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ABSTRACT

Early detection and modeling of a contagious epidemic can pro-

vide important guidance about quelling the contagion, controlling

its spread, or the effective design of countermeasures. A topic of

recent interest has been the design of social network sensors, i.e.,

identifying a small set of people who can be monitored to provide

insight into the emergence of an epidemic in a larger population.

We formally pose the problem of designing social network sensors

for flu epidemics and identify two different objectives that could

be targeted in such sensor design problems. Using the graph the-

oretic notion of dominators we develop an efficient and effective

heuristic for forecasting epidemics at lead time. Using six city-scale

datasets generated by extensive microscopic epidemiological simu-

lations involving millions of individuals, we illustrate the practical

applicability of our methods and show significant benefits (up to

twenty-two days more lead time) compared to other competitors.
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1 INTRODUCTION

Motivated by complicated public health concerns during the initial

stages of a pandemic (other than just detecting if there is an epi-

demic at all) [11], public health officials are usually interested in

the questions: Will there be a large disease outbreak? Or, has the

epidemic reached its peak? These are important questions from a

public health perspective [3]; the answers can help determine if

costly interventions are needed (e.g., school closures), the strategies

to organize vaccination campaigns and distributions, locations to

prioritize efforts to minimize new infections, the time to issue advi-

sories, and in general how to better engineer health care responses.

Given a graph and a contagion spreading on it, can we answer

such questions by monitoring some nodes to get ahead of the over-

all epidemic? A social sensor is a set of individuals selected from

the population which could indicate the outbreak of the disease

under consideration, thus giving an early warning. Many exist-

ing methods for such detection problems typically give indicators

which lag behind the epidemic. Recent work by Christakis and

Fowler [5] has made some advances. They first proposed the notion

of social network sensors for monitoring flu based on the friend-

ship paradox: your friends have more friends than you do. They

proposed a so-called ‘Friend-of-Friend’ approach to use the set of

friends nominated by the individuals randomly sampled from the

population as the social sensor. After implementing it among stu-

dents at Harvard, Christakis and Fowler found that the peak of the

daily incidence curve (the number of new infections per day) in the

sensor set occurs 3.2 days earlier than that of a same-sized random

set of students.

Figures 1 and 2 depict the results of experiments we did on

two large contact networks—Oregon and Miami (see Table 1 for

details)—using the SEIR model. We formed the sensor set using

the approach given in [5] and measured the average lead time of

the peaks for 100 runs (hence the results are robust to stochastic

fluctuations). For the Oregon dataset, Fig. 1 shows that there is a

lead time of 11 days on average for the peak in the sensor set with

respect to the random set (see Fig. 1(c)). In contrast, for the Miami

dataset, no lead time for the sensor set is observed (see Fig. 2(c)).

There may be several possible reasons for these inconsistencies.

First, the ‘Friend-of-Friend’ approach implicitly assumes that the

lead time always increases as we add more sensors into the set.

Second, the lead time observation is assumed to be independent of

the underlying network topology structures, which is clearly not

https://doi.org/10.475/123_4
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Figure 1: Illustration of the Friend-of-Friend approach [5] on the Oregon dataset. (a) True daily incidence curve (left), (b) fitted

daily incidence curve with logistic function (middle), and (c) distribution of lead time over 100 experiments (right). Note that

there is a non-zero lead time observed, i.e., the peak of the sensor curve occurs earlier than the peak of the curve for the

random group.

Figure 2: Illustration of the Friend-of-Friend approach on the Miami dataset. (a) True daily incidence curve (left), (b) fitted

daily incidence curve with logistic function (middle), and (c) distribution of lead time over 100 experiments (right). Note that

this experiment does not reveal any lead time.

the case. Finally, and most importantly, the work in [5] does not

formally define the problem it is trying to solve, i.e., what objective

does the sensor set optimize?

In this paper, we systematically formalize the problem of pick-

ing appropriate individuals to monitor and forecast the disease

spreading over a social contact network. Our contributions are:

(1) We formally pose and study three variants of the sensor set

selection problem.

