold is required in
order to ensure sufficient fidelity to the original MSA and
allow for evolutionary exploration. From extensive experi-
ments with this parameter (data not shown), we found that
while there is some variation in the edges with changes of
this parameter from 15% to 60%, many of the best edges
are retained when support threshold is 35%. Moreover, the
model has less number of couplings when support thresh-
old is 35% which is an indication in the reduction of the
overfitting effect. Besides, we use a parameter minsupport
which is set to 2; minsupport is used to avoid class conser-
vation between sequences. The value of minsupport for two
residue positions is the number of class-values combinations
for which the number of sequences in each subset is greater



Algorithm 2 HLCM(S, P )

Input: S (multiple sequence alignment), P (possible pairs
of residues)

Output: G (a graph that captures couplings in S)

1. V = {v1, v2, . . . , vn}
2. Z ← φ � set of hidden nodes
3. E ← φ
4. T ← φ � tabu list of residue pairs
5. s← SHLCM(G = (V,E))
6. for all e = (vi, vj) ∈ P do
7. E′ ← {(he, vi), (he, vj)}

� he is a hidden class between vi and vj
8. Ce ← s− SHLCM(G = ({V, {hij}}, E′))
9. while stopping criterion is not satisfied do

10. e← arg maxe∈P−T Ce
11. if e is significant for coupling then
12. E ← E ∪ {(he, vi), (he, vj)}
13. Z ← Z ∪ {he}
14. T ← T ∪ {e}
15. label two edges of he based on the score
16. s← s− Ce
17. for all e′ = (vk, vl) ∈ P − T s.t e and e′ share

a vertex do
18. E′′ ← {(he′ , vk), (he′ , vl)}
19. Ce′ ← s− SHLCM(G = ({V,Z}, E ∪ E′′))
20. return G = (V,E)

than the support threshold. When minsupport is 1 for two
residue positions, we consider that a class conservation has
occurred in these residue positions. The algorithm chooses
a pair of residues for which introducing a hidden variable re-
duces the current network score the most. We then add the
hidden variable if it is statistically significant. Algorithm 2
gives the formal details for learning HLCMs. We can employ
various stopping criteria: 1) stop when a newly added hid-
den node does not contribute much to the score reduction
of the graph, 2) stop when a designated number of hidden
nodes have been added, and 3) stop when the likelihood of
the model is within acceptable bounds. We use the first
criterion in our model.

3.3 Statistical significance
While learning the edges, hidden nodes or factors of the

above graphical models, we assess the significance of each
coupling imputed. In both algorithms, we perform a statis-
tical significance test on potential pairs of residues before
adding an edge or hidden variable to the graph. To com-
pute the significance of the edge, we use p-values to assess
the probability that the null hypothesis is true. In this case,
the null hypothesis is that two residues are truly indepen-
dent rather than coupled. We use the χ-squared test on
potential edges. If p-value is less than a certain threshold
pθ, we add the edge to the graph. In our experiment, we use
pθ = 0.005.

3.4 Classification
The graphical models learned by algorithm are useful for

annotating protein sequences of unknown class membership
with functional classes. To demonstrate the classification
methodology, we consider HLCM as an example. We adopt
Eq. 10 to estimate the parameters of a residue in the HLCM

model. The reason for using this estimator is that the MSA
may not sufficiently represent every possible amino acid value
for each residue position. Therefore, we must consider the
possibility that an amino acid value may not occur in the
MSA but still be a member of the family. In Eq. 10, |S| is
number of sequences in the MSA and α is a parameter that
weights the importance of missing data. We employ a value
of .1 for α but tests (data not shown) indicate that results
are similar for values in [0.1, 0.3].

P (v = a) =
freq(v = a) + α|S|
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|S|(1 + α)
(10)

Given two different graphical models, GC1 and GC2 , say
for two different classes, we can classify a new sequence s
into either functional class C1 or C2 by computing the log
likelihood ratio LLR:

LLR = log
LGC1

LGC2

(11)

If LLR is greater than 0 then, then we classify s to the class
C1; otherwise, we classify it to the class C2.

