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Abstract

Active data mining constructs and evaluates possible models
explaining a dataset, and reasons about the cost and impact
of additional samples on refining and selecting among the
models. It is particularly appropriate for applications charac-
terized by expensive data collection, from either experiment
or simulation. This paper develops an active mining mech-
anism based on a multi-level, qualitative analysis of corre-
spondence. Correspondence operators presented here lever-
age domain knowledge to establish relationships among ob-
jects, evaluate implications for model selection, and leverage
identified weaknesses to focus additional data collection. The
utility of the qualitative framework is demonstrated in two
scientific computing applications — matrix spectral portrait
analysis and graphical assessment of Jordan forms of matri-
ces. Results show that the mechanism efficiently samples
computational experiments and successfully uncovers high-
level properties of data. The framework helps overcome noise
and sparsity by leveraging domain knowledge to detect mu-
tually reinforcing interpretations of spatial data.

Introduction
Active data mining is concerned with the problem of inte-
grating data collection, experiment design, and data mining,
with the end-goal of making better use of data for data min-
ing purposes. In applications where we have control over
the data acquisition process, we would like to select sam-
ples from those locations that present the greatest benefit for
identifying high-level structures and models underlying the
data. Active mining is especially crucial in sparse data con-
texts, where each data point is costly (e.g., in terms of time,
computational effort) and it is beneficial to make judicious
choices of locations to sample.

This paper develops an active mining mechanism based
on a novel, multi-level, qualitative analysis of correspon-
dence. We develop our mechanism in the context of
qualitative assessment of scientific computations (Chaitin-
Chatelin & Fraysśe 1996), where the goal is to empirically
characterize problem characteristics (e.g., matrix sensitiv-
ity) and algorithm performance (e.g., convergence) by a
data-driven strategy. This approach is becoming preferred
in applications where domain knowledge is imperfect and
where theory-driven approaches are inadequate. For in-
stance, when solving linear systems associated with finite-
difference discretization of elliptic partial differential equa-

tions (PDEs), there is little mathematical theory to guide a
choice between, say, a direct solver and an iterative Krylov
solver plus preconditioner. A qualitative assessment ap-
proach is to parameterize a suitable family of problems, and
mine a database of PDE “solves” to gain insight into the
likely relative performance of these two approaches (Ra-
makrishnan & Ribbens 2000).

Many tasks in scientific computing involve assessing the
eigenstructure of a given matrix. Eigenstructure helps char-
acterize the stability, sensitivity, and accuracy of numerical
methods as well as the fundamental tractability of problems.
Recently, thespectral portrait(see Fig. 1) has emerged as
a popular tool for graphically visualizing eigenstructure. A
spectral portait characterizes how the eigenvalues of a matrix
change as perturbations (e.g. due to numerical error) are in-
troduced in computations involving the matrix. Level curves
in a spectral portait correspond to perturbation magnitudes,
and the region enclosed by a level curve contains all possi-
ble eigenvalues that are equivalent with respect to perturba-
tions of a given magnitude. Analysis of level curves with
respect to a class of perturbations reveals information about
the matrix (e.g. nonnormality and defective eigenvalues) and
the effects of different algorithms and numerical approxima-
tions.

The goal thus is to determinehigh-level propertiesby
analyzing data fromlow-level computational experiments.
We focus here on the particular case where such proper-
ties are extracted fromgraphical representationsand where
it is necessary to minimize the computational experiments
performed (owing to the cost and complexity of conducting
them). We pose the extraction of high-level properties as a
model selection problem and pursue anactive data mining
approach, where reasoning about a set of models drives ad-
ditional data collection in order to refine and discriminate
them. Each step in our framework is parameterized by do-
main knowledge of properties such as locality, similarity,
and correspondence. Therefore the framework is generic
both with respect to a variety of problems in scientific com-
puting (two case studies are presented here), and to problems
in other domains (e.g. connections to weather data analy-
sis are discussed). Furthermore, the approach leads to effi-
cient and explainable data collection motivated directly by
the need to disambiguate among high-level models.
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Figure 1: An example spectral portrait, for a matrix with
eigenvalues at 1, 2, 3, and 4. The portrait graphically illus-
trates, in the complex plane, the eigenstructure of a given
matrix. Qualitative properties of the portrait correspond
to important characteristics of the underlying problem that
must be considered when selecting and applying numerical
algorithms. For instance, a level curve in the portrait shown
here bounds a set of eigenvalues (points) that are indistin-
guishable with respect to matrix perturbations at a particular
magnitude. Perturbation levels increase going outward from
singularities at the (unperturbed) eigenvalues, and a curve
surrounding multiple eigenvalues indicates a level of pre-
cision (e.g.10−6 for the curve labeled “6”) beyond which
those eigenvalues cannot be distinguished.

