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ABSTRACT
Traditional disease surveillance can be augmented with a
wide variety of real-time sources such as, news and social
media. However, these sources are in general unstructured
and, construction of surveillance tools such as taxonomical
correlations and trace mapping involves considerable human
supervision. In this paper, we motivate a disease vocab-
ulary driven word2vec model (Dis2Vec) to model diseases
and constituent attributes as word embeddings from the
HealthMap news corpus. We use these word embeddings
to automatically create disease taxonomies and evaluate our
model against corresponding human annotated taxonomies.
We compare our model accuracies against several state-of-
the art word2vec methods. Our results demonstrate that
Dis2Vec outperforms traditional distributed vector repre-
sentations in its ability to faithfully capture taxonomical
attributes across different class of diseases such as endemic,
emerging and rare.

CCS Concepts
•Information systems→ Data mining; Information re-
trieval;

Keywords
Disease characterization; Domain-specific word embeddings;
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1. INTRODUCTION
Traditional disease surveillance has often relied on a mul-

titude of reporting networks such as outpatient networks,
on-field healthcare workers, and lab-based networks. Some
of the most effective tools while analyzing or mapping dis-
eases, especially for new diseases or disease spreading to new
regions, are reliant on building disease taxonomies which can
aid in early detection of outbreaks.
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In recent years, the ready availability of social and news
media has led to services such as HealthMap [7] which have
been used to track several disease outbreaks from news me-
dia ranging from the flu to Ebola. However, most of this data
is unstructured and often noisy. Annotating such corpora
thus requires considerable human oversight. While signifi-
cant information about both endemic [4, 22] and rare [19]
diseases can be extracted from such news corpora, tradi-
tional text analytics methods such as lemmatization and
tokenization are often shallow and do not retain sufficient
contextual information. More involved methods such as
topic models are too computationally expensive for real-time
worldwide surveillance and do not provide simple semantic
contexts that could be used to comprehend the data.
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Figure 1: Comparative performance evaluation of disease specific
word2vec model (Dis2Vec) across the disease characterization tasks
for 3 different class of diseases - endemic (blue), emerging (red) and
rare (green). The axes along the four vertices represent the modeling
accuracy for the disease characterization of interest viz. symptoms,
transmission agents, transmission methods, and exposures. The area
under the curve for each disease class represent the corresponding
overall accuracy over all the characterizations. Best characterization
performance can be seen for emerging diseases.

In recent years, several deep learning based methods, such
as word2vec and doc2vec, have been found to be promising
in analyzing such text corpora. These methods once trained
over a representative corpus can be readily used to analyze
new text and find semantic constructs (e.g. rabies:zoonotic
= salmonella:foodborne) which can be useful for automated
taxonomy creation. Classical word2vec methods are gener-
ally unsupervised requiring no domain information and as
such has broad applicability. However, for highly specified
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domains (such as disease surveillance) with moderate sized
corpus, classical methods fail to find meaningful semantic
relationships. For example, while determining the trans-
mission method of salmonella given that rabies is zoonotic
(i.e. querying rabies:zoonotic = salmonella:??), traditional
word2vec methods such as skip-gram model trained on the
HealthMap corpus fail to find a meaningful answer (saint-
paul).

Motivated by this problem, in this paper we postulate a
vocabulary driven word2vec algorithm that can find mean-
ingful disease constructs which can be used towards such
disease knowledge extractions. For example, for the afore-
mentioned task, vocabulary-driven word2vec algorithm gen-
erates the word foodborne, which is more meaningful in the
context of disease knowledge extraction. Our main contri-
butions are:

• We formulate Dis2Vec, a vocabulary driven word2vec
method which is used to generate disease specific word em-
beddings from unstructured health-related news corpus. Dis2Vec
allows domain knowledge in the form of pre-specified disease-
related vocabulary V to supervise the discovery process of
word embeddings.
• We use these disease specific word embeddings to gener-
ate automated disease taxonomies that are then evaluated
against human curated ones for accuracies.
• Finally, we evaluate the applicability of such word embed-
dings over different class of diseases - emerging, endemic and
rare for different taxonomical characterizations.

Preview of our results: In Figure 1, we provide a com-
parative performance evaluation of Dis2Vec across the dis-
ease characterization tasks for endemic, emerging and rare
diseases. It can be seen that Dis2Vec is best able to char-
acterize emerging diseases. Specifically, it is able to capture
symptoms, transmission methods and transmission agents,
with near-perfect accuracies for emerging diseases. Such dis-
eases (e.g. Ebola, H7N9) draw considerable media interest
due to their unknown characteristics. News articles report-
ing emerging outbreaks tend to focus on all characteristics of
such diseases - symptoms, exposures, transmission methods
and transmission agents. However, for endemic and rare dis-
eases, transmission agents and exposures are better under-
stood, and news reports tend to focus mainly on symptoms
and transmission methods. Dis2Vec can still be applied for
these class of diseases but with decreased accuracy for these
under-represented characteristics.

2. RELATED WORK
The related works of interest for our problem are primar-

ily from the field of neural-network based word embeddings
and their applications in a variety of NLP tasks. In recent
years, we have witnessed a tremendous surge of research
concerned with representing words from unstructured cor-
pus to dense low-dimensional vectors drawing inspirations
from neural-network language modeling [3, 5, 15]. These
representations, referred to as word embeddings, have been
shown to perform with considerable accuracy and ease across
a variety of linguistic tasks [1, 6, 20].