(2) We provide an efficient heuristic based on the notion of

graph dominators which solves one variant of the social

sensor selection problem.

(3) We conduct extensive experiments on city-scale datasets

based on detailed microscopic simulations, demonstrating

improved lead time over competitors (including the Friend-

of-Friend approach of [5]).

(4) We design surrogate/proxy social sensors using demographic

information so that it is easy to deploy our approach in

practice without knowledge of the full contact network.

2 EPIDEMIOLOGY FUNDAMENTALS

The most fundamental computational disease model is the so-called

‘Susceptible-Infected’ (SI) model where each individual (e.g. node in

the disease propagation network) is considered to be in one of two

states: Susceptible (healthy) or Infected. Any infected individual

may infect each of its neighbors independently with probability β .
Also, the SI model assumes every infected individual stays infected

forever. For a clique of N nodes, the SI model can be characterized

as:

dI

dt
= β × (N − I ) × I

where I is the number of infected nodes at time t . It is easy to

prove that the solution for I is the logistic or sigmoid function, and

its derivative (or the number of new infections per unit time) is

symmetric around the peak.

The disease model that we use in this paper is the so-called SEIR

model where a node in the disease propagation network is in one

of four states: Susceptible, Exposed, Infected, and Recovered.The
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dynamics of the SEIR model can be described as:

dS

dt
= −βSI dI

dt
= αE − γ I

dE

dt
= βSI − αE

dR

dt
= γ I ,

where S , E, I , and R denote the number of individuals in the corre-

sponding states at time t , and S + E + I + R = N . Here β , α and γ
represent the transition rates between the different states. Notice

that since we are considering disease epidemics during a short pe-

riod of time in this paper, we ignore the birth and death rates in

the standard SEIR model here.

3 PROBLEM FORMULATION

Using the SEIR process, let G = (V ,E) be a social contact network
where V and E represent the vertex set and edge set respectively.

We use f (S) to denote the probability that at least one vertex in the

sensor set S gets infected, starting the disease spread from a random

initial vertex. The most basic problem in such a setting is the early

detection problem, in which the goal is to select the smallest sensor

set S so that some vertices in S get infected within the first d days

of the disease outbreak in the networkG with probability at least ϵ
(here, d and ϵ are given parameters)—this can be used to detect if

there is an epidemic at all. This problem can be viewed as a special

case of the detection problem in [10], and can be solved within

a constant factor by a greedy submodular function maximization

algorithm. As we show later, our optimization goal is non-linear

and not submodular, and hence the approach in [10] can not be

directly applied. Importantly, the early detection problem does not

capture the more important issues about the disease characteristics

of relevance to public health officials, and therefore we do not

explore this further. For example, just detecting an infection in

the population is generally not sufficient justification for doing

an expensive intervention by public health officials (as the disease

might not spread and may disappear soon). But knowing that the

infection will still grow further and peak gives justification for

robust infection control measures.

In our formulation, we use the term epicurve I (t) to refer to

the time series of number of infections by day. The peak of an

epicurve is its maximum value, i.e., maxt I (t). Note that it is possible
for an epicurve to have multiple peaks, but for most epidemic

models in practice, the corresponding epicurves usually have a

single peak. The derivative of the I (t) with respect to t is called the

daily incidence curve (number of new infections per day). The “time

of peak” of the epicurve corresponding to the entire population is

the time when the epicurve first reaches its peak, and is denoted by

tpk = argmaxt I (t). Similarly, we use tpk (S) to denote the time-of-

peak of the epicurve restricted only to a set S . The lead time of the

epicurve peak for sensor set S compared to the entire population is

then simply tpk − tpk (S). The problem we study in this paper is:

(ϵ,k)-Peak Lead Time Maximization (PLTM)

Given: Parameters ϵ and k , network G, and the epi-

demic model

Find: A set of nodes S from G such that

Smax = argmax

S
E[tpk − tpk (S)]

s.t. f (S) ≥ ϵ, |S | = k

Here, k is the budget, i.e. the required size of sensor set. Notice

that we need the f (S) constraint so that we only choose sets which

have a minimum probability of capturing the epidemic—intuitively,

there may be some nodes which only get infected infrequently, but

the time they get infected during the disease propagation might be

quite early. Such nodes are clearly not good ‘sensors.’

