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ABSTRACT
Cascades are a popular construct to observe and study in-
formation propagation (or diffusion) in social media such as
Twitter. and are defined using notions of influence, activ-
ity, or discourse commonality (e.g., hashtags). While these
notions of cascades lead to different perspectives, primarily
cascades are modeled as trees. We argue in this paper an
alternative viewpoint of cascades as forests (of trees) which
yields a richer vocabulary of features to understand infor-
mation propagation. We develop a framework to extract
forests and analyze their growth by studying their evolu-
tion at the tree-level and at the node-level. Moreover, we
demonstrate how the structural features of forests, proper-
ties of the underlying network, and temporal features of the
cascades provide significant predictive value in forecasting
the future trajectory of both size and shape of forests. We
observe that the forecasting performance increases with ob-
servations, that the temporal features are highly indicative
of cascade size, and that the features extracted from the
underlying connected graph best forecast the shape of the
cascade.

CCS Concepts
•Information systems → Web mining; •Computing
methodologies → Machine learning;

1. INTRODUCTION
A popular approach to studying social media chatter and

information propagation in social networks is to character-
ize the occurrence and growth of cascades. Information cas-
cades serve as a way of news and rumor spreading [15, 5], sig-
nal of online recruitment [8], a tool for viral marketing [13],
etc. Given a medium such as Twitter, there are many no-
tions of cascades, which afford varying levels of formal char-
acterization and utility, e.g., retweet cascades, hashtag cas-
cades, activity cascades, and URL cascades. They all differ
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Figure 1: A forest of diffusion trees: The diffusion trees that
propagate common information are of different shapes and sizes. We
study the growth of the information cascade as a union of diffusion
trees. The largest tree of the forest is outlined in blue.

in the underlying network over which diffusion is modeled,
in the assumptions made to posit edges in the cascade, and
the types of mathematical models that can support their
rigorous analysis.

Not withstanding the diversity of cascade notions avail-
able, the structure of cascades naturally lends itself to be
viewed as a tree. In this work, we demonstrate that adopt-
ing a broader viewpoint of information cascades as forests (of
trees) yields a richer vocabulary of features to understand in-
formation propagation. This viewpoint is advantageous for
three reasons. First, most social media phenomena that go
viral truly have multiple origins (or roots) rendering forests
the more natural metaphor for modeling. For instance, a
single hashtag is best modeled as multiple cascades rather
than a single cascade. Second, information cascades, not
withstanding their widespread use in research, seldom grow
to significant sizes; modeling forests of cascades allows us to
better ‘pool’ limited data and obtain greater specificity for
classification and forecasting purposes. Third, forests enable
the study of not only cascades’ growth but also when new
diffusion trees will emerge, thus providing a bigger picture
viewpoint to the propagation of information in a network.

While the forest viewpoint offers the aforementioned ad-
vantages, it presents significant challenges from a forecast-
ing perspective. While predicting the growth of a diffusion
tree, as in [4], we are forecasting the extension of an ob-
served structure. In the forest model, the growth is two-
dimensional. Not only are we forecasting the growth of in-
dividual trees but we also forecast how new diffusion trees
will emerge. We demonstrate how using the underlying con-
nected graph [14] and other properties of the forest enable
us to successfully tackle that challenge.



Our key contributions here can be summed up by answer-
ing the following questions:

1. How can we quantify the size and shape of an
information cascade forest? The forest model de-
scribing an information cascade has a two dimensional
growth - tree-level and node-level. To account for both
dimensions, we use three different measures—largest
tree size, forest size, and cascade size. The Wiener In-
dex (WI) [6] was shown to be indicative of a diffusion
tree’s structural virality. We extend WI in the context
of a forest cascade. We also present another formula-
tion to characterize structural virality, namely Virality
Potential Index (VPI). VPI overcomes the shortcoming
of WI by explicitly taking into account the underlying
propagation network. In addition, VPI (explained in
Sec. 4) has an interesting probabilistic interpretation:
it can be viewed as the probability of all the inactive
followers the users in a diffusion network becoming si-
multaneously active. A high value of VPI thus repre-
sents the virality potential of the diffusion network.

2. Can we characterize an information cascade for-
est from a forecasting viewpoint? The unpre-
dictability of information cascades [21] and the rarity
of large cascades [6] have been argued in literature.
We tackle both problems by presenting a framework
that extends the idea proposed by Cheng et al. [4] to
forecast cascade forests as a series of prediction tasks.
Our cascade model presents the unique opportunity to
capture the relationship between diffusion trees prop-
agating the same discourse commonality. We demon-
strate how four classes of features—forest structural,
underlying connected graph, Twitter follower features,
and temporal aspects of forest growth—not only best
describe the forest, but also provide significant predic-
tive value in forecasting the cascade’s future trajectory.
We compare the performance of each class of features.
Our experiments show that temporal features are best
indicative of size and underlying connected graph fea-
tures can best forecast structure.

