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Abstract. Modern machine learning problems typ-
ically have multiple criteria, but there is currently
no systematic mathematical theory to guide the
design of formulations and exploration of alternatives.
Homotopy methods are a promising approach to
characterize solution spaces by smoothly tracking
solutions from one formulation (typically an “easy”
problem) to another (typically a “hard” problem).
New results in constructing homotopy maps for con-
strained clustering problems are here presented, which
combine quadratic loss functions with discrete evalu-
ations of constraint violations are presented. These
maps balance requirements of locality in clusters as
well as those of discrete must-link and must-not-
link constraints. Experimental results demonstrate
advantages in tracking solutions compared to state-
of-the-art constrained clustering algorithms.

1. Introduction

As machine learning permeates multiple fields of
science and engineering, new objective functions are
continually being proposed to suit the demands of
new application domains. Multi-criteria objective
functions especially are becoming more prevalent in
areas such as mixing labeled and unlabeled data [1],
[4], [16], incorporating constraints [8], [17], [19], and
transfer learning [13], [14], [20], [21].

Although many of these multi-criteria problems
have been approached with qualified success, there is
currently a lack of a systematic mathematical theory
to guide the design of formulations, understand
tradeoffs, and explore alternatives. In particular,
many formulations involve a parameter A that balances
or weights competing or alternative measures or
formulations. For instance, A might be used to balance

between purely supervised and purely unsupervised
learning to construct a hidden Markov model classifier
[12], or to weight data compression relative to
auxiliary information preservation in the information
bottleneck [15], or to weight clustering constraints
[10], [5], or to balance cluster coherence with cluster
disparity in disparate clustering [11]. In general,
existing theory does not deal elegantly with (1) how
to efficiently compute solutions parametrically as A
varies, (2) how to find and deal with multiple solutions
for a fixed A and (3) how to canonically define the best
choice of A. Since most machine learning formulations
involve multiple local optima, repeated optimization
for discretely varying values of A yields an incomplete
picture of the solution space.

A systematic approach to characterize solution
spaces by employing homotopy methods to smoothly
track solutions from an unconstrained formulation to
a constrained formulation is provided. This allows
the effect of changing A on the quality and nature
of the solutions to be mathematically characterized.
Smoothly tracking solutions as A varies provides a
holistic understanding of the interplay between the
algorithm and a dataset. Beginning the homotopy
zero curve tracking where the solution is (fairly)
well-understood, the homotopy curve can then be
tracked into regions where there is only a qualitative
understanding of the solution space, finding multiple
local minima (for the same A) along the way. By
connecting solutions across values of A, homotopy
methods can provide the raw material for obtaining
multiple distinct solutions that can then be aggregated
using ensemble techniques.

Initial efforts into the application of homotopy
methods to machine learning have been made in
[7], where classical continuation is used as a way to
study how two diverse information sources should be
combined in order to arrive at an integrated model.
[12]shows that a general semisupervised formulation
for hidden Markov models (HMMs) can be realized



using a probability-one homotopy as well. However,
the creation of homotopy maps remains a bit of a
black art, especially for emerging machine learning
formulations.

In this paper, new results in constructing homotopy
maps for constrained clustering problems, which com-
bine quadratic loss functions with discrete evaluations
of constraint violations, are presented. In constrained
clustering, the goal is not just to obtain clusters
that are local in their respective spaces but also to
obey a discrete set of a priori must-link (ML) and
must-not-link (MNL) constraints between points.

A homotopy map between locality criteria and
constraints, the formulation of a continuous selection
function to overcome the problem of discrete assign-
ments (of points to clusters), and the boundedness
of the homotopy curve so that it does not diverge
to infinity are demonstrated here.
results demonstrate significant advantages in tracking
solutions compared to state-of-the-art constrained
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clustering algorithms.

2. Background

Some background information on probability-one ho-
motopy theory and numerical homotopy algorithms is
given first before new results for constrained clustering
algorithms are described.