4 PROPOSED APPROACH

Unfortunately, the peak of an epicurve is a high variance measure,

making it challenging to address directly. Further, the expected

lead time, E[tpk − tpk (S)] is not non-decreasing (w.r.t. |S |) and non-

submodular, in general. Hence we consider a different but related

problem as an intermediate step. Let t
inf

(v) denote the expected
infection time for nodev , given that the epidemic starts at a random

initial node. Then:

(ϵ,k)-MinimumAverage Infection Time (MAIT)

Given: Parameters ϵ and k , network G, and the epi-

demic model

Find: A set S of nodes such that

Smin = argmin

S

∑
v ∈S

t
inf

(v)/|S |

s.t. f (S) ≥ ϵ, |S | = k

Justification: In contrast to the peak, note that the integral of

the epicurve restricted to S , normalized by |S |, corresponds to the

average infection time of nodes in S , which is another useful metric

for characterizing the epidemic. Further, if the epicurve has a sharp

peak, which happens in most real networks and for most disease

parameters, the average infection time is likely to be close to tpk .
ApproximatingMAIT:TheMAIT problem involves f (S), which

can be seen to be submodular, following the same arguments as

in [7], and can be maximized using a greedy approach. However,

the objective function — average infection time

∑
v ∈S tinf (v)/|S | is

non-linear as we keep adding nodes to S , which makes this problem

challenging, and the standard greedy approaches for maximizing

submodular functions and their extensions [8] do not work directly.

In particular, we note that selecting a sensor set S which minimizes∑
v ∈S tinf (v) (with f (S) ≥ ϵ) might not be a good solution, since

it might have a high average infection time

∑
v ∈S tinf (v)/|S |. We

discuss below an approximation algorithm for this problem. For

graph G = (V ,E), letm = |E |, n = |V |.

Lemma 1. It is possible to obtain a bi-criteria approximation S ⊆ V
for any instance of the (ϵ,k)-MAIT problem on a graph G = (V ,E),
given the t

inf
(·) values for all nodes as input, such that∑v ∈S tinf (v) is

within a factor of two of the optimum, and f (S) ≥ c ·ϵ , for a constant
c . The algorithm involvesO(n2 logn) evaluations of the function f (·).

Proof. (Sketch) Let t
inf

(v) denote the expected infection time

of v ∈ V , assuming the disease starts at a random initial node. Let

Bopt be the average infection time value for the optimum; we can

“guess” an estimate B′
for this quantity within a factor of 1 + δ , by

trying out powers of (1 + δ )i , for i ≤ logn, for any δ > 0, since

Bopt ≤ n. We run O(logn) “phases” for each choice of B′
.

Within each phase, we now consider the submodular function

maximization problem to maximize f (S), with two linear con-

straints: the first is

∑
t
inf

(v)x(v) ≤ B′k and

∑
v x(v) ≤ k , where
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x(·) denotes the characteristic vector of S . Using the result of Azar

et al. [1], we get a set S such that f (S) ≥ cµ(B′), for a constant c , and∑
v ∈S tinf (v) ≤ B′k and |S | ≤ k , where µ(B′) denotes the optimum

solution corresponding to the choice of B′
for this problem. If we

have |S | < k , we add to it k − |S | nodes with the minimum t
inf

(·)
values, which are not already in S , so that its size becomes k . Note
that for the new set S , we have

∑
v ∈S tinf (v) ≤ 2B′k , since the sum

of the infection times of the nodes added to S is at most B′k .
Note that the resulting set S corresponds to one ‘guess’ of B′

. We

take the smallest value of B′
, which ensures f (S) ≥ cϵ . It follows

that for this solution S , we have

∑
v ∈S tinf (v)/|S | ≤ 2Bopt and

|S | = k . The algorithm of Azar et al. [1] involves a greedy choice

of a node each time; each such choice involves the evaluation of

f (S ′) for some set S ′, leading to O(n2) evaluations of the function
f (·); since there are O(logn) phases, the lemma follows. □