3. Can we forecast a cascade sans temporal fea-
tures? Temporal features of the cascade have been
critical in forecasting cascades [4, 25]. Given the snap-
shot of a cascade graph, we show that by capturing
the structural dynamics between the several diffusion
trees, it is possible to forecast the eventual size and
shape of an information cascade forest. Particularly,
we demonstrate a process to extract an underlying sub-
network and its properties that enables this forecasting
success.

2. RELATED WORK
Recently significant progress has been made in predict-

ing the future trajectory of information cascades. We limit
our survey to work most relevant to ours. This prediction
problem has been formulated in terms of different figures
of merit such as popularity [22] in Digg, re-tweeting on the
Twitter network [18], user interests in microblogs [1, 20],
and photo reshares [4]. Forecasting the volume or aggre-
gate activity of a hashtag [16] or news phrases [26] has been
tackled. Many studies approach the problem using a clas-
sic machine learning perspective such as regression [23, 12]

or classification [10, 11]. Our work adds a new wrinkle to
such prediction problems by studying the predictability of
information cascades modeled as forests of diffusion trees
that occur in social media. By extending the framework of
analyzing the lifetime of a cascade as a series of prediction
tasks proposed in [4], we show that not only are we able to
successfully forecast the growth of the cascade forest, but
also that this viewpoint presents a unique opportunity to
engineer different categories of features that can describe a
forest and capture the relationship between diffusion trees.

3. PRELIMINARIES
The mechanics of information cascade modeled as forest is

presented in Fig. 1. We present a more detailed description
below.

3.1 Diffusion Tree
The natural way of analyzing information propagation on

Twitter is using diffusion trees, where each tree is a time-
ordered sequence of connected nodes that mention a hash-
tag. Intuitively, these diffusion trees are constructed as fol-
lows. When a user posts a tweet, at time t, containing a
hashtag and a few of his/her followers post a tweet con-
taining the same hashtag at a later time, we add them to
the tree and repeat this process till no more users can be
added. More formally: let G = (V,E) be a directed graph
(the Twitter follower network in our case). We represent a
tweet as T (m, t), being a function of the user m ∈ V and
a timestamp t. Let the tweet T (m, t) contain a hashtag H,
i.e., H ∈ T (m, t). We denote Follow(m) as the set of follow-
ers of user m. A diffusion tree DiffTree(m,H) as a function
of the user m and hashtag H is then recursively defined as:

DiffTree(m,H) ={m} ∪ {x ∈ DiffTree(n,H) : n ∈ Follow(m),

H ∈ T (n, t
′
), t

′
> t}

We always consider the first tweet by a user that mentions
H. Our definition of activity propagation guarantees that
the resulting diffusion structure is a tree since the influencer
for a node entering a cascade is a neighbor who posted the
latest tweet.

3.2 Cascade Forests
With the proliferation of hashtags across social media,

characterizing their spread is more cogent with the notion
of a hashtag forest, which can be defined as a collection of
all diffusion trees that propagate H. More formally: Given
a hashtag, H, a forest of H i.e. F (H) is expressed as the
union of all the diffusion trees that propagated the hashtag.

F (H) =
⋃

DiffTree(u,H) ∀(u ∈ V ) ∧ (DiffTree(u,H) exists)

The main purport of this work is to analyze and forecast
the future size and structural evolution of these information
cascade forests.

3.3 Dateset Description
Our study primarily focuses on tweets spanning three ma-

jor countries in the Latin American region: Brazil, Mexico,
and Venezuela. Using the geocoder developed for EMBERS
that uses the content of the tweet and poster’s properties to
estimate location of a tweet [19]. For our experiments, we
harvested over ∼250 million tweets and culled cascades in
a three month window (in Brazil from Jun. to Aug. 2013;



in Venezuela from Jan. to Mar. 2014; and in Mexico from
Sep. to Nov. 2014) using hashtags that were widely prop-
agating during that time period. To extract such hashtags,
we ranked the ratio of each hashtag’s three month count to
their respective nine month count. Then we use a subgraph
of the Twitter follower network (obtained through the Twit-
ter API) for the Brazilian, Venezuelan and Mexican regions
to extract information trees (as described above). The Twit-
ter subnetwork for the three countries of interest consists of
over 100 million nodes and over 2.2 billion edges. Finally,
we group all the trees that belong to one hashtag to create
the information cascade forest.