2.1 Globally convergent probability-one homotopies

The theory of globally convergent probability-one
homotopy maps concerns finding zeros or fixed points
of nonlinear systems of equations [6], [18]. The
underlying idea is simple: Given a twice continuously
differentiable function F : IR™ — IR™ of which a zero
is sought, rather than solving the original difficult
problem F(z) = 0 directly, start from an “easy”
problem G(z) = 0 whose solution is readily identified,
and gradually transform the “easy” problem into
the original one, tracking the solutions along the
transformation. Typically, one may choose a convex
homotopy map, such as

H(\ z2)=(1—-XNG(2) + A\F(2) (1)
and trace an implicitly defined zero curve v € H~1(0)

from a starting point (0, z°) to a final point (1,2). If
this succeeds, then a zero point Z of F is obtained. (1)
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Figure 1. Zero curve v may return
back to A = 0 and there may not exist a path
starting from some fixed points at A = 0 and
reaching a target solution at A = 1.

also covers fixed point problems z = f(z) by taking
F(z) = z — f(2). See Figure 1 for an example.

Generally, there are two issues with respect to the
homotopy method: (i) whether there indeed exists
a smooth path of solutions starting from A = 0 and
reaching a target solution at A = 1 in finite arc
length, and (ii) development of numerical techniques
for tracing this path. Three special homotopy maps
[12] that assure the properties desired in (i), with
probability one, follow; issue (ii) is discussed in [18].

Theorem 1. Suppose that B C IR" is a compact,
convex subset and f: B — B is twice continuously
differentiable. Then for almost all vectors a € intB,
there is a zero path v of

HAz) =1 =N(E-a)+Az-f(2), (2

emanating from (0, a), along which the n x (n+ 1)
Jacobian matrix DH (), z) has full rank, that does not
intersect itself and is disjoint from any other zeros of
H, and reaches an accumulation point (1, z) for which
f(2) = z. Furthermore, if the Jacobian matrix DH (1,
Z) is nonsingular, then the zero path v between (0, a)
and (1, Z) has finite arc length [12].

A more general case is where a : U X B — intB is
a function of b and z, i.e., a(b, z) and U CIR™ is a
nonempty open set, giving the homotopy map

Hb, A\ 2)=1=X)(z—a(b,2))+AXz— f(z)) (3)

where the parameter vector b is crucial for the
probability-one homotopy theory, as shown in the
theory in [12].



This works if for each b € U, ap(z) = a(b, z) has a
unique fixed point. If a,(z) has multiple fixed points,
then consider the homotopy map

H(ag, A, z) = (1 — tanh(60\))(z — aog)
+ tanh(60A\)[(1 — A\)(z — ap(2))
+ Az = f(2))]; (4)
where ap € R" is a constant vector, and tanh(-) is
the hyperbolic tangent function. That (4) works

is rigorously proven in [12], and used there for
semisupervised HMM training.

3. Homotopy Maps for Constrained Clustering

3.1 Definitions

Let superscripts denote vector indices and subscripts
denote components of vectors unless otherwise indi-
cated. Let all norms be 2-norms and all distances be
Euclidean distances. Given a set X = {2 | ' € RY,

1=1, 2 ..., k} of k points (cluster prototypes) in
d dimensions, let X = vec(z!, 2%, ..., z¥) € RF.
Given a set Y = {yi|y'eRY, i=1,2, ..., n} of

n data points in d dimensions, let ¥ = vec(y', y?,
ey y”) € IR™. Represent a constraint by the vector
c=(a, b, z, w) € R2%*2 of two data points a, b € SA/,
an identifier z = 41, and a degree-of-belief weight
w € IR, where an identifier of z = 1 means that a
and b are bound by a must-link constraint (i.e., must
be in the same cluster) and an identifier of z = —1
means that ¢ and b are bound by a must-not-link
or cannot-link constraint (must not be in the same

cluster). Given a set C' = {¢! | ¢! € R2¥2, i =1,

2, ..., q} of ¢ constraints, let C = Vec(cl, 2, ...,

CQ) c ]RQ(2d+2)'

If the distance between a data point and a cluster
prototype is smaller than the distance between that
data point and any other cluster prototype, define
that data point as belonging to the cluster of all such
data points. Note that if a data point is equidistant
from multiple cluster prototypes, it is traditionally
assigned to one of those clusters at random. Given sets
Y and C , the constrained clustering problem is to find
a set X such that the largest number of constraints
in C are satisfied. Since the number of constraints
satisfied is a discrete value, some work is required to
produce a smooth homotopy mapping connecting a
local solution to the k-means clustering problem to a
local solution of the constrained clustering problem.

3.2 Soft clustering — initial formulation

The traditional way to convert the discrete clustering
problem to a continuous problem is through a distri-
bution of probabilities, so that instead of assigning
each data point to a single cluster prototype, each
data point is assigned a probability corresponding
with each cluster prototype based on the distance
between the data point and each cluster prototype.