Heuristics. Though Lemma 1 runs in polynomial time, it is quite

impractical for the kinds of large graphs we study in this paper

because of the need for a super-quadratic number of evaluations of

f (·). Therefore, we consider faster heuristics for selecting sensor
sets. The analysis of Lemma 1 suggests the following significantly

faster greedy approach: pick nodes in non-decreasing t
inf

(·) order
till the resulting set S has f (S) ≥ ϵ . In general, this approach might

not give good approximation guarantees. However, when the net-

work has “hubs”, it seems quite likely that the greedy approach

will work well. However, even this approach requires repeated

evaluation of f (S), and can be quite slow. The class of social net-

works we study has the following property: nodes v which have

low t
inf

(v) are usually hubs and have relatively high probability of

becoming infected. This motivates the following simpler and much

faster heuristic, referred to as the Transmission tree (TT) based

sensors heuristic:

(1) generate a set T = {T1, . . . ,TN } of dendrograms; a dendro-

gram Ti = (Vi ,Ei ) is a subgraph of G = (V ,E), where Vi is
the set of infected nodes and an edge (u,v) ∈ E is in Ei iff
the disease is transmitted via (u,v);

(2) for each node v , compute div , which is its depth in Ti , for all
i , if v gets infected in Ti ;

(3) compute t
inf

(v) as the average of the div , over all the dendo-
grams Ti , in which it gets infected;

(4) discard nodes v with t
inf

(v) < ϵ0, where ϵ0 is a parameter

for the algorithm;

(5) order the remaining nodes v1, . . . ,vn′ in non-decreasing

t
inf

(·) order (i.e., t
inf

(v1) ≤ tinf (v2) ≤ . . . ≤ tinf (vn′))
(6) Let S = {v1, . . . ,vk }
We also use a faster approach based on dominator trees, which

is motivated by the same greedy idea. We referred to it as the

Dominator tree (DT) based sensors heuristic:

(1) generate dominator trees corresponding to each dendro-

gram;

(2) compute the average depth of each node v in the dominator

trees (as in the transmission tree heuristic);

(3) discard nodes whose average depth is smaller than ϵ0;
(4) order nodes based on their average depth in the dominator

tree, and pick S to be the set of the first k nodes.
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Figure 3: (i) An example graph and (ii) its dominator tree.

In practice, the dominator will have a significantly reduced

number of edges than the original graph.

Formally, the dominator relationship is defined as follows. A node x
dominates a nodey in a directed graph iff all paths from a designated

start node to nodey must pass through node x . In our case, the start

node indicates the source of the infection or disease. Consider Fig. 3

(left), a schematic of a social contact network. All paths from node

A (the designated start node) to node H must pass through node B,

therefore B dominates H. Note that a person can be dominated by

many other people. For instance, both C and F dominate J, and C

dominates F. A node x is said to be the unique immediate dominator

of y iff x dominates y and there does not exist a node z such that x
dominates z and z dominates y. Note that a node can have at most

one immediate dominator, but may be the immediate dominator

of any number of nodes. The dominator tree D = (VD ,ED ) is a
tree induced from the original directed graphG = (VG ,EG ), where
VD = VG

, but an edge (u → v) ∈ ED iff u is the immediate

dominator of v in G. Fig. 3 (right) shows an example dominator

tree.

The computation of dominators is a well studied topic and we

adopt the Lengauer-Tarjan algorithm [9] from the Boost graph li-

brary implementation. This algorithm runs inO((|V |+ |E |) log(|V |+
|E |)) time, where |V | is the number of vertices and |E | is the number

of edges.

5 EXPERIMENTAL RESULTS

Our experimental investigations focus on addressing the following

questions:

(1) How do the proposed approaches perform when forecasting

the epidemic in terms of the lead time?

(2) How large should our sensor set size be?

(3) How many days are necessary to observe a stable lead time?

(4) What is the predictive power of the sensor set in estimating

the epidemic curve over the full population?

