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ABSTRACT
Real-time monitoring and responses to emerging public health threats rely
on the availability of timely surveillance data. During the early stages of an
epidemic, the ready availability of line lists with detailed tabular informa-
tion about laboratory-confirmed cases can assist epidemiologists in making
reliable inferences and forecasts. Such inferences are crucial to understand
the epidemiology of a specific disease early enough to stop or control the
outbreak. However, construction of such line lists requires considerable
human supervision and therefore, difficult to generate in real-time. In this
paper, we motivate Guided Epidemiological Line List (GELL), the first tool
for building automated line lists (in near real-time) from open source reports
of emerging disease outbreaks. Specifically, we focus on deriving epidemio-
logical characteristics of an emerging disease and the affected population
from reports of illness. GELL uses distributed vector representations (ala
word2vec) to discover a set of indicators for each line list feature. This
discovery of indicators is followed by the use of dependency parsing based
techniques for final extraction in tabular form. We evaluate the perfor-
mance of GELL against a human annotated line list provided by HealthMap
corresponding to MERS outbreaks in Saudi Arabia. We demonstrate that
GELL extracts line list features with increased accuracy compared to a
baseline method. We further show how these automatically extracted line
list features can be used for making epidemiological inferences, such as
inferring demographics and symptoms-to-hospitalization period of affected
individuals.
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1 INTRODUCTION
An epidemiological line list [7, 13] is a listing of individuals suffer-
ing from a disease that describes both their demographic details
as well as the timing of clinically and epidemiologically significant
events during the course of disease. These are typically used during
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outbreak investigations of emerging diseases to identify key fea-
tures, such as incubation period, symptoms, associated risk factors,
and outcomes. The ultimate goal is to understand the disease well
enough to stop or control the outbreak. Ready availability of line
lists can also be useful in contact tracing as well as risk identifi-
cation of spread such as the spread of Middle Eastern Respiratory
Syndrome (MERS) in Saudi Arabia or Ebola in West Africa.

Formats of line lists are generally dependent on the kind of
disease being investigated. However, some interesting features that
are common for most formats include demographic information
about cases. Demographic information can include age, gender, and
location of infection. Depending on the disease being investigated,
one can consider other addendums to this list, such as disease onset
features (onset date, hospitalization date and outcome date) and
clinical features (comorbidities, secondary contact, animal contact).

Traditionally, line lists have been curated manually and have
rarely been available to epidemiologists in near-real time. Our pri-
mary objective is to automatically generate line lists of emerging
diseases from open source reports such as WHO bulletins [22]
and make such lists readily available to epidemiologists. Previous
work [7, 13] has shown the utility in creating such lists through
labor intensive human curation. We now seek to automate much
of this effort. To the best of our knowledge, our work is the first to
automate the creation of line lists.

The availability of massive textual public health data coincides
with recent developments in text modeling, including distributed
vector representations such as word2vec [14, 15] and doc2vec [8].
These neural network based language models when trained over
a representative corpus convert words to dense low-dimensional
vector representations, most popularly known as word embeddings.
These word embeddings have been widely used with consider-
able accuracy to capture linguistic patterns and regularities, such as
vec(Paris) - vec(France)≈ vec(Madrid) - vec(Spain) [11, 16]. A second
development relevant for line list generation pertains to semantic
dependency parsing, which has emerged as an effective tool for
information extraction, e.g., in an open information extraction con-
text [23], Negation Detection [1, 18, 21], relation extraction [2, 9]
and event detection [17]. Given an input sentence, dependency
parsing is typically used to extract its semantic tree representations
where words are linked by directed edges called dependencies.

Building upon these techniques, we formulate Guided Epidemio-
logical Line List (GELL), a novel framework for automatic extrac-
tion of line list from WHO bulletins [22]. GELL is guided in the
sense that the user provides a seed indicator (or, keyword) for each
line list feature to guide the extraction process. GELL uses neural
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Figure 1: Tabular extraction of line list by GELL given a textual block of aWHOMERS bulletin. Each row in the extracted table
depicts an infected case (or, patient) and columns represent the epidemiological features corresponding to each case. Informa-
tion for each case in the table is then used to make epidemiological inferences, such as inferring demographic distribution of
cases

word embeddings to expand the seed indicator and generate a set
of indicators for each line list feature. The set of indicators is sub-
sequently provided as input to dependency parsing based shortest
distance and negation detection approaches for extracting line list
features. As can be seen in Figure 1, GELL takes a WHO bulletin as
input and outputs epidemiological line list in tabular format where
each row represents a line list case and each column depicts the
features corresponding to each case. The extracted line list provides
valuable information to model the epidemic and understand the
segments of population who would be affected.