Qualitative Analysis of Spatial Data
Correspondence is a ubiquitous concept in the interpretation
of spatial datasets and plays a central role in our qualita-
tive analysis. Correspondence establishes analogy, indicat-
ing objects that play similar roles with respect to some con-
text. For example, correspondence between template and
image features supports object recognition, correspondence
among isobars in a weather map aids identification of pres-
sure troughs and ridges, and, as shown in this paper, corre-
spondence and lack thereof among level curves in datasets
like Fig. 1 supports characterization of matrix properties for
scientific computing applications.

Our mechanism for qualitative analysis of correspon-
dence is based on the Spatial Aggregation Language
(SAL) (Bailey-Kellogg, Zhao, & Yip 1996; Yip &
Zhao 1996) and the ambiguity-directed sampling frame-
work (Bailey-Kellogg & Ramakrishnan 2001). SAL pro-
grams apply a set of uniform operators and data types
(Fig. 2) in order to extract multi-layer geometric and topo-
logical representations of spatial data. These operators uti-
lize domain knowledge of physical properties such as conti-
nuity and locality, specified as metrics, adjacency relations,
and equivalence predicates, to uncover regions of uniformity
in spatially distributed data. Ambiguity-directed sampling
is an active data mining mechanism, focusing data collec-
tion so as to clarify difficult choice points in an aggregation
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Figure 2: The spatial aggregation language provides a uni-
form vocabulary of operators utilizing domain knowledge to
build multi-layer structural descriptions of spatial data.

hierarchy. It seeks to maximize information content while
minimizing the number and expense of data samples.

As an example of aggregation, consider the construction
of level curves in the spectral portrait in Fig. 1. The key
steps in such an analysis (after (Huang & Zhao 1999)) are:

• The input field maps a set of discrete sample locations
(e.g. on a uniform grid) to perturbation levels, represent-
ing allowable imprecision before a point becomes indis-
tinguishable from an eigenvalue (computational details
are discussed later).

• Aggregatepoints in a neighborhood graph, localizing
computation to spatially proximate points, e.g. in a De-
launay triangulation or regular grid.

• Interpolatevalues at new locations from values at nearby
samples according to the field, in this case determining
locations of points with perturbation level belonging to a
discrete set (e.g.10−1, 10−2, . . .).

• Classifyneighboring similar-enough objects into equiva-
lence classes with anequivalence predicate, in this case
testing equality of field value.1

• Redescribeeach equivalence class of lower-level objects
as a single higher-level object, in this case abstracting
connected points into curves. The curve can be repre-
sented more compactly and abstractly (e.g. with a spline)
than its set of sample points.

1While an implementation such as marching squares might
combine interpolation, aggregation, and classification, we view
them as conceptually distinct operations.



As a consequence of redescription, the next aggregation
level can treat curves as first-class objects, and aggregate,
classify, and redescribe them, for example to find curves
nested around a single eigenvalue. This higher-level pro-
cess uses the same operators, but with different parameters
specifying locality, equivalence, and abstraction. Ambigu-
ity arises when, for example, not enough sample points are
available to be confident in a curve’s location, or in the sepa-
ration of two curves. Ambiguity-directed sampling then op-
timizes selection of new locations (e.g. near the ambiguity)
for data collection in order to clarify the decision-making.

As this example illustrates, SAL and ambiguity-directed
sampling provide a suitablevocabulary(e.g. distance and
similarity metrics) andmechanism(bottom-up aggregation
and top-down sampling) to uncover multi-level structures
in spatial data sets. Successful applications include de-
centralized control design (Bailey-Kellogg & Zhao 1999;
2001) weather data analysis (Huang & Zhao 1999), analy-
sis of diffusion-reaction morphogenesis (Ordóñez & Zhao
2000), and identification of pockets underlying gradient
fields and decomposition of a field based on control influ-
ences (Bailey-Kellogg & Ramakrishnan 2001).