(5) Is it possible to employ surrogates for sensors?

Table 1 shows some basic network statistics of the datasets we used

in our experiments. The Oregon AS (Autonomous System) router

graph is an AS-level connectivity network inferred from Oregon

route-views [4]. Although this dataset does not relate to epidemio-

logical modeling, we use it primarily as a testbed to understand how

(and if) graph topology affects our results due to the relatively small

size and neat graph structure. The rest of the datasets are synthetic

but realistic social contact networks (see [2, 6]) for six large cities
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Table 1: Characteristics of datasets used in the experiments.

Dataset Nodes Avg. deg Max deg

Oregon 10,670 4.12 2,312

Miami 2,092,147 50.38 425

Boston 4,149,279 108.32 437

Dallas 5,098,598 113.10 477

Chicago 9,047,574 118.83 507

Los Angeles 16,244,426 113.08 463

New York 20,618,488 93.14 464

in the United States. These six US city datasets are generated with

specific aim at modeling epidemics in human populations.

In our experimental study, we evaluated our two proposed ap-

proaches: the transmission tree based heuristic and the dominator

tree based heuristic. For comparison, we also implemented two

strategies as baseline methods: (i) a Top-K high degree sensors

heuristic used in [5] where a set P ⊆ V is first sampled and for each

v ∈ P its K neighbors with largest degree are selected, and (ii) a

Weighted degree (WD) sensors heuristic, which is similar to the

previous heuristic except that the K neighbors are chosen based on

largest weighted degree. The weight we use here is the durations

of the activities indicated by edges of the graphs in the datasets

mentioned in Table 1. However, since we don’t have these weights

for the Oregon dataset, we will omit the results of the WD sensor

heuristic on the Oregon dataset.

Our primary figure of merit is the lead time, calculated as follows.

For each run of the disease model in a social contact network, we

fit a logistic function curve to the cumulative incidence of the

chosen sensor set and a random sampled set from V . Here, we
use the random sampled set to represent the entire population

for the large city-level datasets we used in our experiments. (It is

usually impossible to track the entire population in practice.) We

then derive daily incidence curves for both the sensor set and the

random set (we will refer to this set as random set in the rest of this

paper). Let ts and tr represent the peak times of the daily incidence

curves for the sensor and random sets respectively, and the lead

time is defined as ∆t = tr − ts .
For all the experiments in this section, the parameters for the

epidemic simulations are set as follows unless specified. We set

ϵ = 0.8 (see the definitions of the PLTM and MAIT problems) and

flu transmission rate to be 4.2 × 10
−5

for the SEIR disease model.

The size for the sensor set and random set (k) is 5% of the entire

population, and the epidemic simulations start with five randomly

infected vertices in the networks. All the results were obtained by

averaging across 1, 000 independent runs.

5.1 Performance of predicted epidemic lead

time

In this experimental study, we set the flu transmission rate to 0.05

for the SEIR model in the Oregon dataset due to its relatively small

size compared to theMiami dataset. Fig. 4 depicts the daily incidence

curves of the four sensor selection heuristics and the random set on

Oregon and Miami datasets, and Fig. 5 describes the corresponding

peak time of the daily incidence curves shown in Fig. 4. As we can

see from these figures, on the Oregon dataset, the performance of

the proposed heuristics and baseline heuristics is comparable where

they both predict the peak of the epicurves about five days earlier

when compared to the ground truth. However, on theMiami dataset,

the proposed TT and DT heuristic approaches give a much larger

lead time, around 10 days, compared to the about two-day and

almost zero day lead time in the WD and Top-K baseline heuristics.

This is because, as described earlier, our approaches are precisely

designed to try to pick vertices with early expected infection time

from the disease propagation network as social sensors. We also

study whether the number of the initial infected vertices will affect

the predicted lead time. Table 2 shows the predicted lead time of

the two proposed and the two baseline heuristics for 1, 5, and 10

initial infected vertices in the epidemic simulations. As the results

in this table show, the number of initial infected vertices would not

have too much impact on the predicted lead time.

