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Abstract

Clustering with constraints is an important and developing
area. However, most work is confined to conjunctions of sim-
ple together and apart constraints which limit their usability.
In this paper, we propose a new formulation of constrained
clustering that is able to incorporate not only existing types
of constraints but also more complex logical combinations
beyond conjunctions. We first show how any statement in
conjunctive normal form (CNF) can be represented as a lin-
ear inequality. Since existing clustering formulations such as
spectral clustering cannot easily incorporate these linear in-
equalities, we propose a quadratic programming (QP) cluster-
ing formulation to accommodate them. This new formulation
allows us to have much more complex guidance in cluster-
ing. We demonstrate the effectiveness of our approach in two
applications on text and personal information management.
We also compare our algorithm against existing constrained
spectral clustering algorithm to show its efficiency in compu-
tational time.

Introduction
A recent trend in clustering is to incorporate user guid-
ance, or side information, into the clustering process in
the form of constraints. Typical user information includes
the MUST-LINK (the pair of instances must be assigned
into the same cluster) and CANNOT-LINK (the pair of in-
stances cannot be assigned into the same cluster). These
types of constraints have been added to many different clus-
tering algorithms, such as K-means clustering (Wagstaff
et al. 2001), EM (Basu, Davidson, and Wagstaff 2008)
and spectral clustering (Kamvar, Klein, and Manning 2003;
Coleman, Saunderson, and Wirth 2008; Wang and David-
son 2010). However, in all of this work, the constraints
are typically simple conjunctions of MUST-LINK (ML) and
CANNOT-LINK (CL) constraints. In an edited book on the
topic (Basu, Davidson, and Wagstaff 2008), all of the con-
straints were of this form. To our knowledge in the con-
strained clustering literature combining any type of con-
straints using a logical language has never been considered
but offers the promise of more complex expression of knowl-
edge. This is most useful for including conditional guidance,
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guidance encoded as complex data structures, such as hier-
archies, and when dealing with heterogenous collections of
objects the ability to encode relationships between different
object types. We specifically tackle this in our experiments
by exploring clustering images, their tags and locations, and
also documents where a known hierarchical structure exists.

Incorporating extensive amounts of logical combinations
of constraints is challenging since many clustering algo-
rithms have mathematical programming formulations that
can not be easily extended to incorporate large amounts of
guidance. For example, previous work (Wang and Davidson
2010) on constrained spectral clustering could only incorpo-
rate a single set of guidance. In this paper, we show how
to incorporate logical combinations of constraints as a col-
lection of linear inequalities and equalities so that they can
be added to any continuous optimization formulations. As
compared to existing work, the quadratic programming for-
mulation we choose is not only capable of encoding more
complex constraints but also far more efficient compared to
existing constrained spectral clustering algorithms.

Our contributions in this paper are:

• We incorporate logical combinations of constraints into
clustering for the first time.

• We show how to express logical combinations of con-
straints as linear equalities and inequalities so that they
can be incorporated into various mathematical program-
ming formulations for clustering.

• We present one such formulation using quadratic pro-
gramming that retains the spectral clustering objective.

• We show two innovative applications for using complex
combinations of constraints, namely encoding user pref-
erences for Personal Information Management and encod-
ing hierarchies in text documents.

• We show that our algorithm is far more efficient (up to
1000 times faster) than the state-of-the-art constrained
spectral clustering technique in terms of computational
time when using conjunctions of constraints. It is approx-
imately 10 times faster when using both conjunctions and
disjunctions of constraints.



Related Work
There are three main bodies of related work. Quadratic
Programming Formulations of Clustering. There is, to our
knowledge, no general purpose formulation of quadratic
programming for clustering, though there exist specific for-
mulations for topics such as time series clustering (Chaoval-
itwongse 2008). The main reason for this is that the spectral
clustering objective function is inherently quadratic and the
given spectral clustering problem reduces to an eigenvalue
problem which is easily solved in linear time for sparse ma-
trices. Hence, the only advantage of the QP formulation
has over the spectral formulation is that it allows specify-
ing many constraints which has not been needed up to this
point.