Mikolov et al. [12, 13] proposed skip-gram model, cur-
rently a state-of-the-art word embedding method, which can
be trained using either hierarchical softmax (SGHS) [13] or
the negative sampling technique (SGNS) [13]. Skip-gram
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Figure 2: Automated taxonomy generation from unstructured news
corpus (HealthMap) and a pre-specified vocabulary (V). Dis2Vec
inputs these information to generate disease specific word embeddings
that are then passed through a cosine comparator to generate the
taxonomy for the disease of interest.

models have been found to be highly efficient in finding
word embedding templates from huge amounts of unstruc-
tured text data and uncover various semantic and syntac-
tic relationships. Mikolov et al. [13] also showed that such
word embeddings have the capability to capture linguis-
tic regularities and patterns. These patterns can be rep-
resented as linear translations in the vector space. For ex-
ample, vec(Madrid) - vec(Spain) + vec(France) is closer to
vec(Paris) than any other word in their corpus [14, 9].

Levy et al. [10] analyzed the theoretical founding of skip-
gram model and showed that the training method of SGNS
can be converted into a weighted matrix factorization and its
objective induces an implicit factorization of a shifted PMI
matrix - the well-known word-context PMI matrix [2, 21]
shifted by a constant offset. In [11], Levy et al. performed
an exhaustive evaluation showing the impact of each pa-
rameter (window size, context distribution smoothing, sub-
sampling of frequent words and others) on the performance
of SGNS and other recent word embedding methods, such
as GLoVe [16]. They found that SGNS consistently prof-
its from larger negative samples (> 1) showing significant
improvement on various NLP tasks with higher values of
negative samples.

Previous works on neural embeddings (including the skip-
gram model) define the contexts of a word to be its linear
context (words preceding and following the target word).
Levy et al. [8] generalized the skip-gram model and used syn-
tactic contexts derived from automatically generated depen-
dency parse-trees. These syntactic contexts were found to
capture more functional similarities, while the bag-of-words
nature of the contexts in the original skip-gram model gen-
erates broad topical similarities.

3. MODEL

3.1 Problem Overview
Disease taxonomy generation is the process of tabulating

characteristics of diseases w.r.t. several pre-specified cat-



egories such as symptoms and transmission agents. Ta-
ble 1 gives an example of taxonomy for three diseases viz.
an emerging disease (H7N9), an endemic disease (avian in-
fluenza) and a rare disease (plague). Traditionally, such tax-
onomies are human curated - either from prior expert knowl-
edge or by combining a multitude of reporting sources. News
reports covering disease outbreaks can often contain disease
specific information, albeit in an unstructured way. Our
aim is to generate automated taxonomy of diseases similar
to Table 1 using such unstructured information from news
reports. Such automated methods can greatly simplify the
process of generating taxonomies, especially for emerging
diseases, and lead to a timely dissemination of such informa-
tion towards public health services. In general, such disease
related news corpus is of moderate size for deep-learning
methods and as explained in section 1, unsupervised meth-
ods often fail to extract meaningful information. Thus we
incorporate domain knowledge in the form of a flat-list of
disease related terms such as disease names, possible symp-
toms and possible transmission methods, hereafter referred
to as the vocabulary V. Figure 2 shows the process of auto-
mated taxonomy generation where we employ a supervised
word2vec method referred to as Dis2Vec which takes the
following inputs - (a) the pre-specified disease vocabulary V
and (b) unstructured news corpus D and generates embed-
dings for each word (including words in the vocabulary V)
in the corpus. Once word embeddings are generated, we em-
ploy a cosine comparator to create a tabular list of disease
taxonomies similar to Table 1. In this cosine comparator,
to classify each disease for a taxonomical category, we cal-
culate the cosine similarities between the embedding for the
disease name and embeddings for all possible words related
to that category. Then, we sort these cosine similarities (in
descending order) and extract the words (higher up in the
order) closer to the disease name hereafter referred to as
top words found for that category. For example, to extract
the transmission agents for plague, we calculate the cosine
similarities between the embedding for the word plague and
the embeddings for all possible terms related to transmission
agents and extract the top words by sorting the terms w.r.t.
these similarities. We can compare the top words found for
a category with the human annotated words to compute the
accuracy of the taxonomy generated from word embeddings.
In the next 2 subsections, we will briefly discuss the basic
word2vec model (skip-gram model with negative sampling)
followed by the detailed description of our vocabulary driven
word2vec model Dis2Vec.

3.2 Basic Word2vec Model
In this section, we present a brief description of SGNS

- the skip-gram model introduced in [12] trained using the
negative sampling procedure in [13]. The objective of the
skip-gram model is to infer word embeddings that will be
relevant for predicting the surrounding words in a sentence
or a document. It is to be noted that the skip-gram model
can also be trained using Hierarchical Softmax method as
shown in [13].

The inputs to the skip-gram model are a corpus of words
w ∈ W and their corresponding contexts c ∈ C whereW and
C are the word and context vocabularies. In SGNS , the con-
texts of word wi are defined by the words surrounding it in
an L-sized context window wi−L, . . . , wi−1, wi+1, . . . , wi+L.
In order to convert the corpus D of unstructured news re-

Table 1: Human curated disease taxonomy for three diseases from
three different class of diseases (endemic, emerging, and rare).