4. PROBLEM FORMULATION
Our characterization of information cascades using the no-

tion of forests allows for the following quantities to measure
it’s size and shape:

1. Tree size: The number of nodes in a given tree.
2. Forest size: The number of trees in a given forest.
3. Cascade size: The number of nodes in all the trees

in the forest i.e. the sum of all tree sizes in a given
forest.

4. Wiener Index of a diffusion tree.
5. Forest Wiener Index of an information cascade for-

est.
6. Virality Potential Index of an information cascade

forest

Quantities (1)–(3) are self-explanatory; we discuss features
(4)–(6) next.

Wiener Index and Forest Wiener Index
Recently, it was shown that the Wiener index (WI) is indica-
tive of a diffusion tree’s structural virality [6]. Analyzing the
structural virality of a forest can be fairly complex as the
growth of a forest is two dimensional, along the dimensions
of forest size and cascade size. To account for both dimen-
sions, we extend the Wiener Index (WI) in the context of
forest growth by computing the average WI across all the
trees in a forest. More formally, we define Forest Wiener
Index (FWI) as follows. Let dist(m,n) be the length of the
path between two nodes m & n in a diffusion tree. Given a
hashtag H and a forest F(H), for any tree Tree,

WI(Tree) =

∑
∀(m,n)∈DiffTree

dist(m,n)

|DiffTree| ∗ (|DiffTree| − 1)
;

FWI(F (H)) =

∑
∀Tree∈F (H)

WI(DiffTree)

|F (H)|

The FWI captures the forest level shape in a quantifiable
fashion. Since large trees are quite rare, computing either
the median and maximum of the WIs in a forest skews the
measure towards (resp.) too small or too big values. While
FWI is coarse, it collectively captures the structural virality
of an information cascade forest by accounting for each tree’s
structural virality in the forest.

Virality Potential Index of a Forest
The Wiener Index is limiting in capturing the potential of
the diffusion tree as it does not account for the underlying

WI = 1.67 WI = 2.13 WI = 3.05

FWI = 2.283Wiener Index (WI) and Forest Wiener Index (FWI)

Figure 2: This figure shows a toy example of how Wiener index and
Forest Wiener Index are computed. Second and third level diffusions
lead to higher score for WI. The FWI captures the overall structural
virality of the cascade forest in a quantifiable measure.

network that acts as the medium for the propagation pro-
cess. Therefore, to incorporate structure of the underlying
propagation medium, we extend the notion of structural vi-
rality in the following manner. For each user m, consider
the entire set of followers Follow(m). Now, consider a subset
of Follow(m), namely the set of infected followers denoted
by Infected(m) which consists of those followers who have

tweeted the hashtag H. The ratio rm = |Infected(m)|
|Follow(m)| ∈ [0, 1]

can then be viewed as a the overall infectability power of a
follower of this node. If each infected follower of this node
were to infect its follower in an i.i.d. manner, the probabil-
ity of all nodes being successful in infecting (i.e., reaching its

maximal virality) would be (rm)|Infected(m)|. Thus, the prob-
ability of all nodes in a tree becoming simultaneously viral
would be ∏

m∈DiffTree

(rm)|Infected(m)|

=
∏

m∈DiffTree

(
|Infected(m)|
|Follow(m)|

)|Infected(m)|

Since the above measure of virality is a probability ∈ [0, 1],
we instead measure it on the log scale (for numerical stabil-
ity) and define the Virality Potential Index (VPI) of a tree
as:

VPI(DiffTree) = − log

( ∏
m∈DiffTree

(
|Infected(m)|
|Follow(m)|

)|Infected(m)|
)

=
∑

m∈DiffTree

−|Infected(m)| log

(
|Infected(m)|
|Follow(m)|

)
=

∑
m∈DiffTree

VPI(m)

which is the sum of the virality potential indices of all nodes
in a tree.

Remark: It is interesting to note that the term VPI(m) is
a non-monotonic function of the number of infected nodes
|Infected(m)|. In particular, this quantity which captures the
potential virality of node m satisfies the following properties:

• VPI(m) = 0 when |Infected(m)| = 0, since the node
has remained completely inactive so far.
• VPI(m) = 0 when |Infected(m)| = |Follow(m)|, since

the node has already infected all its followers and has
no more potential infective power.
• VPI(m) is a strictly concave function of |Infected(m)|

and is maximized when |Infected(m)| = |Follow(m)|/e.
That is, VPI for a node m first increases from 0 as the



No Infected Nodes All Nodes Infected

Infected

Uninfected

Virality Potential Index (VPI)

VPI = 0 VPI = 0VPI = 1.1 VPI = 1.5

Figure 3: This figure shows the impact of infected nodes and
the underlying follower graph on the temporal evolution of the
Virality Potential Index (VPI).

number of infected nodes increase from 0 to |Follow(m)|/e,
and then gradually decreases back to 0 when the node
has reached its full infective
power, i.e., when |Infected(m)| = |Follow(m)|.