With respect to adding relational information into clus-
tering there are two main bodies of work: relational clus-
tering and constrained clustering. Relational Clustering. In
this field (Long, Zhang, and Yu 2010) the data to cluster
is only described by relational information. This is not the
topic of this paper since in our setting we have objects (and
their description) and in addition relational information on
the points. Constrained Clustering. This work is closest
to our own because it allows clustering data using both the
object descriptions and relations between the points as addi-
tional side information. The most flexible form of this work
(Wang and Davidson 2010) allows degrees of belief in con-
straints (as our work does) which we now describe. Given
a graph G = (V,E) with N nodes and its affinity matrix
W , the degree matrix D is diagonal and Dii =

∑N
j=1Wij .

Let L = D −W be the unnormalized graph Laplacian and
let Q = (Qij) be a N × N constrained matrix, which
incorporates pairwise constraints: MUST-LINK (+1) and
CANNOT-LINK (-1). Then finding a constrained cut on the
graph so that proportional to β of the constraints are satisfied
involves optimizing the function below:

arg min
v∈Rn

vT L̄v (1)

s.t. vT Q̄v ≥ β, vT v = 1, v ⊥ D1/2e,

See (Wang and Davidson 2010) for the solution of (1) which
involves solving a generalized eigenvalue problem. As the
authors themselves mention, the complexity of their con-
strained spectral clustering formulation is much greater
than regular spectral clustering since one cannot just return
the top k eigenvectors. Rather all N eigenvectors are found
and the one that most satisfies the constraints is chosen. This
result is significant since though our quadratic programming
formulation of clustering is slower than regular spectral clus-
tering it is significantly faster than constrained spectral clus-
tering as we shall later see.

Quadratic Programming Formulation of
Clustering with Linear Constraints

The above formulation in equation (1) has the limitation that
it cannot be generalized to many constraints since the notion
of a generalized eigenvalue problem is limited to two ma-
trices. In this section, we present our novel QP formulation

that can have many constraints but has the challenge of pre-
venting a trivial solution since we cannot use a quadratic
constraint as in equation (1). We present the formulation for
a 2-way partition first but it can be trivially extended to a
multi-way partition. Our approach has the benefit of retain-
ing the spectral clustering objective function whilst allowing
complex constraints.

In the above spectral formulation, the nonlinear constraint
vT v = 1 normalizes and prevents a trivial solution by re-
quiring the solution to lie on a hypersphere. However, such
constraints are not allowed in QP formulations. To replace
it, we incorporate the constraint eTj v = 1 for some j, where
ej represents the vector with j-th entry being one and other
entries being zeros. This changes the requirement that the
solution not lie on the hypersphere but rather on a hyper-
plane which does not run through the origin. We can choose
any j here since eTj v = 1 means that node j is in one cluster.
For the objective function, we still use vT L̄v, which repre-
sents the cost of the cut. Then we have the following QP
problem:

arg min
v∈RN

vT L̄v

s.t. eTD1/2v = 0, eTj v = 1, for some j. (2)

The constraint eTD1/2v = 0 is to balance the cut of the
graph and the constraint eTj v = 1 for some j is to prevent
the trivial cut of the graph. Both of these constraints are lin-
ear equalities. We can easily solve this problem using Pro-
jective Preconditioned Conjugate Gradient method (PPCG)
in MATLAB. Let v(1) be the optimal solution for equation
(2). Then D−1/2v(1) is the relaxed cluster indicator vector
for 2-way partition.