Disease Transmission
methods

Transmission
agents

Clinical
symptoms

Exposures

Avian
influenza
(endemic)

zoonotic domestic
animal,
wild animal

Fever,
cough, sore
throat,
diarrhea,
vomiting

animal
expo-
sure,
farmer,
market,
slaughter

H7N9
(emerging)

zoonotic domestic
animal

Fever,
cough,
pneumonia

farmer,
market,
slaugh-
ter,
animal
exposure

Plague
(rare)

vectorborne,
zoonotic

flea, wild
animal

Sore, fever,
headache,
muscle ache,
vomiting,
nausea

animal
expo-
sure,
veteri-
narian,
farmer

ports into a collection of observed (w, c) pairs, the textual
content of each news report is processed to generate a set of
unique terms or words and then the contexts of each such
term are extracted by identifying the words surrounding it
in an L-sized window. The notation #(w, c) represents the
number of times the pair (w, c) occurs in D. Therefore,
#(w) =

∑
c∈C(w, c) and #(c) =

∑
w∈W(w, c) where #(w)

and #(c) are the total number of times w and c occurred
in D. Each word w ∈ W corresponds to a vector w ∈ RT

and similarly, each context c ∈ C is represented as a vector
c ∈ RT , where T is the dimensionality of the word or con-
text embedding. The entries in the vectors are the latent
parameters to be learned.

SGNS tries to maximize the probability whether a single
word-context pair (w, c) was generated from the observed
corpus D. Let P (D = 1|w, c) refers to the probability that
(w, c) was generated from the corpus, and P (D = 0|w, c) =
1 − P (D = 1|w, c) the probability that (w, c) was not. The
objective function for a single (w, c) pair is modeled as:

P (D = 1|w, c) = σ(w · c) = 1
1+e−w·c (1)

where w and c are the T -dimensional latent parameters or
vectors to be learned.

The objective of the negative sampling is to maximize
P (D = 1|w, c) for observed (w, c) pairs while maximizing
P (D = 0|w, c) for randomly sampled negative contexts (hence
the name negative sampling), under the assumption that
randomly selecting a context for a given word will tend to
generate an unobserved (w, c) pair. SGNS ’s objective for a
single (w, c) observation is then:

log σ(w · c) + k · EcN∼PD [log σ(−w · cN)] (2)

where k is the number of negative samples and cN is the sam-
pled context, drawn according to the smoothed unigram dis-

tribution PD(c) = #(c)α∑
c#(c)α

where α = 0.75 is the smoothing

parameter. E represents the expectation term.
The objective of SGNS is trained in an online fashion

using stochastic gradient updates over the observed pairs
in the corpus D. The global objective then sums over the
observed (w, c) pairs in the corpus:



lSGNS =
∑

(w,c)∈D

(
log σ(w · c) + k · EcN∼PD [log σ(−w · cN)]

)
(3)

Optimizing this objective will have a tendency to generate
similar embeddings for observed word-context pairs, while
scattering unobserved pairs in the vector space. Intuitively,
words that appear in similar contexts or tend to appear in
the contexts of each other should have similar embeddings.

3.3 Disease Specific Word2vec Model (Dis2Vec)
In this section, we introduce Dis2Vec, a disease specific

word2vec model whose objective is to generate word embed-
dings which will be useful for automatic disease taxonomy
creation given an input unstructured corpus D. We used
a pre-specified disease-related vocabulary V (domain infor-
mation) to guide the discovery process of word embeddings
in Dis2Vec. The input corpus D consists of a collection of
(w, c) pairs. Based on V, we can categorize the (w, c) pairs
into three types as shown below:

• D(d) = {(w, c) : w ∈ V ∧ c ∈ V}, i.e. both the word w and
the context c are in V
• D(¬d) = {(w, c) : w /∈ V ∧ c /∈ V}, i.e. neither the word w
nor the context c are in V
• D(d)(¬d) = {(w, c) : w ∈ V ⊕ c ∈ V}, i.e. either the word w
is in V or the context c is in V but both cannot be in V

Therefore, the input corpus D can be represented as D =
D(d) + D(¬d) + D(d)(¬d). Each of these categories of (w, c)
pairs needs special consideration while generating disease
specific embeddings.

3.3.1 Vocabulary Driven Negative Sampling
The first category (D(d)) of (w, c) pairs, where both w and

c are in V (w ∈ V ∧ c ∈ V), is of prime importance in gen-
erating disease specific word embeddings. Our first step in
generating such embeddings is to maximize log σ(w · c) in
order to achieve similar embeddings for these disease word-
context pairs. Apart from maximizing the dot products,
following classical approaches [13], negative sampling is also
required to generate robust embeddings. In Dis2Vec, we
adopt a vocabulary (V) driven negative sampling for these
disease word-context pairs. In this vocabulary driven ap-
proach, instead of random sampling we sample negative ex-
amples (cN ) from the set of non-disease contexts, i.e. con-
texts which are not in V (c /∈ V). This targeted sampling of
negative contexts will ensure dissimilar embeddings of dis-
ease words (w ∈ V) and non-disease contexts (c /∈ V), thus
scattering them in the vector space. However, sampling neg-
ative examples only from the set of non-disease contexts may
lead to overfitting and thus, we introduce a sampling param-
eter πs which controls the probability of drawing a negative
example from non-disease contexts (c ∈ V) versus disease
contexts (c ∈ V). Dis2Vec’s objective for (w, c) ∈ D(d) is

shown below in equation 4.

lD(d)
=

∑
(w,c)∈D(d)

(
log σ(w · c) (4)

+ k · [P (xk < πs)EcN∼PDc/∈V
[log σ(−w · cN)]

+ P (xk ≥ πs)EcN∼PDc∈V
[log σ(−w · cN)]]

)
where xk ∼ U(0, 1), U(0,1) being the uniform distribution
on the interval [0,1]. If xk < πs, we sample a negative con-
text cN from the unigram distribution PDc/∈V where Dc/∈V
is the collection of (w, c) pairs for which c /∈ V and PDc/∈V =

#(c)α∑
c/∈V #(c)α

where α is the smoothing parameter. For values

of xk ≥ πs, we sample cN from the unigram distribution

PDc∈V and PDc∈V = #(c)α∑
c∈V #(c)α

. Therefore, optimizing the

objective in equation 4 will have a tendency to generate dis-
ease specific word embeddings for values of πs ≥ 0.5 due
to the reason that higher number of negative contexts (cN )
will be sampled from the set of non-disease contexts (c /∈ V)
with πs ≥ 0.5.