Our main contributions are as follows.
• Automated: GELL is fully automatic, requiring no prior human
annotation. Given a WHO bulletin, it will automatically extract
the number of line list cases and the features corresponding to
each case. The user only needs to provide a seed indicator for each
feature to be extracted.
• Novelty: To the best of our knowledge, there has been no prior
systematic efforts at tabulating such information automatically
from publicly available health bulletins.
• Real-time:GELL can be deployed for extracting line list in a (near)
real-time setting.
• Evaluation: We present a detailed and prospective analysis of
GELL by evaluating the automatically inferred line list against a
human curated line list for MERS outbreaks in Saudi Arabia. We
also compare GELL against a baseline method.
• Epidemiological inferences: Finally, we also demonstrate some of
the utilities of real-time automated line listing, such as inferring the
demographic distribution and symptoms-to-hospitalization period.

2 PROBLEM OVERVIEW
In this manuscript, we intend to focus on Middle Eastern Respi-
ratory Syndrome (MERS) outbreaks in Saudi Arabia [13] (2012-
ongoing) as our case study. MERS was a relatively less understood
disease when these outbreaks began. Therefore, MERS was poised
as an emerging outbreak leading to good bulletin coverage about the
infectious cases individually. This makes these disease outbreaks
ideally suited to our goals. MERS is infectious as well and animal
contact has been posited as one of the transmission mechanisms of
the disease. For each line list case, we seek to extract automatically
three types of epidemiological features as follows. (a) Demograph-
ics: Age and Gender, (b) Disease onset: onset date, hospitalization
date and outcome date and (c) Clinical features: animal contact,
secondary contact, comorbidities and specified healthcare worker
(abbreviated as HCW).

In Figure 2, we show all the internal components comprising the
framework of GELL. GELL takes multiple WHO MERS bulletins
as input. The textual content of each bulletin is pre-processed by
sentence splitting, tokenization, lemmatization, POS tagging, and
date phrase detection using spaCy [6] and BASIS TechnologiesâĂŹ
Rosette Language Processing (RLP) tools [20]. The pre-processing
step is followed by three levels of modeling as follows. (a) Level 0
Modeling for extracting demographic information of cases, such
as age and gender. In this level, we also identify the key sentences
related to each line list case, (b) level 1 Modeling for extracting
disease onset information and (c) level 2 Modeling for extracting
clinical features. This is the final level of modeling in GELL frame-
work. Features extracted at this level are associated with two labels:



Y or N. Therefore, modeling at this level combines neural word
embeddings with dependency parsing-based negation detection
approaches to classify the clinical features into Y or N. In the sub-
sequent subsections, we will discuss each internal component of
GELL in detail.

Figure 2: Block diagram depicting all components of the
GELL framework. Given multiple WHO MERS bulletins as
input, these components function in the depicted order to
extract line lists in tabular form)

3 GELL
Given multiple WHO MERS bulletins as input, GELL proceeds
through three levels of modeling for extracting line list features.
We describe each level in turn.

3.1 Level O Modeling
In level 0 modeling, we extract the age and gender for each line
list case. These two features are mentioned in a reasonably struc-
tured way and therefore, can be extracted using a combination of
regular expressions as shown in Algorithm 1. One of the primary
challenges in extracting line list cases is the fact that a single WHO
MERS bulletin can contain information about multiple cases. There-
fore, there is a need to distinguish between cases mentioned in the
bulletin. In level 0 modeling, we make use of the age and gender ex-
traction to also identify sentences associated with each case. Since
age and gender are the fundamental information to be recorded
for a line list case, we postulate that the sentence mentioning the
age and gender will be the starting sentence describing a line list
case (see the textual block in Figure 1). Therefore, the number of
cases mentioned in the bulletin will be equivalent to the number
of sentences mentioning age and gender information. We further
postulate that information related to the other features (disease on-
set or critical) will be present either in the starting sentence or the
sentences subsequent to the starting one not mentioning any age

and gender related information ((see the textual block in Figure 1)).
For more details on level 0 modeling, please see Algorithm 1. In
Algorithm 1, N represents the number of line list cases mentioned
in the bulletin and SCn represents the set of sentences mentioning
the nth case.