5.2 How many sensors to choose?

Since we have already demonstrated the influences of the network

topology on social sensor selection strategies, we will put the Ore-

gon dataset aside, and focus on the social contact network datasets

for US cities in the rest of the experiments. An interesting conun-

drum is the number of sensors to select in a design. Fig. 6 depicts

the mean lead time and the inverse of variance-to-mean ratio of

the lead time v.s. the sensor size for the Miami datasets. The results

show that the variance of the lead time estimate is high for small

size of sensor sets and decreases as the sensor set size increases.

This suggests a natural strategy of scaling the lead time against the

variance, thus helps establish a sweet spot in the trade-off. This

variance-to-mean ratio is also known as the Fano factor, which

is widely used as an index of dispersion. In the result for the Mi-

ami dataset, there is a clear peak in the figure of the inverse of

variance-to-mean ratio, which suggests a suitable size of sensors to

pick.

5.3 Empirical study on stability of lead time

In this experiment, we study the stability of the estimated lead time

as we observe more data on the sensor group when the number

of monitoring days increases. As is well known, the cumulative

incidence curve of flu epidemics can be modeled by a logistic func-

tion where the dependent and independent variables are the flu

cumulative incidence and the time of the epidemic (days in our

context). Here, we vary our flu epidemic simulation time from 2

days to 300 days on the Miami dataset, estimate cumulative inci-

dence curves (with logistic function) for both the sensor and the

random set based on the simulated cumulative flu incidence data,

and then compute the lead time. Fig. 7 shows the lead time vs. the

flu epidemic simulation time. As we can see from this figure, the

estimated lead time fluctuates a lot when the simulation time is

short and stabilizes at around 12 days when the epidemic simula-

tion time is more than around 80 days. Such results provide some

insights for public health officials on how much epidemic data they

should collect in order to make an accurate estimation of the flu

outbreak from the time domain perspective.

5.4 Predicting population epidemic curve from

sensor group epidemic curve

In this experiment, we study the relationship between the flu cu-

mulative incidence curve of sensor and that of random group. As
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Figure 4: Daily incidence of sensor sets selected by the heuris-

tic approaches compared to the true daily incidence in the sim-

ulated epidemic on (a) Oregon dataset (left), (b) Miami dataset

(right).

Figure 5: The expected peak time of the daily incidence curve

on (a) Oregon dataset (left), (b)Miami dataset (right). Here Top-

3, WD, TT, and DT denote Top-3 high degree, Top-3 weighted

degree, Transmission tree based, and Dominator tree based

heuristic respectively.

Table 2: Comparison of the lead time across four different social sensor selection heuristicswhen the number of initial infected

vertices vary.

Dataset Seed

Lead time

Top-K degree Weight degree Transmission tree Dominator tree

Oregon

1 13.13 n/a 10.10 9.91

5 8.85 n/a 7.93 7.75

10 11.00 n/a 8.63 8.55

Miami

1 0.29 3.38 10.46 10.08

5 0.39 3.41 10.15 10.19

10 0.62 3.41 10.13 10.13

Figure 6: Mean lead time (left) and inverse of variance-to-

mean ratio (right) v.s. the sensor size for the Miami dataset.

When sensor set size is less than 1.0% of the entire population

we observe higher (good) lead time, but also with high vari-

ances. Scaling the mean lead time by the variance, i.e., the re-

ciprocal of the Fano factor, shows a clear peak with the sensor

set size at approximately 20% of the population, the position

where we can obtain substantial gains in lead time with corre-

spondingly low variances.

Figure 7: Stability of the lead

time estimation. The esti-

mated the lead time fluctuates

initially. As the number of

monitoring days increases, it

stabilizes quickly.