3.3.2 Out-of-vocabulary Objective Regularization
The second category (D(¬d)) of (w, c) pairs consists of

those pairs for which both w and c are not in V (w /∈ V ∧c /∈
V). These pairs are uninformative to us in generating dis-
ease specific word embeddings since both w and c are not
a part of V. However, minimizing the dot products, i.e.
optimizing the objective log σ(−w · c) for these non-disease
word-context pairs will scatter them in the embedding space
(dissimilar embeddings) and thus, a word w /∈ V can have
similar embeddings (or, get closer) to a word w ∈ V which
should be avoidable in our scenario. Therefore, we need to
maximize log σ(w·c) for these (w, c) pairs in order to achieve
similar (or, closer) embeddings. We adopt the basic objec-
tive function of SGNS for (w, c) ∈ D(¬d) as shown below in
equation 5.

lD(¬d) =
∑

(w,c)∈D(¬d)

(
log σ(w·c)+k·EcN∼PD [log σ(−w·cN)]

)
(5)

3.3.3 Vocabulary Driven Objective Minimization
Lastly, the third category (D(d)(¬d)) consists of (w, c) pairs

where either w is in V or c is in V (w ∈ V ⊕ c ∈ V) but both
cannot be in V. Consider an arbitrary (w, c) pair belonging
to D(d)(¬d). As per the objective (equation 3) of SGNS , two
words are similar to each other if they share the same con-
texts or if they tend to appear in the contexts of each other
(and preferably both). If w ∈ V and c /∈ V, then maximiz-
ing log σ(w · c) will have the tendency to generate similar
embeddings for the disease word w ∈ V and non-disease
words /∈ V which share the same non-disease context c /∈ V.
On the other word, if c ∈ V and w /∈ V, then maximiz-
ing log σ(w · c) will drive the embedding of the non-disease
word w /∈ V closer to the embeddings of disease words ∈ V
sharing the same disease context c ∈ V. Therefore, we
posit that the dot products for this category of (w, c) pairs
should be minimized, i.e. the objective log σ(−w · c) should
be optimized in order to ensure dissimilar embeddings for
these (w, c) pairs. However, minimizing the dot products
of all such word-context pairs may lead to over-penalization



and thus we introduce an objective selection parameter πo

which controls the probability of selecting log σ(−w ·c) ver-
sus log σ(w · c). The objective for (w, c) ∈ D(d)(¬d) is shown
below in equation 6.

lD(d)(¬d) =
∑

(w,c)∈D(d)(¬d)

(
P (z < πo) log σ(−w · c) (6)

+ P (z ≥ πo) log σ(w · c)

)
where z ∼ U(0, 1), U(0,1) being the uniform distribution
over the interval [0,1]. If z < πo, log σ(−w · c) gets op-
timized, otherwise Dis2Vec optimizes log σ(w · c). There-
fore, optimizing the objective in equation 6 will have a ten-
dency to generate disease specific embeddings with values of
πo ≥ 0.5 due to the reason that the objective log σ(−w · c)
will be selected for optimization with a higher probability
over log σ(w · c).
Finally, the overall objective of Dis2Vec comprising all three
categories of (w, c) pairs can be defined as below.

lDis2Vec = lD(d)
+ lD(¬d) + lD(d)(¬d) (7)

Similar to SGNS , the objective in equation 7 is trained in
an online fashion using stochastic gradient updates over the
three categories of (w, c) pairs.

Algorithm 1: Dis2Vec model

Input : Unstructured corpus D = {(w, c)}, V
Output: word embeddings w∀w ∈ W, column embeddings

c∀c ∈ C
1 Categorize D into 3 types: D(d) = {(w, c) : w ∈ V ∧ c ∈ V},
D(¬d) = {(w, c) : w /∈ V ∧ c /∈ V},
D(d)(¬d) = {(w, c) : w ∈ V ⊕ c ∈ V}

2 for each (w, c) ∈ D do
3 if (w, c) ∈ D(d) then
4 train the (w, c) pair using the objective in equation 4

5 else if (w, c) ∈ D(¬d) then
6 train the (w, c) pair using the objective in equation 5

7 else
8 train the (w, c) pair using the objective in equation 6

3.4 Parameters in Dis2Vec

Dis2Vec inherits all the parameters of SGNS , such as di-
mensionality (T ) of the word embeddings, window size (L),
number of negative samples (k) and context distribution
smoothing (α). It also introduces two new parameters - the
objective selection parameter (πo) and the sampling parame-
ter (πs). The explored values for each of the aforementioned
parameters are shown in Table 6.

4. EXPERIMENTAL EVALUATION
We evaluated Dis2Vec against several state-of-the art meth-

ods. In this section, we first provide a brief description of our
experimental setup, including the disease news corpus, hu-
man annotated taxonomy and the domain information used
as the vocabulary V for the process. We present our experi-
mental findings in Section 4.2 where we have compared our
model against several baselines and also explore its applica-
bility to emerging diseases.