Algorithm 1: Level 0 modeling
Input : set of sentences in the input WHO MERS bulletin
Output :Age and Gender for each line list case, index of the starting sentence for each case

1 n = 0;
2 SCn = Null;
3 R1 =
\s+(?P<age>\d{1,2})(.{0,20})(\s+|-)(?P<gender>woman|man|male|female|boy|girl|housewife);
4 R2 = \s+(?P<age>\d{1,2})\s*years?(\s|-)old;
5 R3 = \s*(?P<gender>woman|man|male|female|boy|girl|housewife|he|she);
6 for each sentence in the bulletin do
7 is-starting→ 0;
8 if R1 .match(sentence) then
9 Age = int(R1 .groupdict()[’age’]);

10 Gender = R1 .groupdict()[’gender’];
11 is-starting→ 1;

12 else
13 if R2 .match(sentence) then
14 Age = int(R3 .groupdict()[’age’]);
15 else
16 Age = Null;

17 if R3 .match(sentence) then
18 Gender = int(R3 .groupdict()[’gender’]);
19 else
20 Gender = Null;

21 if Age , Null && Gender , Null then
22 is-starting→ 1;

23 if is-starting then
24 n += 1;
25 SCn = index of the sentence;

26 N = n;

3.2 WHOWord Embeddings
Before presenting the details of level 1 modeling and level 2 model-
ing, we will briefly discuss the process for providing WHO word
embeddings as input to both these levels of modeling (see Figure 2).
In this process, our main objective is to identify words which tend
to share similar contexts or appear in the contexts of each other
specific to the WHO bulletins (contexts of a word refer to the words
surrounding it in a specified window size). For instance, consider
the sentences S1 =The patient had no contact with animals and
S2 =The patient was supposed to have no contact with camels. The
terms animals and camels appear in similar contexts in both S1 and
S2. Both the terms animals and camels are indicative of information
pertaining to patient’s exposure to animals or animal products.

Similarly, consider the sentences S3 =The patient had an onset
of symptoms on 23rd January 2016 and S4 =The patient developed
symptoms on 23rd January 2016. The terms onset and symptoms are
indicators for the onset date feature and both of them appear in
similar contexts or contexts of each other in S3 and S4.

For generatingword-embeddings, neural network inspiredword2vec
models are ideally suited to our goals because these models work
on the hypothesis that words sharing similar contexts or tending
to appear in the contexts of each other have similar embeddings.
In recent years, word2vec models based on the skip-gram architec-
tures [14, 15] have emerged as the most popular word embedding



models for information extraction tasks [5, 10, 12]. We used two
variants of skip-grammodels: (a) the skip-grammodel trained using
the negative sampling technique (SGNS [15]) and (b) the skip-gram
model trained using hierarchical sampling (SGHS [15]) to generate
embeddings for each term in the WHO vocabularyW.W refers
to the list of all unique terms extracted from the entire corpus of
WHO Disease Outbreak News (DONs) corresponding to all diseases
downloaded from http://www.who.int/csr/don/archive/disease/en/.
The embeddings for each term inW were provided as input to
level 1 modeling and level 2 modeling as shown in Figure 2.

3.3 Level 1 Modeling
The level 1 modeling is responsible for extracting the disease onset
features, such as symptom onset date, hospitalization date and
outcome date for each linelist case, say the nth case. For extracting
a given disease onset feature, the level 1 modeling takes three inputs:
(a) seed indicator for the feature, (b) the word embeddings generated
using SGNS or SGHS for each term in the WHO vocabularyW and
(c) SCn representing the set of sentences describing the nth case
for which we are extracting the feature.

Growth of seed indicator. In the first phase of level 1 modeling,
we discover the top-K similar (or, closest) indicators to the seed indi-
cator for each feature using WHO word embeddings. The similarity
metric used is the standard cosine similarity metric. Therefore, we
expand the seed indicator to create a set of K + 1 indicators for each
feature. In Table 1 we show the indicators discovered by SGNS for
each disease onset feature given the seed indicators as input.

Table 1: Seed indicator and the discovered indicators using
word embeddings generated by SGNS

Features Seed indicator Discovered indicators

Onset date onset symptoms, symptom, prior,
days, dates

Hospitalization date hospitalized admitted, screened, hospitalised,
passed, discharged

Outcome date died recovered, passed, became,
ill, hospitalized

Shortest Dependency Distance. In the second phase, we use
these K + 1 indicators to extract the disease onset features. For
each indicator It∀t ∈ 1, 2, . . . ,K + 1, we identify the sentences
mentioning It by iterating over each sentence in SCn . Then, for
each sentence mentioning It , we discover the shortest path along
the undirected dependency graph between It and the date phrases
mentioned in the sentence. Subsequently, we calculate the length
of the shortest path as the number of edges encountered while
traversing along the shortest path. The length of the shortest path
is referred to as the dependency distance. E.g., consider the sentence
S5 = He developed symptoms on 4-June and was admitted to a hos-
pital on 12-June. The sentence S5 contains the date phrases 4-June
and 12-June. S5 also contains the indicator symptoms for onset date
and admitted for hospitalization date (see Tables 1). In Figure 3, we
show the undirected dependency graph for S5. We observe that the
dependency distance from symptoms to 4-June is 3 (symptoms→
developed→ on→ 4-June) and 12-June is 4 (symptoms→ developed
→ admitted → on→ 12-June). Similarly, the dependency distance