These properties are shown in Fig. 3, where the temporal
evolution of VPI of a tree is shown as a function of the
underlying follower graph and the infected nodes.

Using the definition of VPI(DiffTree), we then define the
VPI of a forest F (H) for a hashtag H as

VPI(F (H)) =

∑
DiffTree∈F (H) VPI(DiffTree)

|F (H)|

The above measure rewards nodes for having more fol-
lowers and infecting a good fraction of their followers while
penalizing infected nodes that do not have followers and
nodes that do have followers but cannot spread the infec-
tion. Moreover if two identical trees are part of a cascade,
WI gives them both equal virality but the above measure
distinguishes them based on their position in the network.

Formulating the Forecasting Problem
The rarity of large cascades has been well-documented in
the information propagation literature [7] and formulating
the cascade prediction question as a traditional regression or
a classification problem raises issues of unbalanced classes
and skewed predictions. Our dataset is no different. We
demonstrate in Fig. 4 that each quantity that captures the
size of the cascade has a skewed distribution. We observe
that the curve for the forest size quite closely matches the
cascade size. This conforms with the observation & prior
research [10, 5] that there are many small trees in an infor-
mation cascade and this is demonstrated by the power-law
behavior of the tree size. A power-law curve fit to their
tails, shows that the tree-size, forest-size and cascade-size
have an α value of 1.85, 2.26 and 2.08 respectively. Simi-
lar to [4], we cast our prediction question in the form of a
binary classification problem by asking whether a quantity
of interest reaches the median. A random guessing baseline
will thus have 50% accuracy. This problem is akin to ask-
ing if the size of the cascade will double using the following
calculation. Since α ≈ 2,∫ f(x)

xmin

α− 1

xmin

(
x

xmin

)−α
dx =

1

2
=⇒ f(x) = 2xmin

5. ATTRIBUTES AFFECTING INFORMA-
TION CASCADE DYNAMICS

Figure 4: We plot the empirical complementary cumulative dis-
tribution function for the quantities of interest viz. tree size,
forest size, and cascade size.

The underlying network structure and the temporal prop-
erties of the information that is propagating on the network
are instrumental in predicting cascade growth [4, 12]. We
primarily use attributes from these two classes to engineer
features for our forecasting algorithm.

5.1 Features for Diffusion Tree Dynamics
We adapt the features presented in [4] to our context

(more details in Table 1) of diffusion trees by grouping them
into three classes – structural, temporal, and root node (fea-
tures of the original poster). We briefly describe the intu-
ition behind these features.

Structural: The twitter network, capturing the follower-
friend relationship, acts as the medium for the flow of infor-
mation and hence the structural features are indicative of
the tree’s potential. Virality and cross-community content
spread have been predicted using properties of underlying
network structure [24].

Temporal: The rate of cascade’s growth has been in-
strumental in predicting its virality. Previous work on con-
versation lengths in Facebook [2], predicting content popu-
larity [22] and the ability of a cascade diffusing in the net-
work [25] have all emphasized the predictive value of tem-
poral properties. We adapt some of the well-known prop-
erties of structural, temporal aspects, and original poster’s
attributes of information diffusion trees (Table 1) to forecast
their growth of the tree.

Root node: We harvested features from the Twitter
metadata of the original poster (root node) and inferred fea-
tures such as gender, Twitter age, average post rate.

5.2 Features for Forest Dynamics
We present four categories of features that we use to fore-

cast the growth of the information cascade forest viz. for-
est structural, underlying connected graph, Twitter follower
network, and forest temporal. A comprehensive list of the
features used is presented in Table 1.

Forest Structural: We extract some collective topolog-
ical features of the forest for our forecasting algorithm. The



Table 1: The features used in forecasting the growth of diffusion trees (top three categories) and information cascade forests (bottom
four categories).