4.1 Experimental Setup

4.1.1 Corpus
We collected a dataset corresponding to a corpus of pub-

lic health-related news articles in English extracted from
HealthMap [7], a prominent online aggregator of news ar-
ticles from all over the world for disease outbreak moni-
toring and real-time surveillance of emerging public health
threats. Each article contains the following information -
textual content, disease tag, reported date and location in-
formation in the form of (lat, long) coordinates. The arti-
cles were reported during the time period 2010 to 2014 and
correspond to locations from all over the world. The tex-
tual content of each article was pre-processed by sentence
splitting, tokenization and lemmatization via BASIS Tech-
nologies’ Rosette Language Processing (RLP) tools [17]. Af-
ter pre-processing, the corpus consisting of 124850 articles
was found to contain 1607921 sentences, spanning 52679298
words. Words that appeared less than 5 times in the corpus
were ignored, resulting in a vocabulary of 91178 words.

4.1.2 Human Annotated Taxonomy
Literature reviews were conducted for each of the 39 infec-

tious diseases of interest in order to make classifications for
transmission methods, transmission agents, clinical symp-
toms and exposures or risk factors. These 39 diseases were
selected such that no bias is included in the process, i.e.
they represent a diversity of infectious diseases ranging from
emerging (H7N9, Ebola) to endemic (dengue, avian influenza)
to rare (plague, hantavirus, yellow fever).

Methods of transmission were first classified into 8 sub-
categories - direct contact, droplet, airborne, zoonotic, vec-
torborne, waterborne, foodborne, and environmental. For
many diseases, multiple subcategories of transmission meth-
ods could be assigned. Transmission agents were classified
into 8 subcategories - wild animal, fomite, fly, mosquito,
bushmeat, flea, tick and domestic animal. The category of
clinical symptoms was broken down into 8 subcategories:
general, gastrointestinal, respiratory, nervous system, cuta-
neous, circulatory, musculoskeletal, and urogenital. A full
list of the symptoms within each subcategory can be found
in Table 2. For disease exposures or risk factors, 7 sub-
categories were assigned based on those listed/most com-
monly reported in the literature. The subcategories in-
clude: healthcare facility , healthcare worker, schoolchild,
mass gathering, travel, animal exposure, and weakened im-
mune system. The animal exposure category was further
broken down into farmer, veterinarian, market and slaugh-
ter. For some diseases, there were no risk factors listed, and
for other diseases, multiple exposures were assigned.

Table 2: Symptom categories and corresponding words.

Symptom Category Words

General Fever, chill, weight loss, fatigue, lethargy,
headache

Gastrointestinal Abdominal pain, nausea, diarrhea, vomiting
Respiratory Cough, runny nose, sneezing, chest pain, sore

throat, pneumonia, dyspnea
Nervous system Mental status, paralysis, paresthesia, en-

cephalitis, meningitis
Cutaneous Rash, sore, pink eye
Circulatory Hemorrhagic
Musculoskeletal Joint pain, muscle pain, muscle ache
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Figure 3: Distribution of word counts corresponding to each taxonom-
ical category in the disease vocabulary (V). Words related to clinical
symptoms constitute the majority of V with relatively much smaller
percentages of terms related to exposures, transmission agents and
transmission methods

4.1.3 Disease Vocabulary V
Disease vocabulary V is provided as prior knowledge to

Dis2Vec in order to generate disease specific word embed-
dings as explained in section 3.3. V is represented by a
flat list of disease-related terms consisting of disease names
(influenza, h7n9, plague, ebola, etc.), all possible words re-
lated to transmission methods(vectorborne, foodborne, wa-
terborne, etc.), all possible words related to transmission
agents (flea, domestic animal, mosquito, etc.), all possible
words related to clinical symptoms (fever, nausea, paralysis,
cough, headache, etc.) and all possible words related to ex-
posures or risk factors (healthcare facility, slaughter, farmer,
etc.). We treat the multi-word expressions (e.g. healthcare
facility, sore throat) in V as phrases, i.e. we learn a single
embedding for these expressions, not a composite embed-
ding of its individual terms. Total number of words in V is
found to be 103. In Figure 3, we show the distribution of
word counts associated with different taxonomical categories
in the disease vocabulary (V). As depicted in Figure 3, half
of the words in V are terms related to clinical symptoms
followed by exposures or risk factors (22.4%), transmission
methods (13.8%) and transmission agent(s) (13.8%).

4.1.4 Baselines
We compared the following baseline models with Dis2Vec

on the four disease characterization tasks.
• SGNS : Unsupervised skip-gram model with negative sam-
pling [13] described in section 3.2.
• SGHS : skip-gram model trained using the hierarchical
softmax algorithm [13] instead of negative sampling.
•CBOW : Continuous bag-of-words model described in [12].
Unlike skip-gram models, the training objective of the CBOW
model is to correctly predict the target word given its con-
texts (surrounding words). CBOW is denoted as a bag-of-
words model as the order of words in the contexts does not
have any impact on the model.
All models (both baselines and Dis2Vec) were trained on
the HealthMap corpus using a T -dimensional word embed-
ding via gensim’s word2vec software [18]. We explored a
large space of parameters for each model. In Table 6, we
provide the list of parameters, the explored values for each
parameter and the applicable models corresponding to each

parameter. Apart from the parameters listed in Table 6,
we also applied the sub-sampling technique developed by
Mikolov et al. [13] to each model in order to counter the
imbalance between common words (such as, is, of, the, a,
etc.) and rare words. In the context of NLP, these common
words are referred to as stop words. For more details on
the sub-sampling techniques, please see Mikolov et al. [13].
Our initial experiments (not reported) demonstrated that
both the baselines and Dis2Vec showed improved results on
the disease characterization tasks with sub-sampling versus
without sub-sampling.