K-way partition
In many applications, we are interested in not only a 2-way
partition, but also a K-way partition for K > 2. To achieve
this we need to obtain K vectors indicating cluster member-
ship and cluster them as is the practice with spectral cluster-
ing. This can be achieved in an iterative manner by adding
linear constraints so that the second and subsequent indica-
tor vectors are orthogonal to those given. Thus after obtain-
ing the first indicator vector v(1) we solve for the additional
vector v as follows:

arg min
v∈RN

vT L̄v

s.t. eTD1/2v = 0, eTj v = 1, vT v(1) = 0. (3)

Converting Logical Statements into Linear
Constraints

Conversion of the propositional logic constraints into linear
inequalities has been considered in integer linear program-
ming, but incorporating and using propositional logic con-
straints into clustering is novel. In this section, we show
how to convert propositional logic statements into linear
(in)equalities which can be easily added to a QP as linear
constraints. We call these constraints logical constraints.



Literals for logic statements usually take on the binary val-
ues of 1 (true) or 0 (false). However, for mathematical con-
venience the literals will take on values of +1 (true) and −1
(false). Here the statement vi = TRUE means that it is true
that instance i is in cluster 1.

Observation 1 Let vi = −1 when the i-th literal is false
and vj = 1 when the j-th literal is true. The ML(i, j) and
CL(i, j) constraints can be encoded as the linear equalities
vi = vj and vi = −vj respectively with ε-degree of belief
variations encoded as the inequalities |vi − vj | ≤ ε and
|vi + vj | ≤ ε.

We now go onto show how this encoding scheme with
linear inequalities can be used to represent any statement in
propositional logic. We begin by showing how a disjunc-
tion and conjunction can be represented as an inequality in
Lemma 1 and 2 respectively and then how any statement can
be represented in conjunctive normal form in Theorem 1.

Lemma 1 Any disjunction of literals v1 . . . vm can be rep-
resented by a linear inequality.

Proof. Let vi = −1 when the i-th literal is false and vj = 1
when the j-th literal is true. Then the disjunction v1 ∨ v2 ∨
. . .∨ vm is represented by the predicate

m∑
i=1

vi ≥ (−m+ 2).

�

Lemma 2 Any conjunction of literals v1 . . . vm can be rep-
resented by a linear equality.

Proof. Let vi = −1 when the i-th literal is false and vj = 1
when the j-th literal is true. Then the conjunction v1 ∧ v2 ∧
. . . ∧ vm is represented by the predicate

m∑
i=1

vi = m. �

It is well known that any logical statement in proposi-
tional logic can be converted into conjunctive normal form
(CNF). Therefore, if we can show that any statement in CNF
can be defined as a set of inequalities we can then represent
any constraint in propositional logic in our framework.

Theorem 1 Given a set of literals v1 . . . vm, any set of
clauses using those literals in conjunctive normal form can
be represented by a linear inequality. Let the CNF formulae
be of the form: X = C1∧C2∧ . . .∧Cr where the i-th clause
is defined as Ci = vi,1 ∨ . . . ∨ vi,|Ci| where vi,j references
the j-th literal of the i-th clause.

Proof. Combining Lemmas 1 and 2 the inequalities to rep-
resent X = C1 ∧ C2 ∧ . . . ∧ Cr is simply:|Ci|∑

j=1

vi,j

 ≥ (−|Ci|+ 2) for i = 1, . . . , r,

where |Ci| is the number of literals in clause Ci and r is the
number of clauses or logical statements. �

The strength of our work is that it can encode many new
types of constraints as shown in Table 1 and used later in our
experiments.

Encoding User Preferences in Personal
Information Management Data

In this section, we consider the clustering of personal in-
formation management data set (PIM). We believe this is
an ideal application of our work to allow complex guid-
ance since how the underlying data is organized is highly
dependent on a complex set of user preferences. All data
and code used to produce these results will be made freely
available. In our initial experiments, we shall explore encod-
ing relations where the ground truth is known, hence we can
measure the performance at recovering these relations. In
our later experiments, we encode relations which indicate a
user’s preference and, though there is no ground truth com-
parison, we do show the results are not only meaningful but
would not have been produced if no guidance was provided.