Let the probability-of-membership function V :
R xR? — IR* be defined as Vi(X,y) =
e—¥ly —a'|? / Sk el =T — 12k,
where ¢/ € Y, 2™ € X Vm, and ¢ > 0 is a control
constant that determines how soft the clustering is.

Let the soft must-link penalty function P :
R?24+2)  R¥® — R be defined as

q
PG, X) = Y T E V(X a) - VX b P,

i=1

where ¢! = (ai,bi,zi,wi) eC.
Let the soft must-not-link penalty function Py :
RYZ4+2) x RF — R be defined as

T1—-z (1 1
Pz(CaX):Z 2 \z 3)
=1

where =1+ |V (X,a") — V(X, b))%
Let the soft k-means approximation function Pj :
R*? x R™ — IR be defined as

kK n
Py(X,Y) = Y |y -2 PVi(X,y),
i=1 j=i
and define the constrained clustering problem by
letting Y and C be held constant.  Then the
proposed homotopy map H : [0,1) x RF? — IR for
soft clustering is

H(\X) = (1= MVPs(X) + A(VP(X) + VP (X)),

which is not a probability-one homotopy. Conse-
quently, the Jacobian matrix DH is frequently rank
deficient on H~'(0), making this a poor choice of
homotopy map, as well as computationally expensive.

3.3 Hard clustering — geometric interpretation

A second way to generate a valid homotopy map
from the nondifferentiable k-means function is to drop
the repeated calculation of the k-means solution and
simply select a starting point that corresponds to
a solution provided by a single application of the
k-means algorithm at A = 0. This requires penalty
functions based on the distances involved that satisfy
a few key properties, outlined below.



For a data point y € Y and two cluster prototypes
2%, 29 € X define the function D : R¢ x R? x R? — R
by

D(a',a’,y) = 27— y})"
Note that D is three times continuously differentiable,
D >0, and D(z*,27,y) > 0 if and only if the distance
between y and a? is larger than the distance between
y and 27.

Given a,b € Y, let the must-link function F,,
R% x R? x R* — IR be defined by

F(a,b,X)=
k k
H Z D(z%, 27 a) + D(z*, 27, b)

i=1 \j=1,j#i

(max{0, |z" — y|* —

and let the cannot-link function F. : IR® x R? x
R — IR be defined by

k k
Fe(a,0,X)=)Y | J[ DP@’,2"a)D@ 2",b)
i=1 \j=1,j#i
Then the following observations are easily verified.

Lemma 1. F,, and F. are nonnegative and three
times continuously differentiable.

Lemma 2. For any constraint ¢ = (a,b,1,w) € C,
the must-link function F,,(a,b, X) = 0 if and only if
constraint c is satisfied.

Lemma 3. For any constraint ¢ = (a,b,—1,w) € C',
the cannot-link function F,(a,b, X) = 0 if and only if
constraint c is satisfied.

Theorem 2. The penalty function

F(C,X) =
> Fla, b, X)+
{i:z;=1}
> F(a', b, X)
{irz;=—1}

is zero if and only if all the constraints in C' are
satisfied.

It is simple to add a degree-of-belief weight w; > 0
to each component of the penalty function F without
eliminating its properties:

F(C,X) =
Z w; Fpy (', 0%, X)+
{i:z;=1}
> wiF(a', b, X).
{irz;=—1}

By Theorem 2, if it is possible to satisfy all of
the constraints, then there exists a vector of cluster

prototypes X such that F(C,X) = 0. This vector of
cluster prototypes represents a global minimum point
of the function F' at which VyF(C,X) = 0. This
suggests the homotopy map

H(\X) = (1 - \)(X — Ko) + AVx F(C, X),

where Ky € IR is a vector of cluster prototypes
that forms a solution to the unconstrained K-means
clustering problem.

3.4 Bounding strategy

To avoid an unbounded zero curve of H, it is
important to keep the cluster prototypes bounded.
This can be accomplished with a simple modlﬁcatlon
to H. Write the cluster prototype z' € X as
zt = (a:l,:cz,...,xd). Let B € R? be a bounding
vector defined by B; = max{|y}|, [y?|,...,|y!"|}, i =1,

., d. Map 2 € R? to & € v/dS? (the sphere of
radius V/d in Re?*!) by

Ty g

¢ =¢@") = <3132

i i\ 2 i\ 2 i\ 2
Ty g (BN (Y
By’ By By Bq ’
let 2 = {&}F ) and let = = vee(¢h, €%, ..., &F) €
RFE+D)

Then every cluster prototype x! € X can
instead be represented by &¢ € =, and

With ¥ : R“t! — 1R defined as
U(E) = (&) + (&) + ..+ (Carr)* — d,

T(€) = 0 keeps € on the sphere v/dS? and z in the
bOXHz 1[ B\/—B\/—]

) g(lin) .