4. EXPERIMENTS
In this section, we describe the datasets that we use to

evaluate our model and show results that reflect the ca-
pabilities of our models. We seek to answer the following
questions using our evaluation:

1. How do our graphical models fare compared to other
methods? Do our learned models capture important
covariation in the protein family? (Section 4.2)

2. Do the learned graphical models have discriminatory
power to classify new protein sequences? (Section 4.3)

3. What forms of amino acid class combinations are preva-
lent in the couplings underlying a family? (Section 4.4)

4.1 Datasets

4.1.1 Nickel receptor protein family
The Nickel receptor protein family (NikR) consists of re-

pressor proteins that bind nickel and recognize a specific
DNA sequence when nickel is present, thereby repressing
gene transcription. In the E. coli bacterium, nickel ions
are necessary for the catalytic activity of metalloprotein en-
zymes under anaerobic conditions; NikABCDE permease ac-
quires Ni2+ ions for the bacterium [2]. NikR is one of the
two nickel-responsive repressors which control the excessive
accumulation of Ni2+ ions by repressing the expression of
NikABCDE. When Ni2+ binds to NikR, it undergoes con-
formational changes for binding to DNA at the NikABCDE
operator region and represses NikABCDE [2].

NikR is a homotetramer consisting of two distinct do-
mains [16]. The N-terminal domain of each chain has 50
amino acids and constitutes a ribbon-helix-helix (RHH) do-
mains that contact the DNA. The C-terminal of each chain
consisting of 83 amino acids form a tetramer composed of
four ACT domains that together contain the high-affinity
Ni2+ binding sites [2]. Figure 7 shows a representative NikR
structure determined by X-ray crystallography [2].
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Figure 7: A rendering of NikR protein (PDB id 1Q5V) show-
ing two domains: ACT domain (Nickel binding site) and RHH
domain (DNA binding site). The distance between these two do-

mains is 40ÅṪhe molecular image is generated using VMD 1.9 [5].

We organized an MSA of the NikR family that has 82
sequences which are used to study allosteric communication
in NikR [2]. Each sequence has 204 residues. For a structural
prior, we use Apo-NikR (pdb id 1Q5V) as a representative
member of the NikR family and calculate prior edges from
its contact map. Residue pairs within 7Å of each other are
considered to be in contact which gives us 734 edges as a
prior. We use this prior for the analysis to ensure that all
identified relationships have direct mechanistic explanations.

4.1.2 G-protein coupled receptors
G-protein coupled receptors (GPCRs; see Fig. 8) repre-

sent a class of large and diverse protein family and provide
an explicit demonstration of allosteric communication. The
primary function of this proteins is to transduce extracellu-
lar stimuli into intracellular signals [6]. GPCRs are a pri-
mary target for drug discovery.

We obtained an MSA of 940 GPCR sequences used in the
statistical coupling analysis by Ranganathan and colleagues
[8]. Each sequence has 348 residues. GPCRs can be or-
ganized into five major classes, labeled A through E. The
MSA that we obtained is from class A; using the GPCRDB
[4], we annotate each sequence with functional class infor-
mation according to the type of ligand the sequence binds
to. The three largest functional classes—Amine, Peptide,
and Rhodopsin—have more than 100 sequences. There are
12 other functional classes having less than 45 sequences.
There are 66 orphan sequences which do not belong to any
family. For prior couplings, we constructed a contact graph
network from the 3D structure of a prominent GPCR mem-
ber, viz. bovine rhodopsin (pdb id 1GZM). We identify 3109
edges as coupling priors using a pairwise distance threshold
of 7Å.