Our data set consists of n = 500 images taken at y = 99
different locations (described by longitude, latitude) around
Asheville, North Carolina and named with one or more of
z = 590 possible tags such as Biltmore, Rosegarden, Holi-
day, etc. Clustering this data is equivalent to clustering a het-
erogeneous graph as others have done (Long et al. 2006) ex-
cept we now can provide complex guidance. After we clus-
ter the data, we hope that every image has its location and
tags in the same cluster. The criterion for the success of the
algorithms for PIM data set is as follows. Assume image i is
TakenAt location ` and TaggedWith ki tags. Then there
are ki + 1 pieces of side information for image i (1 location
and ki tags). After clustering, we consider the success rate
for image i is ri = si/(ki + 1) if image i has si ≤ (ki + 1)
pieces of side information in the same cluster as image i.
The success rate of all n images is the mean of the success
rates of all n images (success rate = (

∑n
i=1 ri)/n).

Baseline Method: Augmented Laplacian. Both the
spectral and QP formulations of clustering require a Lapla-
cian matrix for all objects. Let WI , WL and WT be the
affinity matrices of the images, locations and tags informa-
tion, respectively. We can construct a big affinity matrix for
all objects, which has a block diagonal form.(

WI 0 0
0 WL 0
0 0 WT

)
. (4)

Clustering this data will yield no useful information apart
from clustering all images together, all tags together and all
locations together. We need to encode side information into
the formulation to cluster the PIM data set into a useful form.

The baseline comparison we shall use is to augment the
affinity matrix in equation (4). If image i is TakenAt `,
set W (i, n + `) = 1. If image i is TaggedWith t, set
W (i, n + y + t) = 1. This augments the affinity matrix W
and we can construct an augmented unormalized Laplacian
L from W , L = D −W . We use the standard normalized
min-cut formulation (von Luxburg 2007) to solve this graph
partition problem and report our results in the first line of
experiments in Table 2.

QP Formulation. Our work uses our QP formulation
and, instead of using the side/relational information to aug-
ment the affinity matrix, we add logical constraints to for-



Logic Statements Use
(vfestival ∧ vLexingtonAve)⇒ ¬vmountains Encode conditional exclusion of a node from a cluster.
(Level1∧¬Level2∧¬Level3)∨(¬Level1∧Level2∧¬Level3)∨
(¬Level1 ∧ ¬Level2 ∧ Level3)

Encode one level (1,2 or 3) of guidance contained in a
hierarchy.

∃im1, im2, tag1, . . . , tagm, l1, l2 :
TakenAt(im1, l1) ∧ TakenAt(im2, l2) ∧
TaggedWith(im1, tag1) ∧ TaggedWith(im2, tag1) ∧ . . .∧
TaggedWith(im1, tagm) ∧ TaggedWith(im2, tagm)
⇒ CL(l1, l2)

For clustering of heterogenous collection of images,
locations and tags. If two images are taken at different
locations with many similar tags, then do not place the
locations together in the same cluster.

Table 1: Examples of types of complex constraints that can be encoded and are used in later experiments.

Success Rate
Algorithms 2-way partition 3-way partition

Augment Laplacian 0.5950 0.8229
QP formulation 0.7285 0.9120

Table 2: Comparison of success rates between the QP for-
mulation and augmenting the graph Laplacian using all
available relational data.

mulate a QP problem. As mentioned earlier, our underly-
ing language can represent relational information and here
we can relate image and location objects and image and
tag objects respectfully with the relations TakenAt and
TaggedWith. We set the constraints vi ⇔ vn+` and
vi ⇔ vn+y+t if image i is TakenAt ` and image i is
TaggedWith t. We can make these relations “soft” by re-
laxing the constraint so that if image i is TakenAt `, we add
the constraint |vi − vn+`| ≤ α. If image i is TaggedWith
t, we add the constraint |vi−vn+y+t| ≤ α where 0 < α < 1
is a parameter. Adding these constraints, we have a QP prob-
lem as follows.

arg min
v
vT L̄v (5)

s.t. eTD1/2v = 0, eTj v = 1, for some j,

∀(i, `) ∈ TakenAt |vi − vn+`| ≤ α
∀(i, t) ∈ TaggedWith |vi − vn+y+t| ≤ α.

