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Graphical Models of Residue Coupling
in Protein Families

John Thomas, Naren Ramakrishnan, and Chris Bailey-Kellogg

Abstract— Many statistical measures and algorithmic tech-
niques have been proposed for studying residue coupling in
protein families. Generally speaking, two residue positions are
considered coupled if, in the sequence record, some of their
amino acid type combinations are significantly more common
than others. While the proposed approaches have proven useful in
finding and describing coupling, a significant missing component
is a formal probabilistic model that explicates and compactly
represents the coupling, integrates information about sequence,
structure, and function, and supports inferential procedures for
analysis, diagnosis, and prediction.

We present an approach to learning and using probabilistic
graphical models of residue coupling. These models capture
significant conservation and coupling constraints observable in
a multiply-aligned set of sequences. Our approach can place a
structural prior on considered couplings, so that all identified
relationships have direct mechanistic explanations. It can also
incorporate information about functional classes, and thereby
learn a differential graphical model that distinguishes constraints
common to all classes from those unique to individual classes.
Such differential models separately account for class-specific
conservation and family-wide coupling, two different sources
of sequence covariation. They are then able to perform inter-
pretable functional classification of new sequences, explaining
classification decisions in terms of the underlying conservation
and coupling constraints. We apply our approach in studies of
both G protein-coupled receptors and PDZ domains, identifying
and analyzing family-wide and class-specific constraints, and
performing functional classification. The results demonstrate that
graphical models of residue coupling provide a powerful tool
for uncovering, representing, and utilizing significant sequence-
structure-function relationships in protein families.

Index Terms— Correlated mutations, graphical models, evo-
lutionary covariation, sequence-structure-function relationships,
functional classification

I. INTRODUCTION

FUNCTIONAL pressures on proteins constrain their se-
quences and three-dimensional structures. Constraints

thus manifested in sequence-structure-function relationships
can be inferred from the evolutionary record, along with infor-
mation from available structural studies and functional assays.
Identified relationships can then be employed in all different
‘directions’, e.g., to predict function from the sequence of a
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newly-discovered protein, discriminate predicted structures for
a sequence according to functional tests, and design variant
(homologous) protein sequences with related functions.

This paper develops a new approach, based on undirected
graphical models, for modeling and exploiting a particular type
of sequence-structure-function relationship: residue coupling.

A. Residue Coupling

While amino acid conservation has long been recognized as
an important indicator of structural or functional significance,
many recent studies have generalized this notion to include
coupling of amino acid pairs in a protein family. Typically, two
residue positions are considered to be coupled if the amino
acids occurring in these positions show concerted variation,
e.g., one residue occurs as either A or S, the other occurs
as either L or C, but taken together, they do not occur in
all the four possible combinations. A chosen metric (e.g.,
mutual information or correlation, among many others [8])
is used to quantify the degree to which two residues in the
family covary, presumably due to compensating mutations in
the face of cooperativity. Couplings thus identified have been
used in a variety of applications, e.g., to identify protein-
specific motifs [2], [24], map allosteric pathways [16], [36],
predict protein structures [10], [27], [34] and interactions [13],
[29], and design new peptide vaccines [17]. Ranganathan and
colleagues demonstrated that coupling information enables the
design of new, stably folded [35] and functional [32] WW
domains.

Our goal is to represent coupling in a formal probabilistic
model, in order to better support investigation, characteriza-
tion, and design. Just as a hidden Markov model (HMM)
provides a probabilistic basis for reasoning about sequence
conservation, we aim to provide a probabilistic basis for
reasoning about sequence covariation. Just as an HMM makes
explicit the structure of position-specific amino acid distri-
butions [7], we aim to make explicit the factorization of
covariation within a family into a small set of dependencies.
Just as the Markov property exposes the direct relationship of
a residue on only the preceding one, we aim to distinguish
direct couplings from indirect ones. Just as key conservation
and variation within a protein family can be identified by
examining amino acid distributions and transition probabilities
in an HMM, we seek to construct models from which essential
coupling constraints can readily be extracted. Such significant
constraints captured by a model are particularly useful in
explaining where and how well another protein fits or doesn’t
fit the model. They also enable the formulation of hypotheses
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for further experimental study, e.g., by site-directed mutation
(conservation) and double mutation (coupling).

We develop here the first approach that meets all these goals:
graphical models of residue coupling (GMRCs).1 Figure 1(a)
illustrates how a GMRC captures residue coupling from a
multiple sequence alignment (MSA). (For reasons that will
be clearer later, we call this GMRC monolithic, as it treats
all sequences in the MSA the same.) The GMRC has nodes
representing residues, and edges (solid lines) representing
the conditional dependence structure. One can “read” such a
model as saying “a node is conditionally independent of all
other nodes, given its neighbors.” Thus residue 3 is indepen-
dent of all other residues when we know the amino acid type
at residue 6. We have labeled the model with some of the
conservation constraints observed for the individual residues
and some of the coupling constraints observed for the pairs
of residues. For example, we see in the MSA that residue 2
is a completely conserved Y (100% of the sequences have
a Y at position 2) and residues 3 and 6 covary (when 3 is
S, 6 is D and when 3 is T, 6 is E). The frequency of the
covarying pairs is shown next to the corresponding edge in
the graph. Some covariation is captured in edges, but some
is explained indirectly. For example, the covariation between
residues 1 and 7 can be explained by the covariation between
residues 1 and 8 and that between residues 7 and 8. This model
thus has 1–8 and 7–8 edges, but leaves the 1–7 relationship
as indirect. Our approach explicitly represents a compact set
of direct couplings, and implicitly (transitively) represents the
remaining residue relationships.

B. Sequence-Structure-Function

While “coupling” connotes a mechanistic relationship, ob-
served residue covariation can have a variety of sources. Many
studies have tested the extent of correlation between covaria-
tion and structural contact [8], [9], [27]. Our graphical model
approach can incorporate structural information, if desired, to
limit the edges considered for addition to a model (e.g., only
between residues that are in contact).

Phylogeny can play a significant role in observed sequence
covariation [28], [30]. Consider two scenarios. In the first,
a pair of positions has one pair of amino acid types in one
subtree and another pair of amino acid types in another subtree
(of about the same size as the first). In the second, the
covariation in the two pairs of amino acid types is dispersed
throughout the tree. Considering just the extant sequences,
both scenarios yield the same amount of covariation, although
it could be due just to two mutation events in the first
scenario and multiple ones in the second. Techniques have
thus been developed to account for such diverse origins of
covariation using a phylogenetic tree, e.g., by performing
maximum likelihood inference of an independent evolutionary
model vs. a coevolutionary one [31]. One can then be more
confident that couplings identified as coevolutionary are due
to a compensatory process. Since these methods are affected
by the choice of phylogenetic tree and these trees are hard

1Our preliminary work, presented at the 2005 BioKDD workshop [37] first
formulated some of the basic ideas that we build on here.

to construct, other methods stochastically build trees to detect
correlated mutations [6], [25].

While the above discussion deals with the confounding role
of phylogeny, techniques such as Evolutionary Trace [20]
and ConSurf [1] exploit phylogenetic information in order
to identify possible functional sites. The idea is that those
residues conferring functional variation will be differentially
conserved in different subtrees (e.g., a residue might be an
invariant Arg in one subtree and an invariant Lys in another).
A spatial relationship of such residues with respect to a known
three-dimensional structure is then inferred to be indicative
of an active site. An alternative to explicit phylogeny is
demonstrated by CASTOR [21], [22], which seeks to identify
important functional regions by discovering hierarchical mo-
tifs. The approach is unsupervised, in that it does not require
a tree or functional information as input, but rather uses the
recursive identification of motifs to determine a hierarchy and
infer functional clusters and their defining sequence patterns.