Figure 3: Undirected dependency graph corresponding toS5.
The red-colored edges depict those edges included in the
shortest paths between the date phrases (4-June, 12-June)
and the indicators (symptoms, admitted)

from admitted to 4-June is 3 (admitted → developed → on → 4-
June) and 12-June is 2 (admitted → on→ 4-June). Therefore, for
each indicator we extract a set of date phrases and the dependency
distance corresponding to each date phrase. The output value of
the indicator is set to be the date phrase located at the shortest
dependency distance. E.g., in S5, the output values of symptoms
and admitted will be 4-June and 12-June respectively. The final
output for each disease feature is obtained by performing majority
voting on the outputs of the indicators. For more algorithmic details,
please see Algorithm 2.

Algorithm 2: Level 1 modeling
Input : seed indicator, word embeddings for each term inW, SCn
Output :date phrase

1 Growth of seed indicator using word embeddings to generate K + 1 indicators represented
as It ∀t ∈ 1, 2, . . . , K + 1;

2 for each It do
3 dependency-dist = dict(); empty dictionary
4 for each sentence in SCn do
5 check the mention of It ;
6 if It found then
7 Identify the date phrases mentioned in the sentence;
8 if at least one date phrase is found then
9 construct the undirected dependency graph for the sentence (see

Figure 3);
10 for each date phrase in the sentence do
11 dependency-dist[date phrase] = dependency distance (see

section 3.3);

12 else
13 continue;

14 else
15 continue;

16 Output of It = date phrase in dependency-dist having the shortest dependency
distance;

17 final output = majority voting on the outputs of each It ;

3.4 Level 2 Modeling
The level 2 modeling is responsible for extracting the clinical fea-
tures for each line list case. Extraction of clinical features is a binary
classification problem where we have to classify each feature into
two classes - Y or N. The first phase of level 2 modeling is similar to
level 1 modeling. Seed indicator for each clinical feature is provided
as input to the level 2 modeling and we extract the K + 1 indicators
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Figure 4: Directed dependency graph corresponding to S6 showing direct and indirect
negation detection

for each such feature by discovering the top-K most similar indi-
cators to the seed indicator (in terms of cosine similarities) using
WHO word embeddings.

Dependency based negation detection. In the second phase,
we make use of the K + 1 indicators extracted in the first phase
and a static lexicon of negation cues [3], such as no, not, without,
unable, never, etc. to detect negation for a clinical feature. If no
negation is detected, we classify the feature as Y, otherwise N. For
each indicator It∀t ∈ 1, 2, . . . ,K + 1, we identify the first sentence
(referred to as SIt ) mentioning It by iterating over the sentences
in SCn . Once SIt is identified, we perform two types of negation
detection on the directed dependency graph DIt constructed for
SIt .
Direct Negation Detection: In this negation detection, we search
for a negation cue among the neighbors of It in DIt . If a negation
cue is found, then the output of It is classified as N.
Indirect Negation Detection. Absence of a negation cue in the
neighborhood ofIt drives us to perform indirect negation detection.
In this detection, we locate those terms in DIt for which DIt has
a directed path from each of these terms as source to It as target.
We refer to these terms as the predecessors of It in DIt . Then, we
search for negation cues in the neighborhood of each predecessor.
If we find a negation cue around a predecessor, we assume that
the indicator It is also affected by this negation and we classify
the output of It as N. For example, consider the sentence S6 =The
patient had no comorbidities and had no contact with animals. and
the directed dependency graph corresponding to S6 is shown in
Figure 4. Sentence S6 contains the seed indicators comorbidities
for comorbidities and animals for animal contact. In Figure 4, we
observe direct negation detection for comorbidities as the negation
cue no is located in the neighborhood of the indicator comorbidities.
However, for animal contact, we observe indirect negation detection
as the negation cue no is situated in the neighborhood of the term
contact which is one of the predecessors of the indicator animals.

Therefore, for a clinical feature we have K + 1 indicators and the
classification output Y or N from each indicator. The final output
for a feature is obtained via majority voting on the outputs of the
indicators.