Thus the homotopy map

Hy 1 [0,1) x x RFE@HD — RFEHD) defined by
Hy(\E) =
(1= M) (z(&") = K§) + A(Vae) F(C, X))
(g
(1= N)(=(&?) - Kg)( AV (e2)F(C, X))

&%)

— K§) 4+ MV er) F(C, X))
v(k)
will have bounded zero curves, but not a unique

solution = at A = 0 because the coordinates &} 11 can
have either sign.

(1= A)(=(")




3.5 Avoiding Degenerate Cases

In degenerate cases, the global minimum of F
corresponds to a random assignment of points to
clusters, which is geometrically represented when all
cluster prototypes occupy the same point. In order
to avoid this, it is necessary to include an additional
penalty function R : IR*¢ — IR that factors in the
distance of each cluster prototype from each other
cluster prototype.

Let R(X) = 000 S5 i0q max(0, £ — | — 29[?)?,
2t xl € X. Then R > 0, R is twice continuously
differentiable, and R = 0 unless two mean prototypes
2" and 27 are less than a distance ¢ from each other,
where / is the user-defined regularization parameter.

The bounded probability one homotopy map that
includes regularization is

Hy(\E) =
(1= A1) + AV F(C, X) + R(X))
w(gh
(1= A)(2) + A(Vaex) F(C, X) + R(X))

v(e?)

(1= N () + MVer F(C, X) + R(X))
&k

where v, = z(£%) — K§.

3.6 Final formulation

Note that since the terms in ¥ are squared and that
§2+1 is not used to compute z¢, Hy(0,Z) = 0 will
have multiple solutions. Therefore, incorporating the
mapping in (4) yields a new probability-one homotopy
map

HMNE)=(1-7)(E-E) +7Hy(\E))

where 7 = tanh(60)) and Zy € R*?*V) is the vector
of cluster prototypes that define the initial solution to
the unconstrained K-means clustering problem.

4. Experimental Results

The capability of the probability-one homotopy maps
listed above on real as well as synthetic datasets
is demonstrated. The experiments are designed to
answer the following questions:

1. Do homotopy maps help in trading off locality
with constraint satisfaction?

2. Can homotopy maps help find better solu-
tions than tailor made algorithms for constrained
clustering?

3. Do homotopy maps reveal insight into the
structure of solutions otherwise not obtainable using
pointwise exploration of the parameter?

4. Is parallelization an effective method for
increasing the speed of homotopy tracking?

The above questions are answered in the affirma-
tive. Low dimensional datasets are deliberately used
so that the results can be visualized and explained
using visual means. Modern homotopy software such
as HOMPACK90 [18] enables the tracking of solutions
of systems involving thousands of variables.

A simple synthetic dataset involving 200 points
gathered from four Gaussian distributions is con-
structed as a sample dataset. There are two
natural two-cluster clusterings possible, depending on
whether the clusters are organized horizontally or
vertically. The first of these clusterings is used as
the starting point, and as the homotopy curve is
tracked, constraints are slowly introduced. A list of
50 constraints was generated in such a way that the
must-link constraints are picked from two different
initial clusters and the must-not-link constraints are
picked from the same initial clusters. Thus, the
clusters are forced to reorganize as A\ is varied.

3.5

Second dimension
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Figure 2. 200 points, two clusters, 50 constraints.

Figure 2 shows the data points and the constraints.
The solid lines denote the must-link constrains and
the dashed lines denote the must-not-link constraints.
During the homotopy curve tracking, the cluster
prototypes smoothly traverse the space and finally
settle down to a position where a maximum of
constraints are satisfied.

In addition to the data points and the constraints,
Figure 2 shows the paths of the cluster prototypes as
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A is varied. Figure 3 depicts that as A increases during
the tracking, the number of constraint violations
reduces but the sum of squared distance (SSD)
increases, as expected. Recall that the initial state of
the homotopy curve, at A = 0.0, represents a k-means
local minimum, where the sum-of-squared distance
is low but the number of constraint violations is
high. At the other end of the curve, at A = 1.0,
the sum-of-squared distance reaches its peak but the
all the constraints are satisfied. The actual crossing
of these curves gives insights into how much one
objective needs to be traded off in achieving another.