We focus here on the incorporation within probabilistic
graphical models of limited, coarse-grain functional infor-
mation, represented as class labels for the sequences. A
differential GMRC distinguishes constraints (coupling and
conservation) common to all sequences from those that are
specific to particular classes. In the example in Figure 1(b),
residue 2 is a conserved Y in both functional classes, while the
conservation of M at residue 7 is unique to functional class C1.
Further, the coupling between residues 3 and 6 is common to
both functional classes, while the coupling between residues
4 and 5 is unique to functional class C2. Note that class-
specific conservation and family-wide coupling have similar
appearances in the sequence record; with functional class
labels we can see that residues 1 and 7 are highly conserved
in each functional class, but without the labels it appears that
residues 1 and 7 are coupled. The differential model separates
these two forms of covariation.

Thus in contrast to the other work discussed above, our
approach does not make explicit use of phylogenetic informa-
tion and does not attempt to explain the evolutionary history
of how residue covariation manifests in the sequence record;
is supervised in its ability to profile functional classes using
patterns among residues but unsupervised in the sense of
not requiring specification of the “true” underlying coupling;
and focuses on capturing information about coupling rather
than conservation alone. It remains interesting future work
to pursue various combinations of these approaches (e.g.,
restricting our modeled coupling according to phylogenetic
models, or hierarchically uncovering coupling models).

C. Application

Our graphical models serve as compact descriptions of joint
amino acid distributions, and support a variety of applications,
including predictive (will this newly designed protein be
folded and functional?), diagnostic (why is this protein not sta-
ble or functional?), and abductive reasoning (what if I attempt
to graft features of one protein family onto another?). Here
we develop the use of differential GMRCs for transparent
classification of sequences (illustrated in Figure 1(c)). Given
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Fig. 1. Schematic illustration of graphical models of residue coupling. (a) Given a multiple sequence alignment for a protein family, a monolithic GMRC
captures the underlying constraints (conservation and coupling) acting on the family. Here, the dashed lines form the backbone of a hypothetical structure,
from 1 (N terminus) to 8 (C terminus), and the solid lines are the edges between coupled residues. (b) After assigning each sequence in the alignment to its
functional class (sets of indices in the MSA), a differential GMRC separately identifies constraints that are common to all functional classes and constraints
that are unique to individual functional classes (or particular subsets of classes). This allows it to, for example, separately account for family-wide coupling
(e.g., between positions 3 and 6 in the example) and class-specific conservation (e.g., at positions 1 and 8), both of which appear as covariation in the multiple
sequence alignment. (c) A differential GMRC provides a transparent mechanism for classifying sequences whose functional class is unknown.

a new sequence, a GMRC computes a score that indicates
how likely it is that a sequence belongs to a functional
class. The score is based on transparent properties of the
model for the functional class: we can examine the model to
explain the classification decisions in terms of conservation
and coupling constraints. For example, we assign the left
sequence to functional class C1 because it has many of the
important features of that class, as identified by the differential
GMRC. The right sequence has features that are important
to both functional classes, but has more features important
only for functional class C2. We note that the differential
construction is necessary for this type of interpretation. There
is not a unique encoding of independencies; multiple different
monolithic models can represent exactly the same information.
Thus if we simply compared separately learned monolithic
models, the differences in their constraints would not neces-
sarily indicate class-specific features.

We demonstrate the power of our GMRC approach in
analysis of the G protein-coupled receptor family (GPCRs).
Since GPCRs are vital in many signaling processes such as
vision, smell, and mood regulation, they are a significant target
for molecular modeling and drug discovery. Our graphical
models make explicit the essential constraints underlying such
a family, identifying and modeling a small set of couplings

that explain the observed sequence covariation nearly as well
as a complete list of covarying residues, and that are deemed
statistically significant. We illustrate some of the essential
constraints learned by our models of GPCRs. Our algorithm
can combine multiple information sources, e.g., by integrating
priors from structural and functional studies with sequence
analysis, so as to pre-dispose search toward couplings that
conform to a priori background knowledge. We show that
a differential model of GPCRs is able to use functional
information to identify and model coupling and conservation
common to various GPCR functional classes. We also show
that the models are able to perform interpretable classification
of GPCR sequences, assigning credit (or blame) for the clas-
sification to significant coupling and conservation constraints.

As further validation, we demonstrate the ability of our
models to learn and utilize significant constraints for two
functional classes of PDZ domains. Many PDZs are involved
in protein recognition for complex formation, and are classified
by characteristics of their recognized ligands. We show that
GMRCs can uncover commonalities and differences in both
conservation and coupling for members of two such classes,
in a manner enabling sequence-based functional classification.
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II. METHODS

Figure 2 overviews how our method uses information about
sequence, structure, and function, in order to learn a graphical
model of residue coupling. Central to our approach is infor-
mation about conservation and covariation within a protein
family, captured in a multiple sequence alignment (MSA). The
inferred graphical model captures conditional dependence and
independence among residues, as revealed by the MSA. If
desired, mechanistic constraints according to a representative
three-dimensional structure (presumed conserved across the
family, by homology) can be incorporated as a prior on
considered couplings; otherwise, an uninformative prior can
be employed. A model can be learned for a family as a
whole (monolithic) or can be used to analyze distinguishing
characteristics of functional classes (differential). In the latter
case, we construct the differential graphical model by first
building a model of conservation and coupling common to
an entire family, and then extending it with separate models
for subsets of the functional classes, thereby identifying what
distinguishes them in terms of conservation and coupling.
Once learned, a differential graphical model enables functional
classification of other family members according to their
likelihood under the model.

A. Detecting coupled residues

A multiple sequence alignment S allows us to summarize
each residue position in terms of the probabilities of en-
countering each of the 20 amino acids in that position. Let
V = {v1, . . . , vn} be a set of random variables, one for each
residue position. The MSA then gives a distribution of amino
acid types for each. Coupling between these random variables
can be quantified by many statistical and information-theoretic
metrics [8]. While our methods could use any such metric,
the presented results are based on a ‘perturbation’ variant of
conditional mutual information, since it has many desirable
qualities and we find that it produces high-quality models.

The traditional definition of mutual information MI(vi, vj)
between residues i and j follows:

MI(vi, vj) =
∑
a∈A

∑
b∈A

P (vi = a, vj = b)

· log
P (vi = a, vj = b)

P (vi = a) P (vj = b)
(1)

where A = {A,C,D, . . .} is the set of amino acid types, and
the probabilities are all assessed from the given sequences S
(see below).

In their SCA analysis, on the other hand, Lockless and
Ranganathan [23] introduced a perturbation-based estimator
that first subsets the MSA according to some condition (here,
containing a moderately-conserved residue type at one posi-
tion); the effects of this perturbation on the residue distribution
at another position is observed. If the perturbation significantly
alters the proportions of amino acids at the observed position,
the latter is inferred to be coupled to the perturbed position,
according to the evolutionary record. However, note the asym-
metry in this definition wherein we could detect coupling

between vi and vj when vi is the perturbed and vj is the
observed, but not necessarily the other way around.

We adopt the basic idea of Lockless and Ranganathan but
preserve the symmetry of the traditional MI(vi, vj) definition
by employing the notion of conditional mutual information:

MI(vi,vj |vk)=
∑

c∈A∗

P (vk =c)

[ ∑
a∈A

∑
b∈A

P (vi =a,vj =b|vk =c)

· log
P (vi = a, vj = b|vk = c)

P (vi = a|vk = c) P (vj = b|vk = c)

]
(2)

where we estimate the conditionals by subsetting residue k
to its most frequently occurring amino acid types (A∗ ⊂ A),
defined as those that appear in at least 15% of the original
sequences in the subset. As discussed [23], such a bound is
required in order to maintain fidelity to the original MSA
and allow for evolutionary exploration. We also ensure that
P (vk = c) distributes probability mass of 1 among just these
indices, in proportion to the number of sequences in each
subset, so that

∑
c∈A∗ P (vk = c) = 1.