Qualitative Analysis of Correspondence
Our correspondence mechanism builds on the relationship
between lower-level and higher-level objects in a SAL hier-
archy (refer again to Fig. 2). The mechanism has two key
steps: (i) establishanalogyas a relation among lower-level
constituents of higher-level objects; (ii) establishcorrespon-
dencebetween higher-level objects as anabstractionof the
analogy between their constituents. For example, in object
recognition, analogy might match image and template fea-
tures, and correspondence might abstract the analogy as a
rigid-body transformation. Similarly, in level curve analysis,
analogy might match sample points on neighboring curves
by location and local curvature, and correspondence might
abstract the match as a parameterized deformation of spline
representations of the curves. The analogy between con-
stituents is well-defined only because of the context of the
higher-level objects; higher-level correspondence then cap-
tures a more global view of the local matches.

Tab. 1 outlines our correspondence mechanism. Tradi-
tional SAL operators collect and abstract groups of lower-
level objects into higher-level objects, and establish pairs of
higher-level objects for which correspondence is to be con-
sidered. Two pieces of domain knowledge are then applied:

Analogy predicate indicates pairs of lower-level objects
that are analogous with respect to the higher-level objects
they comprise. In Fig. 1, an analogy might seek to con-
nect points on an inner curve with nearby points on an
outer curve. Examples of predicates include testing fea-
ture values for each pair of lower-level objects, hashing
indices in the higher-level objects’ local coordinate sys-
tems, or explicitly constructing a spatial relation such as a
triangulation. The predicate can enforce bijective analogy
if appropriate. Theanalogizeoperator in Tab. 1 applies a
functiona for the constituent objectsl1 ∈ h1 andl2 ∈ h2

of higher-level object pairsh1 andh2; it returns a labeled

1. Given lower-level objectsL, aggregate, classify, andre-
describethem into higher-level objectsH.

2. Aggregatehigher-level objectsH into a neighborhood
graphGH localizing potential correspondence.

3. Apply ananalogy predicateto relate constituent lower-
level objects of neighboring higher-level objects.
analogize : (GH , a) 7→ {{l1, l2, w} | {h1, h2} ∈
GH , l1 ∈ h1, l2 ∈ h2, w = a(l1, l2) 6= ⊥} whereli ∈ hi
represents constituency anda returns⊥ for no edge or
else an edge label.

4. Apply a correspondence abstraction functionto estab-
lish correspondence between higher-level objects based
on the analogy on their constituent lower-level objects.
correspond: (GL, GH , c) 7→ {{h1, h2, w} | {h1, h2} ∈
GH , w = c(GL[`(h1)∪`(h2)]) 6= ⊥}where`(·) obtains
constituents,GL[·] is the subgraph for the given nodes,
andc returns⊥ for no edge or else an edge label.

Table 1: Qualitative correspondence analysis mechanism,
including formal definitions of new operators.

graph containing analogous object pairs. It takes as input
a higher-level graphGH in order to localize comparisons
to only appropriate higher-level object pairs.

Correspondence abstraction functionabstracts an anal-
ogy relation on lower-level objects into a description of
higher-level object correspondence. In Fig. 1, the abstrac-
tion might capture the fact that one curve is nicely con-
tained in another, or that two curves merge into a third.
As another example, the analogy between constituents of
two objects might be abstracted in terms of a rigid-body
transformation or parameterized deformation between the
objects. In SAL terms, correspondence abstraction sim-
ply packages up the details of an analogy on object con-
stituents into a labeled graph on the objects. Thecor-
respondoperator in Tab. 1 performs correspondence ab-
straction from an analogyGL, applying a functionc to
the subgraphs ofGL on the constituent objects̀(h1) and
`(h2) of higher-level objectsh1 andh2; it returns a la-
beled graph on the higher-level objects. As withanalo-
gize, a higher-level graphGH localizes abstraction to re-
lated higher-level object pairs.
An important consequence of considering an analogy re-
lation holistically (rather than a single related pair at a
time) is the ability to compute global properties of the
overall correspondence. For example, in Fig. 1, the ab-
straction allows noting whether a curve is related to a sin-
gle curve (containment) or multiple curves (merge). This
allows the significant event ofdiscontinuityto be detected
via a break in correspondence. Similarly, the abstrac-
tion could test the quality of correspondence, for exam-
ple computing root-mean squared distance (RMSD) or a
Hausdorff metric between locations or features (e.g. local
curvature) of related objects.