As shown in Figure 3, all the constraints are
satisfied as the homotopy curve reaches A = 1. To
compare the homotopy results with a traditional
constrained clustering algorithm, the MPCk-means
algorithm [2] was applied on the same dataset and
constraints. Only 52% of the constraints were satisfied
by MPCk-means.
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Figure 4. Tracking three different solutions.

Recall that the homotopy method can track mul-
tiple solutions for a given dataset and constraint set.
Figure 4 shows an example where three different solu-
tions are tracked for the same dataset and constraints
as in Figure 2. One of these three tracking curves
(the top curve) corresponds to Figure 3. Conven-
tional optimization algorithms would require a fixed
A to balance the locality and constraint satisfaction
trade-off of the objective function whereas homotopy
smoothly tracks A without requiring any user input
for balancing the trade-offs. Discretely sampling A
and using a conventional local optimizer would likely
detect solutions from different curves of the homotopy
map. As an example, Figure 4 shows three points
from three different curves which are obtained by a
local optimizer at A = 0.2, A = 0.4, and A = 0.8. This
demonstrates that discrete sampling of A does not
give insight into the effect of A as this would lead to
the mistaken conclusion that the effect of A has an
inflexion point.
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Figure 5. Iris dataset tradeoff curve.

The power of homotopy curve tracking in tracking
a constrained clustering solution for the Iris dataset
(from the UCI ML repository [9]) is demonstrated.
Recall that the Iris dataset involves 150 points, four
dimensions, and three class labels. Omne hundred
random constraints are generated in a way that
guarantees must-link constraints are from two different
k-means clusters and must-not-link constraints are
from the same cluster. The corresponding constraint
violations and SSDs are shown in Figure 5. Figure
5 demonstrates that the SSD tends to be higher
with smaller number of constraint satisfaction. It
indicates that the zero curve automatically progresses
with the trade-off parameter A and smoothly tracks
a solution. With the Iris dataset, with one specific
starting solution, the homotopy based method was
able to satisfy 54 constraints. The MPCk-means



Table 1. Parallel homotopy execution times (s).

no. processors execution time speedup

1 473.94 1.00
2 275.38 1.59
4 149.06 3.18
8 91.77 5.16
16 75.31 6.29

algorithm, on the other hand, was able to satisfy only
51 constraints for the same data. Note that A changed
direction during the solving of this particular dataset,
a not uncommon occurrence, shown by the variations
in the direction of the curves plotted in Figure 5.

Finally, a simple experiment was constructed to
demonstrate the effectiveness of parallelization when
applied to homotopy tracking. The homotopy map
presented here is parallelizable in that it involves
the sum of a large number of easily distributed
calculations; in addition, HOMPACKO90 itself has
been parallelized independently [3]. This experiment
focuses exclusively on parallelizing the homotopy
map itself, although there is no reason that, with
sufficient resources, both methods can’t be employed
to generate significant speedup.  The homotopy
map was parallelized by breaking up the calculations
involved in the H; function and its derivatives
using OpenMP pragmas on a sixteen-node shared-
memory cluster to parallelize the operations over the
completely independent constraint penalty function
calculations for a six dimensional problem with 324
data points with 200 constraints on three clusters. No
parallelization was pursued for the homotopy tracking
package HOMPACK90 for this experiment. The
results are given in Table 1; note that this is perhaps
the simplest method of parallelization available.

5. Discussion

New homotopy theory for constrained clustering
problems has been developed and state-of-the-art
mathematical software has been used to characterize
multi-criteria problems in constrained clustering. Just
as in other applications of homotopy methods to
science and engineering, the application of homotopy
methods to machine learning problems can usher
in greater understanding of solution sets. Besides
the strong mathematical foundations and rigorous
formalisms brought to classical machine learning
problems, this work has the potential to greatly reduce
the ad hoc nature of methodological experimentation
that is prevalent in practice. The approach given
here not only helps extract better patterns from

data, but to also helps formally understand the
internal workings of machine learning techniques.
While the homotopy maps presented here have
worked in practice, improved maps from which more
rigorous proofs can be derived are being developed.
Continuing research involves the development and
proper parallelization of these maps.
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