Note that the perturbation limits (and the key difference
from straight mutual information) imply both a necessary and
sufficient degree of conservation for the detected coupling
to be meaningful. As with traditional mutual information,
this measure quantifies the error in assuming that a joint
distribution is decomposable, and is zero when the underlying
distributions are independent and non-zero otherwise.

B. Summarizing coupling and conservation in graphical mod-
els

The traditional way to summarize coupling data is to seek
out relationships between residue pairs with high MI (and
hence, high covariation). The problem with this approach is
that it doesn’t explicitly separate direct from indirect rela-
tionships. In contrast, we look for relationships with low or
near-zero MI and encode the independencies they represent in
an undirected graphical model of residue coupling (GMRC),
G = (V,E). The vertices V are the residue random variables,
as above. The edges E encode probabilistic independence
constraints, such that a vertex is conditionally independent
of all other vertices, given its immediate neighbors. Thus
a GMRC represents a factorization of the joint probability
distribution function (pdf) of the residue random variables [5].

More formally, a GMRC G = (V,E) defines a pdf PG(R)
on residue types R for its vertices V , by way of the conditional
relationships in its edges E. To compute the pdf, we need
only combine the scores (“potentials”) for all the cliques in
the graph.

PG(R) =
1
Z

∏
C ∈ cliques(G)

φC(RC) (3)

Here, R is a set of amino acid types for V , and RC denotes
values for only those vertices in clique C. The φC are potential
functions for the cliques, and Z normalizes their product into
a probability measure. The structure of the potential functions
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Fig. 2. Learning graphical models of residue coupling. Evidence for evolutionary constraints is found in a multiple sequence alignment for members of the
protein family. This evidence from sequence information is the basis for learning a graphical model (far right; thick solid edges), which captures conditional
independence among residues. If desired, the graphical model may also take both structural and functional information into account. Structural constraints are
expressed in terms of a prior over possible coupling relationships; shown here in terms of the contact graph (pairs of ‘close enough’ residues). Functional
information is represented in a table classifying the functionality of the sequences (here, simply class C1 or class C2). In this case, a base model common
to both C1 and C2 (green edges) is extended by differential models for the separate functional classes (magenta and blue edges), capturing class-specific
relationships.

satisfies:∏
C ∈ cliques(G)

φC(RC) =
∏

C PC(RC)∏
A∈ cliqueadj(G) PA(RA)

(4)

Notice that the potentials are given by the product of marginals
defined over the cliques divided by the product of marginals
defined over the clique adjacencies A, which could be nodes,
edges, or general subgraphs. In this view, each potential of (3)
is either a conditional or a joint marginal distribution.

For the models to faithfully capture both the conditional in-
dependencies and the joint factorization in terms of potentials,
the Hammersley-Clifford theorem [18] necessitates positivity
of the pdf everywhere. The positivity assumption is likely to
be violated in real contexts since it is unlikely that the MSA is
sufficiently representative of every possible clique value in the
model. This is a well-studied problem in statistical inference,
and several approaches exist to apportion non-zero probability
mass among non-occurring instance values [15]. We adopt the
following estimator:

PC(RC) =
fC(RC) + ρ|S|

21|C|

|S|(1 + ρ)
(5)

RC is again a set of residue types for a clique C, fC(RC)
is the number of times RC is encountered for the clique
vertices in the MSA, |S| is the total number of sequences
in the MSA, |C| is the cardinality of C, and ρ is a parameter
that weights the importance of missing data. Notice that even
when a particular clique value does not appear in the MSA,
it still has a positive (but small) probability, thereby enabling
the factorization according to the Hammersley-Clifford theo-
rem [18].

Note that a graphical model captures both conservation
and coupling constraints, since it uses pointwise as well as
joint probabilities to factorize distributions. In this sense,
our models generalize traditional motif-based approaches to
characterizing protein sequences.

C. Learning a graphical model

To infer a model that affords the above interpretation,
we sequentially find decouplers, sets of residues that help
make other residues independent. For example, in the multiple
sequence alignment in Figure 2, positions i and k are very
correlated—when i is a ‘filled in’ residue, k tends to be as
well (5 out of 6 times); similarly when i is ‘empty,’ k tends
to agree (3 out of 4 times). However, knowing j makes the
positions rather independent. In the most common case where
j is filled in, we see that the combinations of types at i and k
are more evenly distributed—when i is ‘empty,’ k is ‘empty’
once and ‘filled in’ once; similarly when i is ‘filled in’, k is
‘empty’ once and ‘filled in’ 3 times. This suggests that i and
k are conditionally independent given j; j decouples i and k.
(Of course, even in this example, noise obscures the degree
of independence.) We thus construct a model by selecting the
edges that best decouple other residue relationships. In our
example, i–j and j–k edges decouple i and k (any coupling
between i and k is explained transitively by the direct i–j and
j–k edges).

Further, we assume the availability of a prior that could,
for instance, be based on a contact graph for a representative
member of the family (center of Figure 2). Such a prior
places edges between all pairs of residues that are interacting
(e.g., because some atoms are within a distance threshold) in
the three-dimensional structure of the protein. Alternatively,
the prior could be a graph accounting for coupling via an
intermediate (ligand binding), long-range electrostatics, or
simply an uninformative one (assumes all edges are equally
likely). Given a prior, we sequentially assess conditional
independencies from this set and incrementally combine the
decoupling edges into a graphical model.

Our algorithm (Figure 3) greedily grows a graph by, at each
step, selecting the edge from the list of possible edges (defined
by the prior) that scores best with respect to the current graph.
The score is given by:

Score(G=(V,E))=
∑
v∈V

∑
u/∈neighbors(v)

MI(u,v |neighbors(v)) (6)
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function monolithicGMRC
input D: possible edges
input S: multiple sequence alignment

V = {v1, . . . , vn}; E ← ∅
s← Score(G = (V,E))
C ← {(e, s− Score(G = (V, {e}))|e ∈ D)}
repeat

e← arg maxe∈D−E C(e)
if e is significant then

E ← E ∪ {e}
s← s− C(e)
for all e′ ∈ D−E s.t. e and e′ share a vertex do

C(e′)← s− Score(G = (V,E))
end for

end if
until stopping criterion satisfied

return G = (V,E)

Fig. 3. Algorithm for inferring a graphical model of residue coupling.

The algorithm can be configured to utilize various stopping
criteria—stop when the newly added edge’s contribution is
not significant enough, stop when a designated number of
edges have been added, or stop when the likelihood of the
model is within acceptable bounds. In this paper, we select
a candidate edge that both improves the score and retains
a significant portion of the sequences in subsetting for MI
calculations, so that we may be confident about independence
assessments. Further, to ensure that our model does not overfit
the coupling relationships, we require that each edge be
statistically significant (see below). Edges that are significant
are added to the graph, those that are not are rejected. We
terminate when no statistical significant edge remains that
reduces the score further.

At each iteration, a naı̈ve implementation of Figure 3 would
require O(dn2) MI computations, where n is the number of
residues in the family, and d is the maximum degree of nodes
in the prior. With an uninformative prior, d is O(n), resulting
in O(n3) MI computations for each iteration. By caching
assessments of conditioning contexts as described in [37] and
careful preprocessing, we can bring down the complexity to
just O(dn) MI computations per iteration, yielding a speedup
of O(n).