4.1.5 Accuracy Metric
We evaluate the automatic taxonomy generation meth-

ods such that for a taxonomical characteristic of a disease,
models that generate similar set of terms (top words) as the
human annotated ones are more preferable. As such, we use
cosine similarity in a min-max setting between the afore-
mentioned sets for a particular characterization category as
our accuracy metric. The overall accuracy of a model for
a category can be found by averaging the accuracy values
across all diseases of interest. This is a bounded metric (be-
tween 0 and 1) where higher values indicate better model
performance. We can formalize the metric as follows. Let D
be the disease and C be the taxonomical category under in-
vestigation. Furthermore, let C1, C2, · · · , CN be all possible
terms or words related to C and H1, H2, · · · , HM be the hu-
man annotated words. Then the characterization accuracy
corresponding to category C and disease D is given below
in equation 8.

Accuracy(C,D) =
1

M

M∑
j=1

cosine(D,Hj)−mini cosine(D,Ci)

maxi cosine(D,Ci)−mini cosine(D,Ci)

(8)

where D, Hj and Ci represent the word embeddings for D,
Hj and Ci. mini cosine(D,Ci) and maxi cosine(D,Ci) rep-
resent the maximum and minimum cosine similarity values
between D and the word embeddings of the terms related
to C. Therefore, equation 8 indicates that if the human
annotated word Hj is among the top words found by the
word2vec model for the category C, then the ratio in the
numerator is high leading to high accuracy and vice versa.

4.2 Results
In this section we try to ascertain the efficacy and the ap-

plicability of Dis2Vec by investigating some of the pertinent
questions related to the problem of disease characterization.

Sample-vs-objective: which is the better method
to incorporate disease vocabulary information into
Dis2Vec? As described in Section 3, there are primarily
two different ways by which disease vocabulary information
(V) guides the generation of embeddings for Dis2Vec (a)
by modulating negative sampling parameter (πs) for disease
word-context pairs ((w, c) ∈ D(d)) referred to as Dis2Vec-
sample and (b) by modulating the objective selection pa-
rameter (πo) for non-disease words or non-disease contexts
((w, c) ∈ D(d)(¬d)) referred to as Dis2Vec-objective. We in-
vestigate the importance of these two strategies by compar-
ing the accuracies for each strategy individually (Dis2Vec-
sample and Dis2Vec-objective) as well as combined together
(Dis2Vec-combined) under the best parameter configuration
for a particular task in Table 3. As can be seen, no single
strategy is best across all tasks. Henceforth, we select the



best performing strategy for a particular task as our Dis2Vec
in the next Table 4.

Table 3: Comparative performance evaluation of Dis2Vec-combined
against Dis2Vec-objective and Dis2Vec-sample across the 4 charac-
terization tasks under the best parameter configuration for that model
and task combination. The value in each cell represents the overall
accuracy across the 39 diseases for that particular model and char-
acterization task. We use equation 8 as the accuracy metric in this
table.

Characterization tasks Dis2Vec-
sample

Dis2Vec-
objective

Dis2Vec-
combined

Symptoms 0.635 0.945 0.940
Exposures 0.590 0.540 0.597
Transmission methods 0.794 0.754 0.734
Transmission agents 0.505 0.506 0.516
Overall average accuracy 0.631 0.686 0.697

Table 4: Comparative performance evaluation of Dis2Vec against
SGNS , SGHS and CBOW across the 4 characterization tasks under
the best parameter configuration for that model and task combina-
tion. The value in each cell represents the overall accuracy across the
39 diseases for that particular model and characterization task. We
use equation 8 as the accuracy metric in this table.

Characterization tasks CBOW SGHS SGNS Dis2Vec

Symptoms 0.498 0.560 0.620 0.945
Exposures 0.383 0.498 0.605 0.597
Transmission methods 0.481 0.765 0.792 0.794
Transmission agents 0.274 0.466 0.498 0.516
Overall average accuracy 0.409 0.572 0.629 0.713

Does disease vocabulary information improve dis-
ease characterization? Dis2Vec was designed to incor-
porate disease vocabulary information in order to guide the
generation of disease specific word embeddings. To evaluate
the importance of such vocabulary information in Dis2Vec,
we compare the performance of Dis2Vec against the base-
line word2vec models described in section 4.1.4 under the
best parameter configuration for a particular task. These
baseline models do not permit incorporation of any vocabu-
lary information due to their unsupervised nature. Table 4
presents the accuracy of the models for the 4 disease charac-
terization tasks - symptoms, exposures, transmission meth-
ods and transmission agents. As can be seen, Dis2Vec per-
forms the best for 3 tasks and in average. It is also interest-
ing to note that Dis2Vec achieves higher performance gain
over the baseline models for the symptoms category than
the other categories. The superior performance of Dis2Vec
in the symptoms category can be attributed to two factors
- (a) higher percentage of symptom words in the disease
vocabulary V (see Figure 3) and (b) higher occurrences of
symptom words in the HealthMap news corpus. News ar-
ticles reporting a disease outbreak generally tend to focus
more on the symptoms related to the disease rather than
the other categories. Given the functionality of Dis2Vec,
higher occurrences of symptom terms in outbreak news re-
ports will lead to generation of efficient word embeddings
for characterizing disease symptoms.

What are beneficial parameter configurations for
characterizing diseases? To identify which parameter
settings are beneficial for characterizing diseases, we looked
at the best parameter configuration of all the 6 models on
each task. We then counted the number of times each pa-
rameter setting was chosen in these configurations (see Ta-
ble 6). We compared standard settings of each parameter as
explored in previous research [11]. For the new parameters
πs and πo introduced by Dis2Vec, we chose the values 0.3,

Table 7: Comparative performance evaluation of Dis2Vec against
SGNS , SGHS and CBOW across the 4 characterization tasks for
each class of diseases (emerging, endemic and rare) under the best
parameter configuration for a particular {disease class, task, model}
combination. We use equation 8 as the accuracy metric in this table.