An aggregation/correspondence hierarchy establishes a
distribution of possible high-level models for an input in-



stance, thereby posing amodel selection problem: choose
the one that (e.g. in a maximum-likelihood sense) best
matches the data. Our mechanism supports model selec-
tion in two key ways. (i) The operators estimate and opti-
mize confidence in correspondence. Since correspondence
implies mutual support among parts of a model, it can allow
relatively high-confidence model selection even with sparse,
noisy data. (ii) The operators bridge the lower-/higher-level
gap. This allows weaknesses and inconsistencies detected
in higher-level correspondence to focus lower-level data col-
lection to be maximally effective for model disambiguation.

Applications in Scientific Computing
We present two case studies applying our analysis frame-
work to scientific computing domains. For each we describe
the underlying numerical analysis problem, our particular
solution approach, and results. To the best of our knowl-
edge, these are thefirst systematic algorithms for performing
complete imagistic analyses (as opposed to relying on hu-
man visual inspection (Chaitin-Chatelin & Frayssé 1996)),
and which focus data collection and evaluate models until a
high-confidence model is obtained.

Matrix Spectral Portrait Analysis
Our first case study focuses on the previously introduced
task of matrix spectral portrait analysis (Fig. 1). Formally,
the spectral portrait of a matrixA is defined as:

P(z) = log10 ‖A‖2 ‖(A− zI)−1‖2, (1)

whereI is the identity matrix. The singularities of this map
are located at the eigenvalues of the matrix, and the anal-
ysis determines the sensitivity of computation to numerical
imprecision by analyzing how the map decreases (from∞)
moving away from the eigenvalues. As discussed in the in-
troduction, the region enclosed by a level curve of a certain
magnitude contains all points that act as “equivalent” eigen-
values under perturbations of that magnitude. More pre-
cisely, the region inside a contour for a given perturbation
level k is the set of the eigenvalues of all the perturbed ma-
tricesA+E whereE is a matrix with‖E‖2 ≤ k‖A‖2. The
level curves are labeled with the negative logarithm (base
10) of the perturbation level (e.g. the curve fork = 10−7 is
labeled as−7), so a large label indicates a small perturba-
tion, and appears close to the eigenvalue in the portrait. For
example, Fig. 1 illustrates that the eigenvalues at 2 and 3 are
the most sensitive to perturbation, but under a large enough
perturbation, the eigenvalue at 4 is indistinguishable from
them, and under a very large perturbation, even the eigen-
value at 1 is equivalent to the rest. This illustrates that sensi-
tivity analysis is approached by identifying values at which
level curves merge.

Tab. 2 describes qualitative correspondence analysis of
spectral portraits. Data are collected by computing Eq. 1;
the analysis determines perturbation equivalence of eigen-
values by detecting curve merges via level curve correspon-
dence. The first aggregation level generates samples on a
coarse regular grid around the known eigenvalue locations,
and then interpolates and abstracts level curves as in the spa-
tial aggregation example. The second aggregation level finds

Input : matrixA, eigenvaluesE, perturbation levelsV .
Output : {(Ei, Ej , vij)} such that eigenvaluesEi andEj
are equivalent with respect to perturbation ofvij ∈ V .

Level one:
- Data collection: Eq. 1.
- Initial samplesP : points on coarse regular grid.
- Output: level curvesC.
- Aggregation: aggregate grid; interpolate pointsI at val-

ues inV ; classify by perturbation; redescribe into curves.
- Aggregation 2:GI = triangulation of pointsI.

Level two:
- Input: curvesC.
- Output: problem output{(Ei, Ej , vij)}.
- Aggregation:(Ck, Cl) ∈ GC iff constituent points are

neighbors inGI .
- Correspondence:

- Analogy: cross-curve neighbors inGI .
- Abstraction:Ck, Cl 7→ (mk,ml, θkl), for mk% and
ml% constituent points matched, and samplesP ′ ⊆ P
betweenCk andCl separated by no more thanθkl in
angle around the enclosed eigenvalue.

- Model evaluation: follow correspondence outward from
each pair of eigenvalues(i, j); evaluate confidence with
respect to(mk,ml, θkl).

- Sampling:
- When no(Ei, Ej , vij) for some(i, j), expand grid.
- When someθkl too large, subsample on finer grid.