D. Statistical significance

When learning a graphical model, a common approach is to
compute how significant it is given the data. However, in the
context of a GMRC we are more interested in individual edges
(for both biologically interesting couplings and for transparent
classification) than in the model as a whole. Thus it is more
appropriate to focus on the significance of individual edges.
Since our algorithm for learning a GMRC adds a single edge
at a time, we can compute the statistical significance of each
edge at run-time and reject edges that are not significant. This
allows us to search for alternate significant decouplers and to

avoid overfitting the data. Figure 3 incorporates the statistical
significance test as a filter on edges before adding them to the
growing network. The idea is that the score function proposes
possible edges that account for a large part of the remaining
coupling in the network, and the statistical significance test
only passes those that are significant. Those that are not
significant are discarded and not reconsidered.

An edge in a GMRC indicates a direct relationship between
two residues. To compute the significance of an edge, we
use a p-value. Intuitively, the p-value gives us the probability
that the null hypothesis is true—that two edges are truly
independent rather than coupled. Smaller p-values indicate
stronger confidence in dependent relationships while larger p-
values mean that the residues are most likely independent. For
our algorithm, we use the p-value from a χ-squared test. For
two residues i and j, we compute the χ2 as:

χ2 =
∑

a∈Ai

∑
b∈Aj

(
f{i,j}({a, b})− f{i}({a})·f{j}({b})

|S|2

)2

f{i}({a})·f{j}({b})
|S|2

(7)

Here fC(RC) is, as in (5), the number of occurrences of
residue types RC at positions C. The first term in the numer-
ator is the actual number of pairs observed; the second term
is the expected number, if the two residues were independent.

A potential concern for such a χ-squared test is that it
can be unreliable when there are small counts of the terms
it is evaluating. In such a case, the χ2 can become artificially
inflated, making relationships appear more significant than
they are. However, this is not the case here, since our algorithm
only considers edges between residues that have sufficient
representation. As we discussed, we require perturbations
to maintain sufficient fidelity to the original MSA, thereby
ensuring that only edges with large counts are considered by
the algorithm.

E. Differential models

When we have more than one functional class, we learn
a differential graphical model of residue coupling. Instead of
the graphical model being only “family-wide” or for a single
“class-specific” functional class, a differential model captures
constraints over all subsets of functional classes. A differential
graphical model is arranged in a lattice. For instance, if we
have three functional subclasses, C1, C2, and C3, the graphical
model at the top level of the lattice corresponds to constraints
that act on all of the functional subclasses. We denote this
graphical model by GC1,C2,C3 . As we move down the lattice,
we capture constraints that act on some functional subclasses
but not on others. For instance, GC1,C2 captures the constraints
that act on functional subclasses C1 and C2 but not on C3

while GC1 captures the constraints that are unique to C1.
Figure 4 gives the algorithm for learning a differential

graphical model of residue coupling. It is similar to the al-
gorithm in Figure 3 for monolithic GMRCs, but has some key
differences. The main extension for the differential algorithm
is that the model for a child in the lattice extends the model
for its parent (which extends the model for its parent). Thus



IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 7

function differentialGMRC
input D: possible edges
input S1, . . . ,Sm: the m functional classes
input F : ancestor edges

V = {v1, . . . , vn}; E ← ∅
for all i = 1 to m do

si ← Score(G = (V, F )) using sequences Si

Ci←{(e,NormalizedScore(G=(V, F ),{e})|e∈D)}
end for
repeat

e← arg maxe∈D−E

∑n
i=1 Ci(e)

if e is significant for all Sj then
E ← E ∪ {e}
for all i = 1 to m do

si ← si − (si · Ci(e))
for all e′∈D−E s.t. e and e′ share a vertex do

Ci(e′)←NormalizedScore(G=(Vi,E∪F ),e′)
end for

end for
end if

until stopping criterion satisfied

return G = (V,E)

Fig. 4. Algorithm for inferring a differential graphical model of residue
coupling.

the algorithm takes an additional parameter giving the edges
in the ancestor models.

The other differences in the differential algorithm arise
because a differential model deals with multiple functional
subclasses instead of just one. The algorithm must ensure
that the learned conservation and coupling constraints are
representative of all the subclasses. We first extend the score
function from (6) to combine information from the classes.
Since the score may be quite different for different classes,
we normalize the reduction in score caused by edge e for a
subclass:

NormalizedScore(G=(V,E),e)=1−Score(G=(V,E+e))
Score(G=(V,E))

(8)

We select the edge that maximizes the sum of the normal-
ized scores over all functional subclasses. We require that
an edge have a NormalizedScore > 0 in each subclass, be
statistically significant in each subclass, and be represented
by at least 15% of the sequences in each subclass remain
upon subsetting (to ensure fidelity to each subclass alignment).
Enforcing these conditions for each subclass ensures that the
constraints are indeed representative.

F. Assessing likelihood

The pdf PG(R) (3) for residue types R according to a
GMRC G can be used as a likelihood in order to evaluate
the probability that a sequence R belongs to a model. The
likelihood depends on the estimator employed for PC(RC)
(5), used in the potential function factors in the pdf. For a
monolithic GMRC, the estimator simply uses the frequencies

of amino acid types in the given set of sequences. At the leaves
of a differential GMRC, the estimator uses the frequencies
in the sequences of the particular functional subclass. At
the interior nodes, the estimator uses the frequencies in the
sequences in the union of the involved functional subclasses.
We denote by LGC1,C2

(s) the likelihood of s under a model
of classes C1 and C2, and similarly for other models.

G. Classification

One advantage of using a formal probabilistic method for
scoring is that likelihoods from different models are compara-
ble. Given two graphical models for two different functional
subclasses, GC1 and GC2 , we can classify a new sequence s
to either functional class C1 or C2 by computing the log
likelihood ratio LLR:

LLR = log
LGC1

(s)
LGC2

(s)
(9)

and assigning s to C1 if LLR is greater than 0 and to C2 oth-
erwise. Furthermore, LLR provides a measure of confidence
in our assignment. The larger LLR is, the more confident
we are that the sequence belongs to C1 and not C2. We
can make predictions only when we are significantly more
confident in one model than another. For instance, we can
make classifications when the likelihood ratios indicate that
one model is 10 or 100 times more likely than any other.

The likelihood scores in differential graphical models can
likewise be used in classifying sequences. Since the likeli-
hoods are directly comparable at each level of the lattice, we
perform a hierarchal classification by assigning a sequence
to the most likely subset model at each level of the lattice.
Each step down the lattice removes from consideration one
functional subclass; at the bottom, the sequence is classified
to a single functional subclass.

III. RESULTS AND DISCUSSION

We demonstrate the power of our GMRC approach in
analysis of the G protein-coupled receptor family (GPCRs).
GPCRs are membrane-bound proteins essential in cellular
signaling: ligand binding at the extracellular face initiates the
propagation of structural changes through the transmembrane
helices and ultimately to the cytoplasmic domains where a
G protein is activated. Figure 5 shows the 3D structure of
a representative GPCR and an unrolled 2D schematic. In
each structure, the extracellular portion is at the top while
the cytoplasmic portion is represented at the bottom. The
seven transmembrane helices (numbered 1–7) form a barrel
through which the structural changes are propagated upon
ligand binding.