C
la

ss

Tasks CBOW SGHS SGNS Dis2Vec

E
m

e
rg

in
g Symptoms 0.589 0.671 0.722 0.977

Exposures 0.356 0.495 0.516 0.679
Transmission methods 0.407 0.885 0.898 0.945
Transmission agents 0.528 0.587 0.795 0.975

E
n
d
e
m

ic Symptoms 0.453 0.583 0.671 0.930
Exposures 0.421 0.512 0.642 0.631
Transmission methods 0.472 0.820 0.851 0.856
Transmission agents 0.164 0.399 0.408 0.415

R
a
re

Symptoms 0.506 0.536 0.599 0.949
Exposures 0.377 0.525 0.616 0.670
Transmission methods 0.503 0.760 0.755 0.775
Transmission agents 0.320 0.522 0.512 0.515

0.5 and 0.7 in order to analyze the impact of these parame-
ters with values < 0.5 and ≥ 0.5. For Dis2Vec-objective and
Dis2Vec-combined , some trends emerge regarding the pa-
rameter πo that these two models consistently benefit from
values of πo ≥ 0.5 validating our claims in section 3.3 that
when πo ≥ 0.5, disease words and non-disease words get
scattered from each other in the vector space, thus tending
to generate disease specific embeddings. However, for πs we
observe mixed trends. As expected, Dis2Vec-sample bene-
fits from higher values of sampling parameter πs ≥ 0.5. But
Dis2Vec-combined seems to prefer lower values of πs < 0.5
and higher values of πo ≥ 0.5 for the disease characterization
tasks. For the smoothing parameter(α), all the applicable
models prefer smoothed unigram distribution (α = 0.75)
for negative sampling except Dis2Vec-combined which is in
favor of unsmoothed distribution (α = 1.0) for character-
izing diseases. For the number of negative samples k, all
the applicable models seem to benefit from k > 1 except
Dis2Vec-combined which seems to prefer k = 1. For the
window size (L), all the models prefer smaller-sized con-
text windows (either 5 or 10) except SGHS which prefers
larger-sized windows (L > 10) for characterizing diseases.
Finally, regarding the dimensionality (T ) of the embeddings,
Dis2Vec-combined , Dis2Vec-sample and SGNS are in equal
favor of both 300 and 600 dimensions. Dis2Vec-objective
and SGHS prefer 300 dimensions and CBOW is in favor of
600 dimensions for characterizing diseases.

Importance of taxonomical categories - how should
we construct the disease vocabulary? We followup our
previous analysis by investigating the importance of words
related to each taxonomical category in constructing the dis-
ease vocabulary towards final characterization accuracy. To
evaluate a particular category, we used a truncated disease
vocabulary consisting of disease names and the words in
the corresponding category to drive the discovery of word
embeddings in Dis2Vec under the best parameter configu-
ration for that category. We compared the accuracy of each
of these conditions (Dis2Vec (exposures), Dis2Vec (trans-
mission methods), Dis2Vec (transmission agents), Dis2Vec
(symptoms)) against Dis2Vec (full vocabulary) across the 4
characterization tasks. Table 5 presents our results for this
analysis and provides multiple insights as follows. (a) Con-
structing the vocabulary with words related to all the cat-
egories leads to better characterization across all the tasks.
(b) As expected, Dis2Vec (symptoms) is the second best
performing model for the symptoms category but it’s per-



Table 5: Comparative performance evaluation of Dis2Vec with full vocabulary against each of the 6 conditions of Dis2Vec with a truncated
vocabulary across the 4 characterization tasks where the truncated vocabulary consists of disease names and all possible terms related to a
particular taxonomical category. We use equation 8 as the accuracy metric in this table.

Characterization tasks
Dis2Vec
(Exposures)

Dis2Vec
(Transmission methods)

Dis2Vec
(Transmission agents)

Dis2Vec
(Symptoms)

Dis2Vec
(full vocabulary)

Symptoms 0.597 0.581 0.165 0.883 0.945
Exposures 0.554 0.557 0.315 0.416 0.597
Transmission methods 0.748 0.768 0.517 0.455 0.794
Transmission agents 0.446 0.459 0.467 0.457 0.516

Table 6: Comparison of different parameter settings for each model, measured by the number of characterization tasks in which the best
configuration had that parameter setting. Non-applicable combinations are marked by ‘NA’

Method
T L k α πs πo

300 : 600 5 : 10 : 15 1 : 5 : 15 0.75 : 1 0.3 : 0.5 : 0.7 0.3 : 0.5 : 0.7

Dis2Vec-combined 2 : 2 3 : 1 : 0 2 : 1 : 1 1 : 3 4 : 0 : 0 0 : 2 : 2
Dis2Vec-sample 2 : 2 2 : 1 : 1 1 : 1 : 2 4 : 0 1 : 2 : 1 NA
Dis2Vec-objective 3 : 1 2 : 2 : 0 1 : 1 : 2 3 : 1 NA 2 : 0 : 2
SGNS 2 : 2 2 : 2 : 0 0 : 2 : 2 2 : 2 NA NA
SGHS 3 : 1 1 : 0 : 3 NA NA NA NA
CBOW 0 : 4 0 : 4 : 0 NA NA NA NA

formance is degraded for other tasks. The same goes for
Dis2Vec (transmission methods) and Dis2Vec (transmission
agents). (c) Therefore, it indicates that in order to achieve
reasonable characterization accuracy for a category, we need
to supply at least the words related to that category along
with the disease names in constructing the vocabulary.