Diffusion Tree - Structural features

S.1 Degree Total number of followers of the ith node of a tree

S.2 Induced Degree Number of followers of the ith node among the first k nodes
S.3 Active Nodes Number of total users in the underlying graph reachable from the first k nodes and the root
S.4 Original Conn. Number of neighbors of the root node who are in the tree
S.5 Subgraph Number of edges on the induced sub-graph of the first k nodes

from the underlying network
S.6 Border Nodes Number of neighbors of the participating nodes that are not part of the tree
S.7 User Left Number of nodes in the tree are not neighbors of the root

Diffusion Tree - Temporal features
T.1 # Views Number of users who saw the posts by the first k nodes of the tree
T.2 Avg. First Average time between posts of the first k/2 nodes
T.3 Avg. Last Average time between posts of last k/2 nodes

T.4 Elapsed Time Time elapsed between the post by the root node and the post by the kth node
T.5 Growth Rate Change in time between posts of successive nodes in the tree

Diffusion Tree - Root node features

R.1 Infectivity Total number of root’s followers infected at the kth reshare
R.2 Post count Number of tweets with hashtag of interest posted
R.3 Post count Out degree of the root
R.4 Retweets Number of retweets of the original post
R.5 Twitter Klout score An influence score obtained from the Twitter metadata
R.6 Avg. Post Rate Number of tweets posted per day by the root
R.7 Gender Gender of the root poster, if available (categorical variable of three categories)
R.8 Twitter Age Time since active on Twitter

Forest - Structural Gf features
F.1 GfEdges Number of edges in Gf

Forest F.2 GfTrees Number of individual trees in Gf

F.3 GfLargestTree Size of the largest tree in Gf

F.4 Gf IsoNodes Number of isolated nodes (trees with size = 1)
F.5 GfDeg1Nodes Number nodes with outdeg = 1
F.6 GfSize3Trees Number of trees with size greater than 3
F.7 GfBroadcast Number of broadcast trees (depth = 1)

F.8 GfDensity density of Gf , given as
GfEdges

|Nf | ∗ |Nf | − 1
, where Nf is number of nodes in Gf

F.9 GfLargestTreeProp The ratio between size of the largest tree and the number of nodes in the forest,

essentially
GfLargestTree

|Nf |

Forest - Underlying connected graph Guc features
UC.1 GucEdges Number of edges in Guc

UC.2 GucConnNodes Number of connector nodes in Guc

UC.3 GucConnEdges Number of edges incident to connector nodes
UC.4 Node Ratio Ratio of number of nodes in Gf to Guc (Nf/Nuc)
UC.5 Edge Ratio Ratio of number of edges in Gf to Guc (GfEdges/GucEdges)
UC.5 GucInDeg2 Number of connector nodes with indeg ≥ 2
UC.6 GucTriads Number of triangles in Guc

UC.7 Tree Betweenness mean of shortest paths in Guc between trees in Gf

UC.8 GucDensity density of Gf , given as
GucEdges

|Nc| ∗ |Nc| − 1
, where Nc is number of nodes in Guc

Forest - Twitter follower network Gfn features
FN.1 Root Followers Number of Twitter followers of the root nodes of all trees in Gf

FN.2 Root Influence Neighbors of the root in the Gf divided by the number of followers of the root node
FN.3 Leaf Influence Number of followers of the leaf nodes of all the trees
FN.4 Forest Potential Total number of followers of all the nodes in all the trees
FN.5 Follower Influence ∀v ∈ Gf , the ratio of followers of v in Gf to all the followers of v in Gfn

FN.6 Border followers Number of followers of nodes in Gf , that are not in Gf

Forest - Temporal features
TF.1 Total Time Elapsed Time elapsed between post of the first node in Gf and ith node in Gf

TF.2 Node Growth Speed Average time between nodes for the i tweets
TF.3 Tree Growth Speed Average time between trees for the m trees arising out of the i nodes
TF.4 Cascade Growth Rate Change in times between successive nodes appearing in the forest
TF.5 Forest Growth Rate Change in times between successive trees appearing in the forest
TF.6 Time Elapsed Origin Change in times between first node’s post and the ith node’s post



number of trees that make up a forest and the distribution of
their sizes provides information about the structure of the
forest. Recently it was shown that there are two types of
diffusion trees - broadcast and multi-level diffusion [6] (see
Fig.5e) and a correlation was found between virality and the
type of the tree. The second level cascading process corre-
lated highly with virality. We track the type of the tree in
our feature list. We capture the imprint of the largest tree
in the forest by computing the ratio between the size of the
largest tree and that of the information cascade forest.