GPCRs have been the object of previous residue coupling
studies (e.g., [26], [36]). We obtained the set of 940 aligned
GPCR sequences used in the coupling study of Ranganathan
and colleagues [36], which they had manually adjusted from
sequences in the GPCRDB [11]. The alignment contains 940
sequences, each with 348 residues. GPCRs can be divided into
5 major classes, labeled classes A though E. Class A GPCRs
(Rhodopsin and andreenergic-like receptors) are the most
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Fig. 5. The structure of a representative GPCR, bovine rhodopsin (PDB id 1GZM). The left shows the 3-dimensional structure, which consists of 7
transmembrane helices, numbered 1 to 7, and one helix that resides inside the cell, numbered 8 (figure prepared using VMD [12]). The right shows a
2-dimensional schematic with the residue numbers from the multiple sequence alignment. The top 7 helices (1–7, from left to right) are the transmembrane
helices and the lower helix is helix 8. In each structure, the top is the extracellular portion of the GPCR, where ligand binding occurs, while the bottom
represents the inside of the cell where the G protein is activated.

studied GPCRs, and the sequences chosen by Ranganathan
and colleagues were selected to be representative of this class.

Using the GPCRDB [11], we further annotated the align-
ment with functional class information according to the type
of ligand each GPCR binds. The ligand binding data in the
GPCRDB is manually culled from the literature and updated
frequently, ensuring high quality annotations. Using these
classifications, each GPCR from the dataset is assigned to
one of 16 subclasses; see Figure 6. For the purposes of our
results, we refer to the model of the entire set as “family-
wide” (treating 940 members of class A as the family) and
the models of the subclasses as “class-specific” (treating each
subclass as a class in its own right).

Using their SCA approach (see Section II-A) on the family-
wide sequences, Ranganathan and colleagues found many
interesting coupling relationships that they conjecture form
a network of allosteric communication [36]. Our GMRC
approach identifies many of the same constraints [37], but, as
we discussed above, provides a compact representation with
a probabilistic semantics supporting a variety of reasoning
techniques (as discussed in Section I-C). We will illustrate
here the effect of functional annotations and some of the
interpretations and applications supported by our approach.

A. Coupling as differential conservation

As discussed in the introduction and illustrated in Fig-
ure 1, functional class information enables differentiation of
conservation and coupling constraints that are specific to the
individual functional classes from those that are common to
all classes (or even particular sets of classes). To evaluate the
necessity for such distinctions in GPCRs, we considered the 10
“perturbations” used as the basis for coupling identification in
the SCA analysis of GPCRs [36]. A perturbation selects those
sequences with a particular (relatively common) amino acid

type at a particular position. If, for the selected sequences, the
amino acid frequencies at a second position are very different
from their frequencies in the full set of sequences, then that
second position is deemed to be coupled to the perturbed
residue. With functional class information at hand, we can now
also consider whether the frequencies of functional classes in
the sequence subset are similar to those in the full set. When
covariation is due to family-wide coupling, the perturbation
will result in a subset of sequences that is representative of
the various functional classes in the original set. On the other
hand, when covariation is due to class-specific conservation,
the perturbation will select sequences primarily from that class.

Figure 7 shows the effect of the perturbations on the three
largest functional classes, Amine, Peptide, and Rhodopsin (in-
dividually), as well as all other functional classes (as a group)
from the dataset. Notice that each of the 10 perturbations
involves a residue that is highly conserved in the Amine
functional class, and each thus leaves a large number of Amine
sequences. In fact, each perturbation is for an amino acid
type that is at least 71% conserved in the Amine functional
class; most are more than 85% conserved. This high level
of conservation does not occur in the other large functional
classes. Some perturbations for the Peptide functional class
do leave a moderate fraction—4 perturbations leave more than
30% of the sequences—however, others leave less than 10%
of the sequences. The Rhodopsin functional class is not well
represented under the perturbations; only 3 of the 10 identified
perturbations capture more than 10% of the sequences, while
the remaining 7 maintain less than 3% of the sequences.
The other functional classes are also not as well represented
under the perturbations as the Amine class is. Furthermore,
the different functional classes have different behaviors for
different perturbations; e.g., 40 of the 41 Olfactory sequences
have a Y at position 144, while none of them have an F at
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Fig. 6. Schematic of graphical models for GPCRs. For the three largest functional classes we use a differential graphical model (left). The top level of the
lattice contains constraints that act on all the functional classes. The middle level adds constraints that act on two of the classes while the bottom level has
those constraints that are unique to the individual classes. For functional classes with 5–50 sequences, we learn monolithic GMRCs (center). For functional
classes with more than 20 sequences we learn graphical models using both conservation and coupling information, while for functional classes with fewer
than 20 sequences we learn graphical models using only conservation information. We do not learn GMRCs for functional classes with fewer than 5 sequence
or for sequences whose functional class is unknown (right).
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Fig. 7. The effect of each perturbation identified by SCA analysis on the
functional classes. The x-axis shows the perturbation (the selected moderately-
conserved amino acid) while the y-axis shows the number of sequences from
each functional class that remain after the perturbation. The first perturbation,
All, shows the number of sequences from each functional class in the original
multiple sequence alignment. Notice that for each perturbation, the Amine
class is highly conserved while the remaining classes are not. This is an
indication that the observed covariation is due to class-specific conservation,
rather than family-wide coupling.

268.
We conclude from Figure 7 that the previously observed

coupling is due primarily to the selection of the Amine
functional class by the perturbations, due to the high level
of conservation in Amines of the chosen amino acid types.

B. Differential model

By “factoring out” specific constraints, our differential
GMRC allows us to further uncover additional constraints
that are common to the entire family or specific to other
classes. Figure 6 summarizes the structure of the differential
model. Due to the variation in the number of sequences in the
various functional class, we focused the differential modeling
effort on the three best-represented classes (Amine, Peptide,

and Rhodopsin). We also constructed individual monolithic
models for the four functional classes with 20–50 sequences
(Hormone, Nucleotide, Olfactory, and Prostanoid). Although
these monolithic models do not directly capture the similarities
and differences, they still lend insight into the constraints
acting on the classes, and allow us to avoid the combinatorial
explosion in considering all subsets of classes. For the six
functional classes with between 5–19 sequences (Cannabinoid,
Gonadotropin, Lysosphingolipid, Melatonin, Thyrotropin, and
Viral), we created graphical models using only conservation
information, since coupling becomes unreliable with such a
small number of sequences. We ignored the two functional
classes (Leukotriene and Platelet) with fewer than 5 sequences.
We used the 67 sequences from the dataset annotated as Class
A orphans (sequences believed to be members of class A
GPCRs but whose functional class is unknown) to show the
utility of our models to perform classification.

We learn models using either an uninformative prior (al-
lowing an edge between all pairs of residues) or a contact
graph prior (allowing an edge only between residue pairs that
are within a certain distance in the 3D structure). For the
contact graph prior we used the structure determined by Li
et al. [19] (PDB id 1GZM); see Figure 5, left. Two residues
are considered to be in contact if any atom pair is separated by
at most 7 Å. Since structure is more conserved than sequence,
we assume that all members adopt essentially the same contact
graph. The uninformative prior considers all possible 60,378
edges (i.e., between all pairs of the 348 residues) whereas the
contact graph prior only considers 3161 of these edges.

For the results that follow, we set ρ = 0.1 as the weight
for missing data in (5). Previously, we have found that our
results are relatively insensitive to a range of ρ values [37].
As discussed, we impose a 15% threshold for calculation of
conditional mutual information (2). We found neglible impact
from small deviations in the threshold; values of 10%, 15%,
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and 20% all produce classification accuracy greater than 97%.
We use a p-value threshold of .005 as the significance level
for each edge in (7). Note that this selection is somewhat
arbitrary and could be adjusted as desired to account for
multiple hypothesis testing. For example, a simple Bonferroni
correction for the 60378 edges in the uninformative prior
would yield a threshold of approximately 10−7. Most of the
edges identified by our algorithm meet even this far more
stringent threshold.