Figure 8: Predicting cumu-

lative incidence of random

group with sensor group for

the Miami dataset.

we mentioned before, we use random set to represent the entire

population since it is usually quite difficult to characterize the entire

population in practice when the dataset is quite large. We try to

estimate a polynomial regression model with degree of three where

the observed cumulative incidence of the sensor group serves as

predictor and that of the random group serves as responses. Here,

the sensor group is selected by the dominator tree heuristic from

the Miami dataset. Over the 300 simulated days, we use the data of

the first 150 days to estimate our polynomial regression model, and

make predictions of the cumulative incidence of random group for

the rest of the 150 days. Fig. 8 shows the fitted polynomial regres-

sion model compared to the true relation curve of the flu cumulative

incidences between sensor group and random group. As we can

see from this figure, the polynomial regression model with degree

of three could capture the relationship between the cumulative

incidences of random group and sensor group quite well, which

can help us predict the epidemic curve of entire population with

epidemic data collected from the sensor group.
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Figure 9: Mean lead times estimated with

surrogate sensor set S ′′ and dominator

tree based social sensors for various flu

transmission rates.

Figure 10: The lead time of transmission tree based (left) and dominator tree

based (right) sensor selection strategies using different combinations of individ-

ual demographic and interaction information onMiami, Boston, Dallas, Chicago,

Los Angeles and New York City datasets.

5.5 Surrogates for social sensors

In reality, the structures of large scale social contact networks are

usually unknown or difficult to obtain, which makes it difficult

to directly apply our proposed methods as we have done thus far.

In order to make the proposed approaches deployable and solve

realistic public health problems, we now relax this key assumption,

and develop a surrogate approach to select social sensors. In this

case, the policy makers can implement their strategies without

detailed (and intrusive) knowledge of people and their activities.

Surrogates are thus an approach to implement privacy-preserving

social network sensors.

The key idea of our surrogate approach is to utilize the demo-

graphic information. Here, we use the Miami dataset as an example

to explain our surrogate approach. We extracted the following 16

demographic features from the Miami dataset: age, gender, and

income; number of meetings with neighbor nodes; total meeting

duration with neighbor nodes; number of meetings whose dura-

tions are longer than 20000 seconds; number of meetings of types

1–5; and percent of meetings of types 1–5. The meeting types of

1–5 refer to home, work, shop, visit, and school, respectively. To

select surrogate sensors using demographic information, we use

classification and regression trees (CART); any other supervised

classification algorithm can also be substituted here. The 16 at-

tributes mentioned above are used as independent variables in

our CART model, and the response variable is binary to indicate

whether a person should be selected as a sensor or not. In order

to learn the CART model, we create the training data as follows.

We choose 0.1% of the entire population (≈ 2000) from the US city

dataset with our proposed heuristics as the training data with posi-

tive responses (social sensors), and choose another 0.1% randomly

as the training data with negative responses (not social sensors).

Then, separate CART models were learned to select the surrogate

sensor set S ′ for each transmission rate ranging from 3.0 × 10
−5

to

5.5 × 10
−5

with a step size of 5 × 10
−6
. Such transmission rates are

the typical values used in various flu epidemic studies. Among all

the surrogate sensors chosen by each of these CART models, we

choose the common individuals across all the CART models as the

final surrogate sensor set S ′′.

Fig. 9 compares the estimated lead time between the surrogate

sensor set S ′′ and the sensor set selected by the dominator tree

heuristic for various flu transmission rates. As we can see from

this figure, although the surrogate sensor set S ′′ does not perform
as well as the proposed dominator tree based sensor set, it still

provides a significant lead time, which is good enough to give

early warning to public health officials for the potential incoming

flu outbreak. Most important, since the CART based surrogate

sensor approach does not require the information of the social

contact network structures, it is easy to implement and deploy

in reality compared to the transmission tree and dominator tree

based heuristic approaches. This makes it a promising candidate

for predicting flu outbreaks for public health officials.

5.6 What information should be used to select

surrogate sensors?