Underlying Connected Graph (UCG): Our forest is
a collection of trees, which are essentially disconnected com-
ponents in a large graph i.e. the Twitter follower network.
We adapt the idea presented in [14] and use their algorithm
to build an underlying connected graph which combines all
the trees into one connected component. We introduce con-
nector nodes C from the Twitter follower network into the
forest of trees to achieve this. We find the set of connector
nodes between the different trees via shortest paths and use
the least number of nodes that makes the forest into one con-
nected component (Guc). We then extract several graphical
features of Guc. More formally the underlying connection
graph is as follows:

Given F (H) = Gf (Vf , Ef ), Gfn(Vfn, Efn) is the Twitter
follower network, connector nodes C ⊆ Vfn, then the un-
derlying connected graph Guc(Vuc, Euc) is built such that:
Vuc = Vf ∪ C and Euc = {(u, v) | u ∈ Vf , v ∈ C and (u, v) ∈
Efn}

Finding an underlying connected graph is NP-hard as one
can reduce the Steiner tree computation to this problem. We
use the heuristic proposed [14] to construct our underlying
connected graph. Briefly the method is as follows. Consider
the various trees in the forest and sort them in descending
order of size. Connect the largest tree to the second largest
tree via the shortest path between them to make it one com-
ponent, and then proceed to connect trees to this component
in decreasing order of tree size.

The underlying connected graph captures the structural
relationship between the various trees in the forest. When
a hashtag has several entry points into the forest, it is quite
natural that they can be spread apart initially and become
dense as the forest grows. The density of the Guc gives us
this information. Also, we measure tree betweenness as the
average of all the shortest paths between each pair of diffu-
sion trees. This quantifies how far spread out the forest is.
Finally, the connector nodes with high in-degree are quite
likely to become part of the cascade during its growth fol-
lowing the intuition proposed by several threshold models [9,
17]. The features extracted from the Guc have high forecast-
ing potential, especially in forecasting the structural growth
of the cascade.

Twitter Follower: The overall influence of the trees in
the information cascade and the individual influence of the
nodes is best captured by the footprint of the cascade on
the Twitter follower network. As shown in [11, 18] features
extracted from the follower network, such as number of fol-
lowers of nodes in the cascade, are very useful in predicting
cascades. We capture this phenomenon at various levels us-
ing root followers, forest potential, and leaf influence. We
compute features that capture the relationship between the
cascade forest and the follower network. In particular, we
capture the influence each node has using ratios computed

Meta-node Root

Figure 6: We add a meta-node and make it the root of all the
trees in a cascade forest. We extract the tree level features of this
artificially extended tree and use it as a baseline for our approach.

between nodes in the cascade and the nodes not in the cas-
cade. We also extrapolate some of the tree-level features
such as border nodes in the context of forests.

Forest temporal: The significance of temporal proper-
ties of cascades underscored in earlier work [2, 22, 25] cou-
pled with the forecasting potential demonstrated in [4], we
extend some of the temporal features to our cascade forests.
We observe that this category of features have significant
potential in forecasting cascades.

6. EXPERIMENTS
We demonstrate the performance of our forecasting algo-

rithm both at the tree level and collectively at the forest
level. Our feature set and forecasting tasks naturally lend
themselves to a setup where we can ask the following ques-
tions:

1. Given that tree level forecasting models have been well
studied, can we design a forecasting model using a
tree based approach for the information cascade for-
est? (Sec. 6.1)

2. Which group of features has the most predictive power?
(Sec. 6.2.1, 6.2.2, 6.2.3)

3. How does the performance of prediction vary with num-
ber of observations? (Sec. 6.2.1, 6.2.2, 6.2.3)

4. How early can we forecast the future size of the cas-
cade? (Sec. 6.2.4)

5. Can structural virality and virality potential be fore-
casted? (Sec. 6.3)

Our experimental framework is setup as a series of pre-
diction tasks, where we observe k nodes in an information
cascade and forecast if a quantity of interest will reach the
median or not. In section 4, we demonstrated that random
guessing (one baseline), is always 50%. We describe a tree
based approach in this section, which we use as another base-
line. We experimented with different classifiers viz. SVM,
decision tree, random forest, and logistic regression and the
forecasts were similar across all of them (within ∼2%). The
results presented are from the logistic regression based clas-
sifier. In all cases we performed 10-fold cross-validation.
While all three evaluation metrics viz. precision, recall and
F1-score obtained similar results, for ease of comparison we
report the F1-score for all our experiments.

6.1 Meta-node Root Approach
We add a meta-node (shown in Fig. 6) to the cascade and

make all the diffusion trees in a forest its first level children.
Now the information cascade is a tree, albeit artificially. We
extract the features (sans the artificially introduced root-
node features) of this propagation tree (outlined earlier and
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Figure 5: We pictorially show some of the forest level features that we extract from our data. Particularly, we use features from the
underlying connected graph to forecast forest growth. We also extract several temporal signatures of the cascade forest.