The next section describes important constraints in the
models thus constructed, and demonstrates the ability of
our method to identify important similarities and differences
among the classes. A potential concern, however, is that the
overhead of the differential graphical model results in models
that are of lower quality than if we had simply constructed in-
dividual monolithic models for the different functional classes.
(As discussed in the introduction, however, multiple mono-
lithic models would not be directly comparable, since the same
independencies can be factored in several different ways.) We
compared the models learned by these two approaches for the
Amine class; i.e., a differential model starting with Amine,
Peptide, and Rhodopsin vs. a monolithic model for just Amine.
Using an uninformative prior, the differential graphical model
identified 394 statistically significant couplings for the Amine
functional class while the monolithic model identified 298
statistically significant couplings. The score of a model (6)
measures how much coupling remains; the lower the score,
the better the model explains the observed coupling. Figure 8
shows the evolution of the scores as edges are added to each
model. The dashed and solid lines represent the score as
edges are added in the monolithic and differential models,
respectively. The differential model is learned in multiple parts
and the inset represents the evolution of score over those
different parts. The solid cyan line shows how much the
score decreases when learning the constraints that act on the
Amine, Peptide, and Rhodopsin functional classes. Next, the
score reduction is shown for the constraints that act on both
the Amine and Peptide classes (dot-dashed black) as as well
on both the Amine and Rhodopsin classes (dashed magenta).
Finally, the score reduction is shown for the constraints unique
to the Amine functional class (solid blue). The final differential
model and the final monolithic model have similar scores
(within 3%), and no remaining edges that reduce the score
were found to be significant. We found the same behavior
when we used a contact graph prior (not shown), leading us
to conclude that the differential model explains the coupling
about as well as the monolithic model, but with the added
benefit of uncovering similarities and differences among the
functional classes.

C. Important constraints

The models learned by our algorithms explicate the con-
straints (coupling and conservation) acting on the family and
the functional classes. It is a significant feature of our ap-
proach that we can examine a model and identify biologically
significant constraints suitable for experimental evaluation
(e.g., by standard double mutant cycles or by combinatorial
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Fig. 8. Evolution of scores for the Amine class as edges are added to both a
monolithic GMRC (dashed blue) and differential GMRC (solid blue). The x-
axis shows the number of edges in the model while the y-axis shows the score
of the model. The differential model is learned in several steps (inset). Initially,
a model is learned that accounts for constraints shared with the Peptide and
Rhodopsin functional classes (solid cyan). The model is then augmented with
constraints shared with just the Peptide (dot-dashed black) and Rhodopsin
(dashed magenta) functional classes. Finally, a model is learned for constraints
that are unique to the Amine functional class (blue).

recombination [33], [38]). We illustrate here some of the
strongest constraints identified for some of the models.

We annotate edges by whether they were found in the model
learned under the uninformative prior (U) or the contact graph
prior (C), or common to both (U + C). The two models have
relatively few couplings in common because the contact graph
prior significantly limits the edges being considered. For ex-
ample, for the Amine functional class, the uninformative prior
considers 50,684 statistically significant edges while the con-
tact graph prior considers only 2539. The problem is further
exacerbated by the non-uniqueness of factorization—the same
independencies can be encoded multiple ways. Ultimately, the
two models are developed under alternative hypotheses about
the general relationship between coupling and direct contact,
and as discussed above the resulting constraints may suggest
experiments to test particular relationships.

a) Amine+Peptide+Rhodopsin: Our differential GMRC
finds common constraints acting on multiple functional
classes. For the Amine, Peptide, and Rhodopsin functional
classes, our model identifies 33 statistically significant cou-
plings with an uninformative prior and 14 with the contact
graph prior. Of the 14 couplings identified under the contact
graph prior, 7 are also identified under the uninformative prior.

Table I highlights several of the more revealing constraints
in the model. The probabilities given in the table are the
minimums across the three functional classes. In other words,
for each functional class, the probability of the constraint is
at least that value. For example, residue 267 is a P in at least
99% of the sequences in each functional class. Also, residues
264 and 299 are CS in at least 29% of the sequences for
each functional class; i.e., when residue 264 is a C, residue
299 tends to be a S and when residue 299 is an S, residue 264
tends to be a C in each of the functional classes. Notice that in
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TABLE I
IMPORTANT CONSTRAINTS IN THE AMINE+PEPTIDE+RHODOPSIN MODEL

Conservation (5 of the 12 that are > .9)
Model∗ Residue Value Probability
U + C 55 N .99
U + C 79 L .91
U + C 187 C .94
U + C 267 P .99
U + C 303 P .98

Coupling (5 of the 33U and 14C)
Model∗ Edge Values Probability
U 57–82 LA .43
U + C 313–314 FR .47
U + C 305–306 IY .45
U + C 302–304 NI .33
C 264–299 CS .29
∗ U: uninformative prior; C: contact graph prior

this table we only identify one residue pair for the couplings.
This is because different functional classes may have differing
pairs of amino acid types coupled, and we only point out the
pairs that are common across all functional classes.

While several of the identified couplings are sequentially
close (313–314, 305–306, 302–304), others are long range.
For example, our model identifies residues 57 (on the first
helix) and 82 (on the second helix) as significantly coupled.
Figure 5 shows they are in close proximity; in fact, they may
come in contact upon ligand binding in the Amine, Peptide,
and Rhodopsin functional classes. Furthermore, our algorithm
identifies several highly conserved residues across the Amine,
Peptide, and Rhodopsin functional classes. Residues 55N, 79L,
and 303P are all highly conserved in the Amine, Peptide and
Rhodopsin functional classes and are all in close proximity
to each other in the 3D structure, possibly indicating a key
structural motif for GPCRs.

b) Amine+Peptide: As we move down the differential
graphical model (Figure 6, left), we identify constraints that act
on only two of the three functional classes. For the Amine and
Peptide functional classes, our algorithm identifies a further
57 statistically significant couplings with the uninformative
prior and a further 31 with the contact graph prior. Of the 31
couplings identified by the model using the contact graph prior,
8 are also identified by the model using the uninformative
prior. Note that each model consists of the union of couplings
from the current level and couplings from its ancestors’
models. Thus under the uninformative prior both the Amine
and Peptide functional classes have 90 couplings—the 33 that
they share with the Rhodopsin functional class (from above)
and 57 that are unique and common to the Amine and Peptide
functional classes.

Table II highlights several of the stronger constraints com-
mon to the Amine and Peptide functional classes. Again, the
probabilities are minimums over the two functional classes
and the constraints reveal interesting biological insights into
the function of GPCRs. For example, residue 103 is highly
conserved in both the Amine and Peptide functional classes
(more than 70%) but not the Rhodopsin function class (less

TABLE II
IMPORTANT CONSTRAINTS IN THE AMINE+PEPTIDE MODEL

Conservation (all 5 that are > .7)
Model∗ Residue Value Probability
U + C 54 G .81
U + C 103 W .78
U + C 124 S .76
U + C 134 D .85
U + C 294 L .72

Coupling (3 of the 57U and 31C)
Model∗ Edge Values Probability
U 72–138 TA .42
C 80–85 AL .55
C 70–153 TA .28
∗ U: uninformative prior; C: contact graph prior

than 30%). Residue 103 resides at the extracellular face of
the membrane, where ligand binding occurs, and may indicate
a difference between the type of ligand recognized by Amine
and Peptide functional classes versus the Rhodopsin functional
class. Another interesting biologically phenomenon identified
by our model is the significant coupling between residues 72
and 138 in both the Amine and Peptide functional classes but
not the Rhodopsin functional class. Notice that residue 72 (in
helix 2) and residue 138 (in helix 3) are close to the active
site for the G protein. The fact that they are coupled in the
Amine and Peptide functional classes but not the Rhodopsin
functional class could be because the Amines and Peptides
interact differently with their associated G proteins than do
the Rhodopsins.

c) Amine and Peptide separately: At the lowest level
of the differential graphical model, our algorithm identifies
constraints that are unique to individual functional classes. For
the Amine functional class, our differential graphical model
identifies 225 statistically significant couplings with an unin-
formative prior and 200 with a contact graph prior. Of the 200
couplings identified by the model using a contact graph prior,
9 are also identified by the model using an uninformative prior.
The graphical model for the Peptide functional class identifies
140 statistically significant couplings with an uninformative
prior and 96 with the contact graph prior. Of the 140 couplings
identified by the model using a contact graph prior, 6 are also
identified by the model using an informative prior.