Our experimental results (α = 0.25) in Table 2 show that
our approach is more successful at recovering the idealized
ground truth than the baseline technique, due to lack of space
we did not show the result that the results improve mono-
tonically depending on the amount of side information pro-
vided.

Encoding User Preferences. Next we explore encod-
ing relations for which no ground truth exists, but rather a
user preference is given. Therefore, we can verify our algo-
rithm’s performance not by accuracy rather only by visual-
izing the resulting the clustering.

Diversity. One clear guidance the user can specify is spa-
tial diversity to provide useful results. Consider if two super-
ficially similar locations share many similar tags then they
may be placed in the same location. We can prevent this by
easily encoding a conditional CL constraint as shown in the
last line of Table 1. Using this guidance to cluster our data,
we see some sample images of each cluster shown in Figure
1 (a) and (b). If this guidance was not provided, then these
images would all be put in the same cluster.

(a)

(b)

Figure 1: (a) and (b) are the sample images in two clusters
when we use conditional guidance as shown in the last line
in Table 1.

(a)

(b)

Figure 2: (a) and (b) are the sample images in two clusters
when we add logical statement in the first row of Table 1.

Conditional Preference. Where the benefit of our work
becomes evident is to encode more complex preferences.
Consider in our data set the tags mountains, festival
and LexingtonAve. We may know that there are Moun-
tain Festivals and LexingtonAve Fesitvals and we do not
want both to appear in the same cluster. We can en-
code this as (vfestival ∧ vLexingtonAve) ⇒ ¬vmountains,
which is equivalent to (¬vfestival) ∨ (¬vLexingtonAve) ∨
(¬vmountains) and can be encoded using Lemma 1.

We performed an experiment encoding this informa-
tion with the result that the tag nodes (festival)
(LexingtonAve) were both together in a cluster, and the
tag node (mountains) in another. The images of the rele-
vant clusters are shown in Figure 2 (a) and (b) and achieve
our purpose. Such a clustering is not found if no guidance is
provided.

Encoding Hierarchies in Newsgroup Data
In this section, we apply the QP formulation with logical
constraints to the 20 Newsgroups data set (Lang 1995). The
data set consists of 20,000 newsgroup documents from 20



different newsgroups. Each newsgroup corresponds to a dif-
ferent topic where some newsgroups are closely related shar-
ing a common parent and others are not (Table 3).

It can clearly be seen that the hierarchy provides multiple
sources of guidance. One source of guidance is to divide
the data into six groups (Computers, Recreation, Sale, Sci-
ence, Politics and Philosophy/Religion). Another is to di-
vide the data into eleven groups using the next level in the
hierarchy. Finally the third level of the hierarchy specifies
twenty categories. If we had such a hierarchy as guidance,
we would not wish to arbitrarily pick some level (as existing
work must do) and constrain the clustering using it. Rather,
we would like to encode all three levels and allow the algo-
rithm to choose the one that is justified. This is precisely
what our work allows. Consider three documents (D1,D2
and D3) belonging to: rec.sports.basketball,
rec.sports.baseball and rec.auto. Then
the constraints would be L3=CL(D1,D2), CL(D1,D3),
CL(D2,D3) using the third level and L2=ML(D1,D2),
CL(D1,D3), CL(D2,D3) using the second level and
L1=ML(D1,D2), ML(D1,D3), ML(D2,D3) using the top
level. The logical expression to specify use exactly one
of them is not a simple disjunction but rather would be:
(L1∧¬L2∧¬L3)∨(¬L1∧L2∧¬L3)∨(¬L1∧¬L2∧L3).