Table 2: Correspondence mechanism instantiation for spec-
tral portrait analysis.

correspondence among these curves from a Delaunay tri-
angulation analogy of their constituent points. In abstract-
ing the correspondence, it evaluates what fractions of points
on the curves had partners (indicating that the curves were
well-matched), as well as how many sample points are be-
tween the curves (providing evidence that contours do not
merge at a smaller perturbation). (See below for an exam-
ple.) It tracks correspondence outward from the eigenval-
ues to establish a model of merge events, using the corre-
spondence abstraction metrics to gain confidence in such a
model. Ambiguity-directed sampling generates additional
data in order to separate curves and to ensure that each
eigenvalue pair is merged at some perturbation.

Fig. 3 demonstrates the application of the mechanism
to the companion matrix of the polynomial(x − 1)3(x −
2)3(x− 3)3(x− 4) (Chaitin-Chatelin & Fraysśe 1996) (see
also Fig. 1). Output models are depicted with “merge trees”
qualitatively representing the perturbation levels at which
eigenvalues become equivalent (e.g. the bottom merge tree
in Fig. 3 indicates that eigenvalues at 2 and 3 are indistin-
guishable under a perturbation of10−8 or more). A priori,
a double-factorial number of binary merge trees are possi-
ble. The approach presented here eliminates almost all of
them without even considering them. Instead, it only con-
siders one plausible tree for a given number of samples, and
decides whether or not the merge events captured in the tree
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Figure 3: Example of correspondence analysis of spectral portraits for (top) a small, coarse grid, and (bottom) an extended,
subsampled grid. (left) Delaunay triangulation analogy for interpolated points comprising contours. (middle) Analogy at an
example merge event; separating samples marked with “+”. (right) Curve merge tree: eigenvalues at bottom; node for curves
labeled with perturbation level. Merge events indicate at what perturbation level descendant eigenvalues are indistinguishable.

are ambiguous. If ambiguity is detected, it either subsam-
ples or expands, as described in Tab. 2. After a small num-
ber of runs with successively more samples, it converges to
a highly confident tree, essentially declaring that any other
model that would be proposed would be highly inconsistent
with the data.

The initial grid has at least one sample between each
eigenvalue (in the example, a resolution of 0.5) and extends
one unit beyond the bounding box of the eigenvalues. Some
amount of correspondence is found even with this coarse
grid (top of Fig. 3). The model merge tree shown is the best
one, but the ambiguity is made clear by the model evalua-
tion: only a few samples separate the curves (i.e.P ′ is small,
so the curves might have merged earlier) and no curve sur-
rounds all eigenvalues. A distribution of confidence would
thus be relatively flat over multiple possible models; e.g. all
models merging the currently-disconnected eigenvalue at a
large perturbation are equally good. As a result, ambiguity-
directed sampling computes additional points on a finer,
larger grid (bottom of Fig. 3), yielding high confidence in
the (correct) curve merge tree shown, since many samples
provide evidence for the merge events.

We have applied this approach to a variety of polynomial
companion matrices with different numbers and spacings of
roots; in each case, the correspondence mechanism correctly
identifies the correct model with high confidence after 1–3
subsamples and 1–3 grid expansions.
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Figure 4: Superimposed spectra for assessing the Jordan
form of the Brunet matrix.

Qualitative Computation of Jordan Forms

Our second case study focuses on analysis of theJordan de-
compositionof a matrix. Matrix decomposition is an im-
portant technique, revealing pertinent features of a matrix
and supporting algorithmic techniques in areas including
data analysis, PDEs, and linear algebra. The Jordan decom-
position reveals the eigenstructure of a matrix as follows.
Consider a matrixA of dimensionn that hasr ≤ n inde-
pendent eigenvectors with eigenvaluesλi of multiplicity ρi.
The Jordan decomposition ofA containsr upper triangular



“blocks,” as revealed by the diagonalization:

B−1AB =

 J1

J2

·
Jr

 , Ji =

 λi 1
λi 1

· 1
λi


whereB is the diagonalizing matrix. The typical approach

to computing the Jordan form leads to a numerically un-
stable algorithm (Golub & Van Loan 1996); taking extra
care usually requires more work than the original compu-
tation! Recently, however, a data-driven approach, inferring
multiplicity from a geometric analysis of eigenvalue pertur-
bations, has proved successful (Chaitin-Chatelin & Frayssé
1996). It is well known that thecomputed eigenvaluescor-
responding to the actual valueλi are given by:

λi + |δ|
1
ρi e

iφ
ρi , (2)

whereλi is of multiplicity ρi, and the phaseφ of the per-
turbationδ ranges over{2π, 4π, . . . , 2ρiπ} if δ is positive
and over{3π, 5π, . . . , 2(ρi + 1)π} if δ is negative. The
insight of (Chaitin-Chatelin & Frayssé 1996) is to graphi-
cally superimposenumerous such perturbed calculations so
that the aggregate picture reveals eigenvalue multiplicity.
The phase variations imply that computed eigenvalues lie
on the vertices of a regular polygon with2ρi sides, centered
on λi, and with diameter influenced by|δ|. For example,
Fig. 4 shows perturbations for the 8-by-8 Brunet matrix with
Jordan structure(−1)1(−2)1(7)3(7)3 (Chaitin-Chatelin &
Fraysśe 1996), forδ ∈ [2−50, 2−40]. The six “sticks” around
the eigenvalue at 7 clearly reveal that its Jordan block is of
size 3.2 The “noise” in Fig. 4 is a consequence of having
two Jordan blocks with the same eigenvalue and size, and a
“ring” phenomenon studied in (Edelman & Ma 1998); we
do not attempt to capture these effects in this paper.

Tab. 3 describes qualitative correspondence analysis of
Jordan form. Data are collected by randomly perturbing at a
specified magnitudeδ; the analysis determines multiplicity
by detectingsymmetrycorrespondence in the samples. The
first aggregation level collects the samples for a givenδ into
triangles. The second aggregation level finds congruent tri-
angles via geometric hashing (Lamdan & Wolfson 1988),
and uses congruence to establish analogy among triangle
vertices. Correspondence abstracts the analogy into a rota-
tion about a point (the eigenvalue), and evaluates whether
each point rotates onto another and whether matches de-
fine regular polygons as required by the underlying math
above. Ambiguity-directed sampling collects additional ran-
dom samples as necessary. A third level then compares rota-
tions across different perturbations, re-visiting perturbations
or choosing new perturbations in order to disambiguate. The
output is a symbolic description of the Jordan form: the lo-
cation of the eigenvalue and its multiplicity.

Fig. 5 demonstrates this mechanism on the Brunet matrix
discussed above. The top part uses a small set of sample
points, while the bottom two parts use a larger set and illus-
trate a good vs. bad correspondence. With a small number

2The multiplicity of the second eigenvalue at 7 is revealed at a
smaller perturbation level.

of samples, multiple models are consistent with the data, as
indicated by the model evaluation metric. With more sam-
ples, the degrees of freedom are rapidly pinned down and the
confidence distribution over models becomes peaked at the
correct one. However, as the number of samples increases,
so does the risk of model “hallucination” — finding some
subset of points that by chance happen to correspond, as in
bottom of Fig. 5. This illustrates the importance of monitor-
ing relative model confidence and controlling the sampling
to avoid over-sampling.

To study the effect of sampling strategy, we organized
data collection into rounds of 6–8 samples each and experi-
mented with three policies on where next to collect data after
completing a round: (1) at the same perturbation level, (2)
at a higher perturbation level, or (3) at the same perturbation
level unless the number of posited models increased (thereby
avoiding hallucination). We tested 10 matrices across 4–10
perturbation levels each, as described in (Chaitin-Chatelin &
Fraysśe 1996). We varied a tolerance parameter for triangle
congruence from 0.1 to 0.5 (effectively increasing the num-
ber of models posited) and determined the number of rounds
needed to determine the Jordan form. Policy 1 required an
average of 1 round at a tolerance of 0.1, up to 2.7 rounds at
0.5. Even with a large number of models proposed, addi-
tional data quickly weeded out bad models. Policy 2 fared
better only for cases where policy 1 was focused on lower
perturbation levels, and policy 3 was preferable only for the
Brunet-type matrices. In other words, there is no real advan-
tage to moving across perturbation levels! In retrospect, this
is not surprising since our Jordan form computation treats
multiple perturbations (irresp. of level) as independent esti-
mates of eigenstructure.

Discussion
Our general mechanism for uncovering and utilizing corre-
spondence has proved successful in active data mining for
challenging problems in scientific computing. The mecha-
nism leverages properties such as locality, continuity, and
decomposability, which are exhibited by the applications
studied here as well as many physical systems. Decompos-
ability and locality allow us to qualify correspondence in a
manner that drives data collection. Continuity allows corre-
spondence to obtain confidence in a model even with sparse,
noisy data: consistent matches among nearby constituents
mutually reinforce each other, allowing correspondence ab-
straction to detect and filter out inconsistent interpretations.