Table III and Table IV show some of the stronger constraints
that act on the Amine and Peptide functional classes, respec-
tively. Note that now the probabilities are those just for the
individual classes, so the probabilities are exact (no longer
minimums) and we include the most common amino acid pairs
for each coupling. At the bottom level our differential GMRC
provides significant insights into what makes each functional
class unique. For example, residues 78 and 296 are uniquely
conserved in the Amine functional class (more than 90% while
less than 40% in both the Peptide and Rhodopsin functional
classes) and both residues are involved in ligand interaction.
Recall that both residues 78 and 296 were residues identified
as coupled by SCA [36]; see Figure 7. The Amine functional
class also has unique couplings between residues which may
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TABLE III
IMPORTANT CONSTRAINTS IN THE AMINE MODEL

Conservation (all 5 that are > .9)
Model∗ Residue Value Probability
U + C 78 S .92
U + C 117 D 1
U + C 196 F 1
U + C 293 W .98
U + C 296 Y .91

Coupling (5 of the 225U and 200C)
Model∗ Edge Values Probability
U 90–122 VT .83

SN .12
U 207–268 SF .69

TY .14
U 147–226 KI .39

RI .15
LV .17

C 168–171 SP .63
WA .11

C 259–264 GC .76
LT .11

∗ U: uninformative prior; C: contact graph prior

come in contact upon ligand binding. For instance, residues
90 (helix 2) and 122 (helix 3), as well as residues 207 (helix
5) and 268 (helix 6), are significantly coupled, and both pairs
are in close physical proximity in the 3D structure. Similar
insights can be found from the differential GMRCs for the
Peptide functional class. For example, residues 230 (helix 5)
and 308 (helix 7), both of which are located near the activation
site of the G protein, display conservation that is unique to
the Peptide functional class (more than 60% conserved in the
Peptide functional class while less than 30% conserved in both
the Amine and Rhodopsin functional classes). Furthermore,
residues 127 (helix 3) and 156 (helix 4) are uniquely coupled
in the Peptide functional class and are in contact in the 3D
structure.

d) Other functional classes: In addition to the differential
GMRC for the Amine, Peptide and Rhodopsin functional
classes, we learn monolithic GMRCs for the Hormone, Nu-
cleotide, Olfactory, and Prostanoid functional classes. Since
the models were not learned in a differential framework, their
constraints cannot be directly compared. For completeness,
however, we note that the models identify 143, 271, 308, and
283 couplings with the uninformative prior and 141, 310, 292,
and 334 couples with the contact graph prior for the Hormone,
Nucleotide, Olfactory, and Prostanoid functional classes, re-
spectively. We use these models below in classification tests.

D. Classification

The graphical models learned by our algorithm can be used
to assign functional classes to family members of unknown
class membership. A GMRC allows us to compute a likelihood
score that gives the probability that a sequence belongs to a
particular functional class. Since probabilities are comparable,
we classify a sequence by computing its likelihood under

TABLE IV
IMPORTANT CONSTRAINTS IN THE PEPTIDE MODEL

Conservation (all 4 of those > .6)
Model∗ Residue Value Probability
U + C 44 Y .67
U + C 230 L .67
U + C 300 C .75
U + C 308 F .69

Coupling (4 of the 140U and 96C)
Model∗ Edge Values Probability
U 93–292 FH .11

WE .18
U 143–246 LA .17

VK .12
U + C 127–157 FS .14

LC .18
SI .14

C 90–92 CP .18
LF .28

∗ U: uninformative prior; C: contact graph prior

each GMRC and assigning it to the model with the highest
likelihood score. When we have a differential GMRC, as is the
case for the Amines, Peptides, and Rhodopsins, we perform
a hierarchical classification. At each level in the lattice, we
assign the sequence to the model for the subset of classes
with the highest likelihood score. We proceed to the next level,
considering only subsets of the selected subset. The process
continues until a leaf is reached and the sequence assigned to a
particular functional class. In the case of GPCRs, recall that we
have a differential GMRC for Amine, Peptide, and Rhodopsin
and monolithic GMRCs for the remaining functional classes
(Figure 6). Thus the first step in GPCR classification is to
decide upon one of the monolithic GMRCs or the top level of
the differential GMRC. If the most likely model is a monolithic
GMRC, the sequence is assigned to that class. If, on the
other hand, the most likely model is the top level of the
differential GMRC, we hierarchically classify the sequence as
just described. Note that this is only one of many possible ways
to classify sequences using a differential graphical model.
Another possibility is to adopt a Bayesian viewpoint, and cast
the likelihood for a model as a marginalized combination of
the likelihoods of it and its ancestors. Such a weighting scheme
allows one to place more emphasis on the constraints that
make each functional subclass unique from all others.

To test the quality of this classification mechanism, we
performed a five-fold cross-validation test. We divided each
functional class into five parts and performed five train-
ing/testing runs. For each run, four of the five parts were used
to learn models and the remaining sequences were classified
to their most likely models. When classifying, we did not set a
likelihood ratio threshold (i.e., we always made a classification
decision), but we always observed the ratios to be significant.
Table V shows the cumulative results over all five runs. As the
table shows, for most classes, the classification is perfect. Of
the 16 total errors, 7 come from classes with 11 or fewer
sequences, where we rely entirely on sparse conservation
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TABLE V
CROSS-VALIDATION RESULTS

Functional Class Total Correct Accuracy (%)
Amine 196 195 99.5
Peptide 333 333 100
Rhodopsin 143 141 98.6
Nucleotide 41 36 87.8
Olfactory 41 41 100
Prostanoid 33 33 100
Hormone 21 21 100
Cannabinoid 11 11 100
Melatonin 11 11 100
Viral 11 6 54.6
Thyrotropin 10 9 90
Lysosphingolipid 9 9 100
Gonadotropin 8 7 87.5
Overall 868 853 98.3

data. The overall classification is highly accurate, assigning
the functional class correctly for 98.3% of the sequences.
Although some SVM approaches have been shown to obtain
similar accuracy for GPCRs [4], [14], as we illustrate below,
our graphical models are transparent, making apparent the key
differential aspects (conservation and coupling) in a manner
readily permitting biological study.