4.2 Evaluation of couplings
We evaluate four methods on the NikR and GPCR datasets:

the traditional GMRC method proposed by Thomas et al. [10,
9]; GMRC-Inf from this paper; GMRC-Inf* (a variant of
GMRC-Inf) where the inflated alignment uses only class-
based information; and HLCM. We consider three physic-
ochemical properties—polarity, hydrophobicity, and size—
of amino acids as classes. Although GMRC discovers cou-
plings in terms of amino acids, we compare our methods with
GMRC with respect to the number of discovered important
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Figure 8: A cartoon describing GPCR functionality. Figure re-
drawn from [12].

Table 1: Important residues for allosteric activity in NikR
collected from [2]. Residues are mapped from indices with
respect to Apo Nikr (PDB id 1Q5V) to the indices of
NikR MSA column. Important residues having conservation
greater than 90% are not shown.

Residue Sequence
Conserva-
tion

Significance

3 0.83 Specific DNA binding
5 0.62 Specific DNA binding
7 0.81 Specific DNA binding
9 0.58 Unknown
22 0.45 Unknown
27 0.64 Nonspecific DNA contact
30 0.81 Low-affinity Metal Site
33 0.87 Nonspecific DNA contact
34 0.71 Low-affinity Metal Site
37 0.85 Unknown
42 0.41 Unknown
58 0.60 Ni2+ site H-bond network
60 0.86 Close proximity to Ni2+ site
62 0.83 Close proximity to Ni2+ site
64 0.38 Nonspecific DNA contact
65 0.52 Nonspecific DNA contact
69 0.51 Unknown
75 0.74 Ni2+ site H-bond network
109 0.49 Unknown
114 0.47 Unknown
116 0.39 Low-affinity Metal Site
118 0.45 Low-affinity Metal Site
119 0.62 Nonspecific DNA contact
121 0.82 Low-affinity Metal Site



Table 2: Comparisons of methods for various feature on NikR
dataset.

Features GMRC GMRC-
Inf

GMRC-
Inf*

HLCM

Support
Threshold
(%)

15 15 35 35

Num of
couplings

80 65 26 51

Num of
important
residues
(out of 24)

15 11 9 15

Unique
residues
in the
network

81 61 38 74

Num of
compo-
nents

11 6 13 23

residues (we desire to investigate whether our models can
recapitulate important residues identified by previous meth-
ods). In Table 1, we list 24 important residues for NikR ac-
tivity from [2] which are not conserved. (We exclude seven
important residues for NikR which have a conservation of
more than 90%.) Table 2 gives comparisons between meth-
ods for these two datasets.

Likewise, we identify 47 important residues for the GPCR
family from [8]. The support threshold for GMRC and
GMRC-Inf is set to 15%; the support threshold and min-
support for HLCMis set to 35% and 2 respectively. (To be
more confident about the quality of the model, the support
for HLCMis set to a higher value.)

Bradley et al. [2] identify four residues (Res 9, Res 37,
Res 62, and Res 118) as highly connected “hubs”. In our
models, Res 9 and Res 118 are present, but Res 37 and Res
62 are not present since these residues are highly conserved.
Important residues discovered by four methods are shown
in Table 3. We see that GMRC-Inf and GMRC-Inf* are
progressively more strict than GMRC in the number of im-
portant residues discovered but GMRC-Inf* has a greater
ratio of important residues discovered to the total residues
in the network. HLCM provides as good performance as
the GMRC method in terms of the important residues but
compacts them into a smaller set of couplings.

Table 3: Important residues discovered by HLCM,
GMRC-Inf, GMRC-Inf*, and GMRC in NikR.

Method Important Residues
HLCM 3, 7, 9, 27, 30, 34, 42, 60, 97, 109, 114,

116, 118, 119, 121
GMRC-Inf 27, 30, 33, 34, 37, 58, 60, 97, 116, 118, 121
GMRC-Inf* 3, 5, 27, 33, 37, 42, 60, 116, 121
GMRC 3, 7, 9, 27, 30, 33, 34, 37, 58, 60, 97, 116,

118, 119, 121

4.3 Classification performance
Although our goal is to represent amino acid class-based

Table 4: Classification of GPCR subclasses.