We took increasing amounts of documents and used only
their labels to produce constraints that would encode only
one of the three levels. We would expect that as more docu-
ments are used to generate the constraints, the more detailed
segmentation is favored. Figure 3 shows this is the case.

• Computers • Science
◦ Hardware * sci.med

* comp.os.mswindows.misc ◦ Technology
* comp.windows.x * sci.crypt
* comp.graphics * sci.electronics

◦ Software * sci.space
* comp.sys.ibm.pc.hardware • Politics
* comp.sys.mac.hardware * talk.politics.guns

• Recreation ◦ International
◦ Automobiles * talk.politics.mideast

* rec.autos * talk.politics.misc
* rec.motorcycles • Philosophy/Religion

◦ Sports * alt.atheism
* rec.sport.baseball ◦ Theism
* rec.sport.hockey * talk.religion.misc

• Sale * soc.religion.christian
* misc.forsale

Table 3: Hierarchical structure of the 20 Newsgroup data.

Space and Time Comparison and An
Explanation

In this section, we compare our quadratic programming for-
mulation containing equality constraints and inequality con-
straints to the spectral clustering (SC) algorithm and a pop-
ular constrained spectral clustering (CSC) algorithm (Wang
and Davidson 2010) . These formulations address different
settings, but we wish to answer two important questions:

• How similar in quality is the result of our QP formulation
(without constraints) compared to the SC algorithm?

Figure 3: The frequency distribution of how many times
each level of the hierarchy is discovered versus the num-
ber of documents to generate the constraints. As expected,
with the number of constraints increasing the more complex
segmentation is favored.
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Figure 4: (a) The computational time of constrained spectral
clustering (CSC) and QP formulation with different numbers
of nodes. ’o-’ represents CSC algorithm with 20 constraints,
’∗-’ represents QP with both 10 linear equalities and 10 in-
equalities . ’×-’ represents QP with 20 equalities. (b) The
computational time of QP with different numbers of inequal-
ities.

• How efficient in terms of space and time is the QP for-
mulation (with constraints) as compared to the CSC algo-
rithm?

For these two questions, we use a synthetic data set of
varying size where the ground truth of the data is already
known. We generate a graph of N nodes (N is even) with
two connected components. Each of the connected com-
ponents has N/2 nodes (cluster 1 is nodes 1 through N/2
and cluster 2 nodes N/2 + 1 through N ) with the possibil-
ity of each pair of nodes in the same cluster having an edge
between them being 50%. The weight of the edge, if cho-
sen, is set to 1. To enforce a connected graph and make the
problem more difficult, the weight of the edge between any
two nodes in different connected components is a pseudo-
random number uniformly distributed between 0 and 0.1.

Quality of Clustering Solution. Both the spectral and
QP formulation share the same convex objective function,
hence on the surface it would appear they would con-
verge to the same result. However, since they use differ-



ent constraints this need not be the case. First, we com-
pare the clustering quality between spectral clustering and
our QP formulation with different numbers of nodes N =
1000, 2000, 3000, 4000 and 5000 of the synthetic data set.
For the QP formulation, we use equation (2) with j = 1. In
our experiments both the normalized min-cut SC formula-
tion and our QP formulation cluster the nodes of the graph
into the exact same two clusters that match the ground truth.
Understanding when the two algorithms converge to sub-
stantially different results is left to future work, but based
on our experiments not described, the algorithms converge
to similar results.

Computational Time Comparisons. The earlier CSC
(Wang and Davidson 2010; Wang, Qian, and Davidson
2012) can only encode conjunctions of constraints hence
we present two different sets of experimental results for our
work: just using equality constraints to encode conjunctions
of constraints (see Lemma 2) and both conjunctions and dis-
junctions of constraints (see Theorem 1). The algorithms
are implemented in MATLAB using standard functions eig
and quadprog.