As further utility of our GMRCs, recall that the dataset
contains 67 orphan sequences that are assumed to be class
A GPCRs but whose functional class is unknown. Since
our models proved to be accurate in cross-validation tests,
we used them to classify these orphans to their functional
classes. We used the models learned from all the sequences
(as in the previous section, rather than with the 4/5 used in
cross-validation tests). Of the 67 orphan sequences, 3 were
classified as Amine and the remaining 64 as Peptide. Table VI
shows several of the sequences and their classifications. The
log likelihood ratio (between the most likely model and the
second most likely one) provides a level of confidence for
our classification (higher is more confident). Since all the
classifications were to Amine, Peptide, or Rhodopsin, we also
include in the table information about the subsets considered
during the hierarchical classification. At both the top level
(Amine+Peptide+Rhodopsin vs. other classes) and bottom
level (one of the three classes), we are very confident in the
classification. Our confidence is not as high at the middle level,
because each sequence appears in two different subsets, which
capture its commonalities with the other classes. For example,
an Amine class GPCR would have a high likelihood under
the Amine+Peptide model as well as the Amine+Rhodopsin
model. We have found that the ultimate classification results
do not depend on which of the two such models it is assigned
to during the hierarchical process (data not shown).

As we have discussed, the classification decisions are
transparent, traceable to the underlying conservation and cou-
pling constraints. Table VI highlights several of the strong
constraints behind the orphan sequence classifications. We
only show the constraints listed in the previous section. For
instance, YQNJ CAEEL was classified as an Amine because

it has 78S and 296Y, which are both conserved residues
unique to the Amine class. Furthermore, it has 90V–122T
and 207S–268F, two unique significant couplings in that class.
Such interpretable classification justifications are a significant
advantage of our approach over “black box” classifiers.

E. PDZ domains

As a further test of our method, we applied it to a different
protein family, namely PDZ domains. PDZ domains occur
in many different proteins and often assist in the formation
of complexes by binding to the C-termini of other proteins,
their ligands. Previous coupling studies of PDZ domains have
found many interesting biological relationships among coupled
residues [23]. Here, we focus on the ability of our models to
use these statistically significant residue couplings to perform
functional classification of PDZ domains. Traditionally, PDZ
domains have been classified into two functional classes,
depending on the type of ligands they recognize. The first
class of PDZ domains recognizes ligands of the form S/T-
X-Φ, where Φ is a hydrophobic residue, while the second
class recognized ligands of the form Φ-X-Φ. We obtained
multiple sequence alignments for the two classes of PDZ
domains by querying the PDZBase [3] by ligand type, and
removing duplicate entries. The class I alignment consists
of 80 sequences and the class II alignment consists of 13
sequences; each sequence is 80 residues long.

It is important to note that the PDZ domains are an
especially difficult test case. First, detecting coupling is hard
with a small tnumber of sequences (13 in class II). Second,
the active site is relatively small, providing relatively little
“direct” information about functional class. Finally, there is
high homology between the class I and class II PDZ domains.
Thus conservation is unlikely to provide much information
about classification. In fact, with models containing only
conservation constraints, 90 of the 93 sequences are classified
as class I PDZ domains. Nonetheless, we will see how, even
with this small number of sequences, statistically significant
couplings incorporated in a GMRC can improve classification
accuracy.

Since our focus is on classification, we learned a differential
GMRC for the PDZ domains using an uninformative prior. The
model identifies 11 statistically significant couplings common
to both classes. It also identifies statistically significant differ-
ential couplings, 85 class I-specific and 10 class II-specific.
The large difference in the number of couplings identified in
the class-specific models is due to the smaller number of class
II sequences.

To test the power of our classification on PDZ domains, we
performed a 13-fold cross-validation test for PDZ domains.
(This is a leave-one-out cross-validation for the class II PDZ
domains.) In each fold, we selected 12 of the 13 parts for
training and used the other for testing. By classifying each
testing sequences to its most likely functional class, our models
achieve an overall classification accuracy of 81.7%. However,
we can improve the accuracy of the classification by only
classifying sequences that have a high log likelihood ratio
LLR (9). Table VII shows the classification results for various
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TABLE VI
ORPHAN CLASSIFICATION

Identifier Class LLR Justifications
GPR1 HUMAN APR 223.75 55N, 79L, 187C, 267P, 303P, 302N–304I, 264C–299S

AP 3.40 54G, 103W, 124S, 134D, 294L
Peptide 378.80 44Y, 300C

GPRA HUMAN APR 321.39 55N, 79L, 187C, 267P, 303P, 313F–314R, 305I–30Y
AP 28.92 54G, 103W, 124S, 134D, 294L, 80A–85L
Peptide 267.42 44Y, 230L, 300C, 90C–92P

YDBM CAEEL APR 388.25 55N, 79L, 187C, 267P, 303P, 305I–306Y, 302N–304I, 264C–299S
AP 4.29 103W, 124S, 134D, 294L, 70T–153A
Amine 131.90 117D, 293W, 296Y, 90V–122T, 207S–268F, 168S–171P, 259G–264C

YQNJ CAEEL APR 414.96 55N, 79L, 187C, 267P, 303P, 313F–314R, 264C–299S
AP 32.89 54G, 103W, 124S, 134D, 294L
Amine 138.85 78S, 117D, 293W, 296Y, 90V–122T, 207S–268F, 147K–226I, 168S–171P

YXX5 CAEEL APR 272.86 55N, 79L, 187C, 267P, 303P, 313F–314R, 305I–306Y
AP 6.85 54G, 103W, 124S, 134D, 294L
Peptide 220.08 44Y, 300C, 308F

YYI3 CAEEL APR 375.42 55N, 79L, 187C, 267P, 303P, 57L–82A, 313F–314R, 305I–306Y, 264C–299S
AP 28.07 103W, 124S, 134D
Amine 93.56 78S, 117D, 293W, 90V–122T, 207S–268F, 147K–226I, 259G–264C

TABLE VII
PDZ DOMAIN CLASSIFICATION

min Functional Number Number Accuracy
LLR Class Classified Correct (%)
0 Class I 80 63 78.7

Class II 13 13 100
Total 93 76 81.7

2 Class I 76 62 81.6
Class II 13 13 100
Total 89 75 84.3

5 Class I 72 61 84.7
Class II 13 13 100
Total 85 74 87.1

10 Class I 68 60 88.2
Class II 12 12 100
Total 80 72 90.0

minimum LLR values. Notice that as the minimum LLR
value increases (meaning our confidence in one class over
the other increases), the overall accuracy of our classification
increases, while the number of sequences classified decreases.
For a minimum LLR of 10, we classify the sequences with
an accuracy of 90% while still classifying 86% of the total
sequences.

IV. CONCLUSIONS

Our graphical models of residue coupling have a number
of advantages over traditional approaches to representing cou-
pling: rather than assessing dependence (which can conflate
direct and indirect relationships), they capture independence
(which enables modular reasoning about variation); they make
explicit the essential constraints underlying the family (e.g.,
by identifying a small set of couplings that explain the data
nearly as well as the complete set); they enable the integration
of structural and functional information; and their rigorous

probabilistic semantics enables prediction and inference. The
differential approach further helps distinguish residue conser-
vation and coupling constraints within a protein family as a
whole from those specific to particular functional classes.

In ongoing research, we intend to connect sequence-
structure-function relationships of the type learned here with
evolutionary models that aim to explain divergence of classes
within a family. We also hope to probe our models by protein
engineering experiments [33], [38] that test the importance
of identified constraints. We intend to develop sampling ap-
proaches that use a model to design novel sequences that
satisfy user-specified constraints but also remain faithful to the
evolutionarily compensatory behavior encoded in the model.
The ability to interpolate between class specific models is
potentially quite significant in that context. These and similar
ideas have been given a significant boost with the promising
results of Ranganathan and colleagues [32], [35]. Finally, we
are working to explore constraints acting on a protein family
not just among the residues of its members but also through
their interaction with other proteins (e.g., ligands). Specifically,
we aim to create ‘coupled’ graphical models that capture
residue covariation both within their respective families and
across them.
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