Figure 7: Forecasting the size of the largest tree: Above: We
see that we are able to significantly outperform the random-guessing
baseline. Below: Like the Facebook photograph reshare cascades
observed in [4], the prediction accuracy improves with observations.
Moreover, the meta-node approach which is a tree based method per-
forms just as well as the forest features.

in Table 1), in our forecasting experiments. We use this
approach as a baseline to evaluate the performance of the
newly engineered forest features in our present work.

6.2 Forecasting Size
Among the quantities of interest defined earlier, tree size,

forest size, and cascade size are related to size.

6.2.1 Tree Size
For this task, we forecast the growth of the largest dif-

fusion tree in the forest. We see (Fig. 7: top) that, using
the features extracted, our predictor performs up to ∼33%
(if we observe 100 nodes in the forest) over the random-
guessing baseline. To evaluate the contribution of each fea-
ture group, we trained a classifier using structural and tem-
poral features separately. We observe that the temporal
features (28% above baseline) outperform the structural fea-
tures (23% above baseline) by about 5%. For the second
experiment (Fig. 7 below), we evaluate the prediction ac-
curacy with varying number of observations. We find that
the forecasting accuracy improves with more observations
of the forest, achieving close to 95% accuracy. Since this
task is tree-level forecasting and the meta-node approach is
tree-based, it is quite natural that its prediction accuracy is
quite optimal. This result also conforms with the discovery
in [4] that temporal features have the most predictive power
and that accuracy increases with number of observations.

6.2.2 Forest Size
The forest model affords for a two-dimensional growth of

information cascades. In this subsection, we focus on growth
as a function of trees; more precisely we look at forest size.
We observe an accuracy of 83% in forecasting the forest size
(see Fig. 8 above). Temporal features obtain a performance
of 78%. In the absence of temporal features of the cascade,
with a snapshot of the cascade graph, the Guc set of features
predicts the growth of forests with 75% accuracy. This result



Figure 8: We are forecasting the outbreak of new trees in the forest
using features from trees already in the forest, thus making this a very
interesting result. The UCG is a very useful feature set as it uses a
snapshot of the cascade graph to predict the formation of new trees.
The temporal features by themselves are highly indicative of forest-
size. We find that there is consistent improvement to the forecasts
with increased observations. The set of forest features consistently
outperform the meta-node based tree approach

is particularly useful because of the limitations posed by the
Twitter API to extract the follower network. We observe
that the combined forest features show an improvement of
upto ∼9% over the meta-node tree based approach.

6.2.3 Cascade Size
We find that the classifier achieves around 82% perfor-

mance (and upto ∼95% for large cascades of size > 500)
when we combine all the features, when predicting cascade
size. Temporal features are the best performing set in this
case as well. We note that when the prediction question is
cast at the node-level, the follower network features perform
better than the structural features of the forest. This result
agrees with intuition as this forecasting question looks si-
multaneously at the growth of a tree and the forest. Since
the border nodes, induced degree, original connection and
other tree level structural features are analogous to some of
the features in the group of follower network features, and
are excellent at predicting tree level growth, we find that
follower network features are very good at predicting node-
level growth of the forest.

6.2.4 Fixed Target Cascade Size
In the effort of finding a sweet-spot to forecast the even-

tual size of a cascade, we fix the lower-bound of cascade size
and analyze how early we can predict it. Towards that end,
we extracted a subset of all the forests with size of at least R
and for varying k (k ≤ R) observations, we forecast whether
the cascade will reach the median (of all cascades of size at
least R). We find that (Fig. 9) the performance increases
consistently. In other words, there is no fixed number of
observations after which the performance either remains the

same or decreases. Although it is worth noting that the
rate at which the performance improves is much higher with
lower number of increments in nodes observed than with in-
crements close toR. Each feature category’s performance, as
expected, improves with increased number of observations.
We find the class of temporal features performs very well on
its own. The forest’s topological features’ performance is the
least with lesser observations but eventually outperforms fol-
lower network features with the luxury of observations. We
find that the performance of underlying connected graph im-
proves consistently with observations and performs almost
as good as the temporal features.

6.3 Forecasting Structure

6.3.1 Tree Structure
In this set of experiments we forecast if the largest tree’s

Wiener Index (WI) achieves median value across all the
forests’ largest trees. Our classifier has a prediction accu-
racy of about 73% and concurring with the findings in [4],
we find that the temporal features and structural features
have similar performance.