Functional Class Total Sequence
Accuracy (%)

GMRC HLCM
Amine 196 99.5 100
Peptide 333 100 100
Rhodopsin 143 98.6 95.8

residues couplings in a formal probabilistic model, we demon-
strate that our models can also classify protein sequences.
We use the GPCR dataset to assess the classification power
of our models. The GPCR datasets has 16 subclasses with,
as stated earlier, the three major subclasses being amine,
peptide, and rhodopsin. We performed a five-fold cross-
validation test for these three major classes. A compari-
son between our HLCM model and the vanilla GMRC is
given in Table 4. We see an improved performance for the
Amine subclass and a slightly decreased performance for the
Rhodopsin subclass.

Recall that there are 66 orphan sequences in GPCR fam-
ily which are not assigned to any functional class. We apply
our model to classify these orphan sequences to any of the
three major classes: Amine, Peptide, and Rhodopsin. To-
ward this end, we build models for the three classes using
HLCM method by considering all of the sequences. Of the
66 sequences, 3 are classified to Amine and the rest are clas-
sified to the Peptide class. This result is the same as the
GMRC result reported in [10].

4.4 Finding coupling types
We determine the frequency of each class-coupling type

for the various models on the NikR dataset. Histograms
are shown in Figure 9. We see that there are a significant
number of class-based residue coupling relationships discov-
ered, although in the case of GMRC-Inf, there are many
value-based couplings as well (as expected). Many of the
couplings discovered by GMRC-Inf* and HLCM have po-
larity as one of the properties, but there are interesting dif-
ferences as well: HLCM identifies a significant number of
P-S couplings whereas GMRC-Inf* finds P-P, P-H, and S-
S couplings.

5. DISCUSSION
Our results on the NikR dataset demonstrate that em-

ploying amino acid types is useful for learning couplings
and the underlying properties of those couplings. This ap-
proach provides us with a way to build an expressive model
for residue couplings. We have shown that our extended
graphical model is more powerful than the previous graphi-
cal model approach of Thomas et al. [10].

Our use of conditional mutual information as a correla-
tion measure is subject to different biases [14]. Removing
possible biases is a direction for future work. A more uni-
fying probabilistic approach for residue couplings would be
a factor graph representation since it can capture couplings
among more than two residues. A factor graph is a bipartite
graph that represents how a joint probability distribution of
several variables factors into a product of local probability
distributions [1]. Let G = ({F, V }, E) be a factor graph,
where F = {f1, f2, . . . , fm} is a set of factor nodes and
V = {v1, . . . , vn} is a set of observed variables. A scope
of a factor fi is set a set of observed variables. Each factor
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Figure 9: Histograms for class-coupling types on the NikR dataset using three methods: (a) GMRC-Inf (b) GMRC-Inf*, and (c)
HLCM.
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Figure 10: A hypothetical residue coupling in terms of amino
acid classes using a factor graph model.

fi with scope C is a mapping from Val(C) to R+. The joint
probability distribution of V is as follows:

P (v1, v2, . . . , vn) =
1

Z

mY
j=1

fj(Cj) (12)

where Cj is the scope of the factor fj and the normalizing
constant Z is the partition function. Figure 10 illustrates
a hypothetical residue coupling network for four residues
with two factors. Observe how such a model can capture
couplings involving more than two residues.

While there are polynomial time algorithm for learning
factor graphs from polynomial samples [1], such methods re-
quire a canonical parameterization which constraints the ap-
plicability of factor graphs to learn couplings from an MSA.
Canonical parameterizations are defined relative to an arbi-
trary but fixed set of assignments to the random variable,
and it is hard to define such a ‘default sequence’ for an MSA.
Hence, newer algorithms need to be developed.
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