The computational time of the CSC algorithm, the QP for-
mulation with only equality constraints and also the QP for-
mulation with both equality and inequality constraints are
shown in Figure 4(a). We see that the QP solver is much
faster than CSC when we use conjunctions of constraints
(approximately 1000 times faster) and (10-15 times faster)
when both conjunctions and disjunctions of constraints are
used. This is so since with the CSC algorithm all N eigen-
vectors must be obtained and sorted through as per the au-
thor’s own paper.

In Figure 4(b), the number of nodes is fixed as N = 4000
and the numbers of constraints are ranged from 100 to 500.
Figure 4(b) shows that the computational time increases
moderately when we have more inequality constraints. We
can see that the QP formulation is still faster than the CSC
algorithm even with several hundreds of constraints. We can
conclude that the QP formulation using conjunctions and
disjunctions constraints is faster than the CSC algorithm. If
we have only conjunctions of constraints, the QP formula-
tion is much more efficient in computation.

Memory Usage. Figure 5(a) shows the comparison of
memory usages for CSC algorithm and our QP formulation.
The experiments are exactly the same as Figure 4(a). We
compare the memory usage and see in Figure 5(a) that solv-
ing the QP problem needs a limited amount of additional
memory than running the CSC algorithm. The experiments
of Figure 5(b) are the same as Figure 4(b). Figure 5(b) shows
that solving the QP formulation needs more memory in com-
putation if we have more inequality constraints.

An Explanation of Our Analysis. The CSC algorithm
needs to solve a generalized eigenvalue (GEV) problem.
The eig function of MATLAB uses the QZ method to solve
this problem. The complexity of QZ method is approxi-
mately O(66N3) (Golub and van Loan 1996) and space re-
quirement is O(N2). To solve the QP with equality con-
straints, MATLAB uses the Projective Preconditioned Con-
jugate Gradient method (PPCG) (Coleman 1994), whose
complexity is O(pN2) and space requirement is O(N2),
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Figure 5: (a) The memory usage of constrained spectral
clustering (CSC) and QP formulation with different number
of nodes. ’o-’ represents CSC algorithm with 20 constraints,
’∗-’ represents QP with both 10 linear equalities and 10 in-
equalities . ’×-’ represents QP with 20 equalities. (b) The
memory usage of QP with different numbers of inequalities.

where p is the number of iterations in the optimization.
Hence of the methods PPCG is much faster than QZ as per
their complexity which is reflected in our experiments.

To solve the QP with inequality constraints, MATLAB
uses the interior-point method (Byrd, Hribar, and Nocedal
1999), whose complexity is O(qN3) and space require-
ment is O(N2), where q is the number of iterations in opti-
mization using interior-point method. Though both the QZ
method and interior-point method have complexity O(N3),
the advantage of the interior-point method is that it con-
verges in a few steps. Hence, solving the QP problem is
somewhat faster than GEV problem in our experiments us-
ing disjunctions and conjunctions of constraints.

Conclusions
In this paper, we propose a quadratic programming formula-
tion with logical combinations of constraints to cluster the
data set. Our new formulation of constrained clustering
has two main advantages. Firstly, it can encode basic con-
junctions of MUST-LINK and CANNOT-LINK constraints
as other algorithms can but also complex combinations of
constraints including conjunctions and disjunctions. Sec-
ondly, due to more efficient solvers being available for the
QP solvers than for the generalized eigenvalue problems,
our method is substantially (1000 times) faster than a state-
of-the-art constrained spectral clustering algorithm for con-
junctions of constraints. For disjunctions and conjunctions
of constraints, it is approximately ten times faster though
no other methods can model disjunctions. Using PIM and
20 Newsgroup data sets, we show the benefits of complex
constraints which include modeling conditional guidance as
well as complex data structures such as hierarchies.
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