Can Dis2Vec be applied to characterize emerg-
ing, endemic and rare diseases? We classified the
39 diseases of interest into 3 classes as follows. For classi-
fying each disease, we plotted the time series of the counts
of HealthMap articles with disease tag equal to the corre-
sponding disease. (a) Endemic: We considered a disease
as endemic if the counts of articles were consistently high
for all years with repeating shapes. E.g.- rabies, avian in-
fluenza, west nile virus. (b) Emerging: We considered a
disease as emerging if the counts of articles were historically
low, but have peaked in recent years. E.g.- Ebola, H7N9,
MERS. (c) Rare: We considered a disease as rare if the
counts were consistently low for all years with or without
sudden spikes. E.g.- plague, chagas, japanese encephalitis.
We also considered a disease as rare if the counts of arti-
cles were high in 2010/2011, but have since fallen down and
depicted consistently low counts. E.g.- tuberculosis. Follow-
ing classification, the distribution of emerging, endemic and
rare diseases is 4 : 12 : 23 respectively. In Table 7, we com-
pared the accuracy of Dis2Vec against the baseline word2vec
models for each class of diseases across the 4 characteriza-
tion tasks under the best parameter configuration for a par-
ticular {disease class, task, model} combination. It can be
seen that Dis2Vec is the best performing model for majority
of the {disease class, task} combinations except {endemic,
exposures} and {rare, transmission agents}. It is interesting
to note that for the symptoms category, Dis2Vec performs
better than the baseline models across all the disease classes.
Irrespective of disease class, news reports generally mention
the symptoms of the disease while reporting an outbreak. As
the characteristics of the emerging diseases are relatively un-
known w.r.t. endemic and rare, news media reports also tend
to focus on other categories (exposures, transmission meth-
ods, transmission agents) apart from the symptoms to create
awareness among the general public. Therefore, Dis2Vec
and the baselines perform better overall for the emerging
diseases in comparison to endemic and rare diseases. How-
ever, Dis2Vec outperforms the baselines for characterizing

symptoms and exposures of emerging diseases. For endemic
and rare diseases, Dis2Vec achieves higher accuracy than the
baseline models w.r.t. the symptoms category. For other
categories, Dis2Vec performs better overall, although the
performance gain is not high in comparison to the symp-
toms. It is to be noted that Dis2Vec achieves reasonable
accuracy for characterizing rare diseases even though the
number of articles related to these diseases is very few in
HealthMap corpus leading to under-represented categories.
In Figure 4, we show the top words selected for each category
of an emerging disease (H7N9), an endemic disease (avian
influenza) and a rare disease (plague) across all the models.
The human annotated words corresponding to each category
of these diseases can be found in Table 1. We selected these
3 diseases due to their public health significance and the
fact that these diseases have complete coverage across all
the taxonomical categories (see Table 1). It is interesting to
note that for H7N9, the top words found by Dis2Vec for the
symptoms category contain all the human annotated words
fever, cough and pneumonia, while the top words found by
SGNS only contain the word fever. For exposures (H7N9),
Dis2Vec is able to capture three human annotated words
animal exposure, farmer, slaughter. However, SGNS is only
able to capture the word animal. For the symptoms cat-
egory of the rare disease plague, Dis2Vec is able to detect
three human annotated words sore, fever and headache with
SGNS only being able to detect the word fever. Moreover,
Dis2Vec is able to characterize the transmission method of
plague as vectorborne with SGNS failing to do so.

5. CONCLUSIONS
Classical word2vec methods such as SGNS and SGHS

have been applied to solve a variety of linguistic tasks with
considerable accuracy. However, such methods fail to gen-
erate satisfactory embeddings for highly specific domains
such as healthcare where uncovering the relationships with
respect to domain specific words is of greater importance
than the non-domain ones. These algorithms are by design
unsupervised and do not permit the inclusion of domain in-
formation to find interesting embeddings. In this paper, we
have proposed Dis2Vec, a disease specific word2vec frame-
work that given an unstructured news corpus and domain
knowledge in terms of important words, can find interesting
disease characterizations. We demonstrated the strength of



our model by comparing it against three classical word2vec
methods on four disease characterization tasks. Dis2Vec ex-
hibits the best overall accuracy for 3 tasks across all the
diseases and in general, its relative performance improve-
ment is found to be empirically dependent on the amount of
supplied domain knowledge. Consequently, Dis2Vec works
especially well for characteristics with more domain knowl-
edge (symptoms) and is found to be a promising tool to
analyze different class of diseases viz. emerging, endemic
and rare. In future, we aim to analyze a greater variety of
diseases and try to ascertain common relationships between
such diseases across different geographical regions.

Supplementary Information
https://github.com/sauravcsvt/Dis2Vec supplementary.
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Figure 4: Case study for emerging, endemic and rare diseases: Disease characterization accuracy plot for Dis2Vec (first quadrant, red), SGNS (sec-
ond quadrant, blue), SGHS (third quadrant, green), and CBOW (fourth quadrant, orange) w.r.t. H7N9 (left, emerging), avian influenza (middle,
endemic) and plague (right, rare). The shaded area in a quadrant indicates the cosine similarity (scaled between 0 and 1) of the top words found
for the category of interest using corresponding model, as evaluated against the human annotated words (see Table 1). The top words found for
each model is shown in the corresponding quadrant with radius equal to its average similarity with the human annotated words for the disease.
Dis2Vec shows best overall performance with noticeable improvements for symptoms w.r.t. all diseases.
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