Notice that in the last section, when we select the surrogate sen-

sors, both demographic (e.g. age of individuals) and interaction (e.g.

total meeting duration and meeting types with neighboring indi-

viduals) information is taken into account. However, which kind

of information is more important in terms of estimating the lead

time of flu epidemics? In this experiment, we focus on all our social

contact network datasets for large US cities, i.e., Miami, Boston, Dal-

las, Chicago, Los Angeles, and New York. For each city, we selected

the surrogate sensor set and the random set with the fixed size of

10, 000. The sensor set was selected with the following six strategies:

1) using empirical distributions of demographic information (distr

demo); 2) using empirical distributions of interaction information

(distr inter); 3) using CART with demographic information (CART

demo); 4) using CART with interaction information (CART inter);

5) using CART with both demographic and interaction informa-

tion (CART demo+inter); 6) using transmission tree or dominator

tree based heuristic (trans or dom). We computed the lead time

for each of the six surrogate sensor selection strategies mentioned

above, and the results were averaged across 100 independent runs.

Fig. 10 shows the lead time of the different approaches over the

six US city datasets. As we can see from the figure, our proposed

approaches (CART based approaches and transmission/dominator
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tree based approaches) outperform the two baseline methods (distr

demo/inter), and in general, as more information is taken into ac-

count, the larger estimated lead time could be achieved (since the

transmission/dominator tree based heuristics assume known social

contact network structures, they could be thought of possessing

the most information about epidemics). Furthermore, the individ-

ual interaction information seems to be more important than the

demographic information from the perspective of obtaining larger

lead time.

6 DISCUSSION

The most closely related work to ours is Christakis and Fowler [5],

where a simple heuristic that monitors the friends of randomly

chosen individuals from a social network as sensors was adopted

to achieve early detection of epidemics. However, they only demon-

strated their proposed approach on a relatively small social network,

e.g. a student network from Harvard College. As we have shown

earlier, their friend heuristic fails on large social contact networks

of US cities. We have also demonstrated that although the Chris-

takis and Fowler’s approach works well over small networks like

the Oregon dataset, it provides almost no lead time over large scale

social contact networks like the Miami dataset. To explain why the

proposed social sensor selection heuristics work better, we start

from analyzing the structures of the disease propagation networks.

Comparing the graph statistics of the Oregon dataset with the Mi-

ami dataset shown in Table 1, we can observe that the graph in the

Oregon dataset has a quite different topology structure from the

graphs in the Miami datasets. The graph in the Oregon dataset has

relatively small average degree but very large maximum degree,

which indicates this graph has a star-like topology where few of the

central vertices have very large degrees. On the other hand, many

vertices in the graphs of the Miami datasets have large degrees, and

they spread all over the entire graph. Thus, for the top-K degree

based sensor selection approach, it is relatively easy to include the

central vertices with high degrees into the sensor set in the Ore-

gon dataset, but for the transmission tree and dominator tree based

approaches, whether the high degree vertices are included into the

sensor set will heavily depend on the choices of initial seeds of the

epidemics in the Oregon network. Such central vertices with high

degree are usually very important for the epidemics in such star-like

networks, which explains why the top-K degree approach works

better than the transmission tree and dominator tree approaches.

On the contrary, in the Miami dataset, the total number of vertices

is large, and it is quite difficult for the top-K degree approach to

select sensors that could represent the entire graph only based on

local friend-friend information. However, the transmission tree and

dominator tree based sensor selection strategies take the global epi-

demic spread information into account, which chooses the sensor

set that could represent the entire graph. That’s why they perform

better in terms of the lead time than the top-K degree based ap-

proach on the large simulated US city networks. The interesting

insight revealed by such results is that the network topology must

be considered when designing social sensor selection strategies.

The results also demonstrate that the proposed TT and DT based

sensor selection heuristics are more robust to the underlying net-

work topologies, and thus more suitable to be deployed in practice,

such as monitoring and forecasting epidemics in large cities.

7 CONCLUSION

In this paper, we studied the problem of predicting flu outbreaks

with social network sensors. Compared to previous works, we are

the first to systematically formalize and study this problem. By

leveraging the graph theoretic notion of dominators, we developed

an efficient heuristic to select good social sensors to forecast the flu

epidemics when the structure of flu propagation network is known.

Redescription of the dominator property in terms of demographic

information enables us to develop a truly implementable and de-

ployable strategy to select surrogate social sensors to monitor and

forecast flu epidemics, which will benefit public health officials and

government policy makers.
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