Correspondence can be an appropriate analysis tool for
a variety of reasons. In the spectral portrait application,
level curves summarize groups of eigenvalue computations,
so their high-level correspondence aids characterization of
the underlying computation. In the Jordan form application,
however, the higher-level entity has no significance as a ge-
ometric object in numerical analysis terms, but correspon-
dence is applicable due to the semantics of superposition.
This semantics also leads to phenomena such as hallucina-
tion (given enough samples, any pattern can be found), re-
quiring a more careful treatment of decomposition.

Our work is similar in spirit to that of (Huang & Zhao
1999) for weather data interpretation, and can be seen as a
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larger sample set but lower-scoring model. (left) Approximately-congruent triangles. (middle) Evaluation of correspondence
in terms of match between original (red dots) and rotated (green circles) samples. (right) Associated model of Jordan form.

significant generalization, formalization, and application of
techniques studied there for finding correspondence in me-
teorological data. Similarly, our correspondence framework
captures and generalizes the computation required in object
recognition, allowing the body of research developed there
to be applied to a broader class of applications, such as ex-
perimental algorithmics. Compared to traditional manual
analyses of graphical representations like spectral portraits,
the algorithmic nature of our approach yields advantages
such as model evaluation and targeted sampling. As with
compositional modeling (Falkenhainer & Forbus 1991), we
advocate targeted use of domain knowledge, and as with
qualitative/quantitative model selection (e.g. (Capelo, Ironi,
& Tentoni 1998)), we seek to determine high level models
for empirical data. Our focus is on problems requiring par-
ticular forms of domain knowledge to overcome sparsity and
noise in spatial datasets. A possible direction of future work
is to explore if the inclusion-exclusion methodology popu-
lar in grid algorithms (Bekaset al. 2001) is also useful for
tracking correspondence.

Our long-term goal is to study data collection policies and
their relationships to qualitative model determination. The
notion of estimating problem-solving performance by col-

lecting data (and vice versa) is reminiscent of reinforcement
learning (Boyan & Moore 2000) and active learning (Cohn,
Ghahramani, & Jordan 1996). The decomposable nature of
SAL computations promises to (i) support the design of ef-
ficient, hierarchical algorithms for model estimation and (ii)
provide a deeper understanding of the recurring roles that
correspondence plays in spatial data analysis.
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Input : matrixA, perturbations{δ1, . . . , δm}, regionR.
Output : eigenvalueλ and multiplicityρ in regionR.

Level one:
- Data collection: forδi, compute random normwise per-

turbation ofA asaij ± 2(1−δi)‖A‖∞, yieldingPi.
- Initial samples: At some leveli.
- Output: trianglesTi.
- Aggregation: triangulatePi (for efficiency, require 2 ver-

tices on convex hull).

Level two:
- Input: TrianglesTi.
- Output: set of rotations(x, y, θ).
- Aggregation: congruent triangles by geom. hashing.
- Correspondence:

- Analogy: for each pair of congruent trianglestj , tk
compute superimposing rotationR = (x, y, θ); apply
to all points and find closest matcha(·) for each.

- Abstraction:(tj , tk) 7→ (R, d, r), for specificR and
associateda, with quality metrics
- d: distance between points and transformed
analogs:

∑
p∈Pi ‖p−R(a(p))‖

- r: regularity of polygon, by comparing distance
between point and its partners in both directions:∑
p∈PI (‖p− a(p)‖ − ‖p− a−1(p)‖

- Model evaluation: confidence with respect tod andr;
priors support rotations around(x, y) in convex hull of
Pi and byθ corresponding to “reasonable” multiplicity.

- Sampling: for multiple “good” models, collect addi-
tional random samples at perturbationδi.

Level three:
- Input: {(xij , yij , θij)} over models (j) from chosen per-

turbation levels (i).
- Output:(λ, ρ).
- Aggregation: clustering in(x, y, θ)-space.
- Model evaluation: forλ = (x, y), ρ = π/θ, take joint

probability overi, j of (xij , yij , θij) ≈ (x, y, θ).
- Sampling: for high entropy in model evaluation, add

samples and re-evaluate at outlierδj or try newδk.

Table 3: Correspondence mechanism instantiation for Jor-
dan form analysis.