6.3.2 Forest Structure
In forecasting the FWI, the features extracted at the forest-

level obtain a performance of about 74%. While the forest-
temporal features perform quite similar to the forest-structural
features, we find that the Guc set outperforms every other
group of features significantly. Since FWI is a structural
characterization, it is natural that it is highly correlated
with structural properties of the forest. To understand this
performance further, we trained a classifier individually on
each of the features in the UCG. The density of Guc, InDeg2
and ConnEdges have the highest performance at ∼63% for
each of them. The connector nodes fall on paths that con-
nect the various information trees and are prime candidates
to become part of the information cascade in its progression.
Also, the connected edges in turn become part of the forest
and contribute towards FWI. Therefore, it stands to reason
that the features associated with those nodes and the under-
lying connected graph in general well capture the structural
evolution of the forest.

Similarly, while forecasting VPI, we find that the struc-
tural features have the most forecasting potential. Since the
VPI is characterized at the node level and then extended to
the tree, it is not surprising that the metanode based ap-
proach forecasts the structural virality almost as well as all
the forest features combined. Although, when the size of
the cascade grows the forest features outperform the tree
based approach. We also note that the Guc features are
best indicative of the VPI. This result is natural since VPI’s
characterization comes from the Twitter follower network.

6.4 A Viral Forest Cascade Example
In July 2013 MTV ran the #mtvhottest campaign for

electing the most popular summer music star via Twitter.
The campaign, started July 20th and ended August 18th,
received over 320 million tweets worldwide and it was vi-
ral in our dataset as well with ∼ 1.98 million tweets. In
the first twelve hours of the first appearance of the hash-
tag, the cascade garnered 32,584 tweets which made it one
of the fastest growing cascades in our dataset. The cas-
cade steadily grew over the duration of the next month col-
lecting around 20-40k tweets on a daily basis. By the last



Figure 9: The follower network features are better than the structural features in forecasting cascade-size but have the least performance
among all features while forecasting forest-size. While performance is quite different for each class of features in the early stages, with more
observations, all the classes of features perform quite similarly. (right)

Figure 10: Forecasting structural virality of the largest tree and the entire forest. The underlying connected graph best forecasts the structure.
The VPI is designed at the tree level and extended to the forest. Thus it is quite intuitive that the meta-node approach forecasts almost as good
as the forest features.

week of the campaign, the cascade garnered close to 50k
tweets per day. We observed that along with #mtvhottest
other hashtags like #JustinBeiber, #MileyCyrus, #OneDi-
rection, #VivaPerry, #LadyGaga, #Gagalicious, #Vamos-
Bieber (shown as tagclouds evolving over time in Fig. 11)
appeared. Interestingly, the use of several hashtags led to
the development of several sub-forests. Moreover we also ob-
served that several users were canvassing for their favorite
stars and attempting to convince their followers via the use
of mentions. Our forecasting algorithm was able to deter-
mine the growth of #mtvhottest with a confidence of up to
95%.

7. DISCUSSION & FUTURE WORK
This work offers an alternate viewpoint to information

cascades modeled as forests of diffusion trees and analyzes
their predictability. Although each of the the four classes
of features extracted viz. forest structural, underlying con-
nected graph, Twitter follower and forest temporal have in-
dividual forecasting potential, the forest temporal feature
set is the most indicative of the eventual size of the for-
est. In the absence of temporal features, given a snapshot
of a cascade graph, the set of underlying connected graph
(Guc) features can not only forecast the eventual size of the
cascades, but is the best indicator of shape (structural vi-
rality). Even though several diffusion trees are disconnected
components, we were always able to extract a Guc indicat-
ing that the Twitter follower network is a dense connected
network. We find that the performance of prediction consis-
tently improves with number of observations and that there
is no ‘sweet spot’ after which the performance tapers.

While we have primarily analyzed some of the fundamen-
tal structural and temporal aspects of these forests to engi-
neer features, one could extract rich features based on con-
tent, communities in the network, and user interest groups
that can potentially improve the overall forecasting. More-

over, the forest model naturally lends itself to studying the
propagation of URL cascades on social networks. We will
adapt our model to study that as well. The interplay be-
tween the content of the URL and other features combined
with the forest-level features can give us a richer feature set
to analyze and forecast information cascades. The prolifera-
tion of hashtags also allows for extending the forest model to
consider trees formed across multiple social networks. This
will not only help us better characterize information flow but
also analyze and understand propagation patterns across so-
cial networks. The forest model can capture co-occurring
hashtags and URLs to build forests that combine two differ-
ent types of diffusion trees and capture richer information
propagation patterns.

Twitter activity has been often precursor of events such as
protests [19] and activity cascades have been used in protest
recruitment and protest out break predictions effectively [3].
In the future, we aim to extend our model to monitor event-
based cascading activity to examine event forecasting poten-
tial of Twitter cascades for events like flu outbreak, elections,
agenda setting, or civil unrest movements.
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