4 EXPERIMENTAL EVALUATION
In this section, we first provide a brief description of our experi-
mental setup, including the models for automatic extraction of line

Algorithm 3: Level 2 modeling
Input : seed indicator, word embeddings for each term inW, negation cues, SCn
Output :Y or N

1 Growth of seed indicator using word embeddings to generate K + 1 indicators represented
as It ∀t ∈ 1, 2, . . . , K + 1;

2 for each It do
3 Iterate over each sentence in SCn and identify the first sentence SIt mentioning It ;
4 Construct the directed dependency graph DIt (see Figure 4) for SIt ;
5 NIt = set of terms connected to It in DIt , i.e. neighbors of It ;
6 PIt = predecessors of It in DIt ;
7 Isnegation← 0;
8 if NIt has a negation cue then
9 output of It = N ;

10 Isnegation← 1;
11 break;

12 else
13 Iterate over each term in PIt and seach for a negation cue in the neighborhood;
14 if negation cue found in neighborhood of a predecessor then
15 output of It = N ;
16 Isnegation← 1;
17 break;

18 if ¬Isnegation then
19 output of It = Y ;

20 final output = majority voting on the outputs of each It ;

lists, human annotated line lists, accuracy metric and parameter
settings.

4.1 WHO corpus
The WHO corpus used for generating the WHO word embeddings
(see Figure 2) was downloaded from http://www.who.int/csr/don/
archive/disease/en/. The corpus contains outbreak news articles
related to a wide range of diseases reported during the time pe-
riod 1996 to 2016. The textual content of each article was pre-
processed by sentence splitting, tokenization and lemmatization
using spaCy [6]. After pre-processing, the WHO corpus was found
to contain 35,485 sentences resulting in a vocabularyW of 4447
words.
4.2 Models
We evaluated the following automated line listing models.
•GELL (SGNS): Variant of GELLwith SGNS used as the word2vec
model for generating WHO word embeddings.
•GELL (SGHS): Variant of GELLwith SGHS used as the word2vec
model for generating WHO word embeddings.
• Baseline: Baseline model which does not use WHO word em-
beddings to expand the seed indicator in order to generate K + 1
indicators for each feature. Therefore, Baseline uses only a single
indicator (seed indicator) to extract line list features.

4.3 Human annotated line list
We evaluated the line list extracted by the automated line listing
models against a human annotated line list for MERS outbreaks
in Saudi Arabia. To create the human annotated list, patient and
outcome data for confirmed MERS cases were collected from the
MERS Disease Outbreak News (DONs) reports of WHO [22] and
curated into a machine-readable tabular line list. In the human
annotated list, total number of confirmed cases were 241 curated
from 64 WHO bulletins reported during the period October 2012 to
February 2015. Some of these 241 cases have missing (null) features
(see Figure 1). In Figure 5, we show the distribution of non-null
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Figure 5: Distribution of non-null features in the human an-
notated line list

features in the human annotated list. We observe that majority of
human annotated cases have at least 6 (out of 9) non-null features
with the peak of the distribution at 8.

4.4 Accuracy metric
Matching automated line list to human annotated list. For

evaluation, the problem is: we are given a set of automated line
list cases and a set of human annotated cases for a single WHO
MERS bulletin. Our strategy is to costruct a bipartite graph [20]
where (i) an edge exists if the automated case and the human an-
notated case is extracted from the same WHO bulletin and (ii) the
weight on the edge denotes the quality score (QS). Quality score
(QS) is defined as the number of correctly extracted features in the
automated case divided by the number of non-null features in the
human annotated case. We then construct a maximum weighted
bipartite matching [20]. Such matchings are conducted for each
WHO bulletin to extract a set of matches where each match rep-
resents a pair (automated case, human annotated case) and is also
associated with a QS. Once the matches are found for all the WHO
bulletins, we computed the average QS by averaging the QS values
across the matches.

Once the average QS and QS for each match are computed, we
also computed the accuracy for each line list feature. For the de-
mographic and disease onset features, we computed the accuracy
classification score using scikit-learn [19] by comparing the auto-
mated features against the human annotated features across the
matches. The clinical features are associated with two classes - Y
andN (see Figure 1). For each class, we computed the F1-score using
scikit-learn [19] where F1-score can be interpreted as a harmonic
mean of the precision and recall. F1-score reaches its best value at
1 and worst score at 0. Along with the F1-score for each class, we
also report the average F1-score across the two classes.

4.5 Parameter settings
GELL (SGNS) and GELL (SGHS) uses WHO word embeddings to
generate K + 1 indicators for the line list columns. Therefore, these
two models inherit the parameters of skip-gram based word2vec

techniques, such as dimensionality, window size, negative samples,
etc. as shown in Table 5. Apart from the word2vec parameters,
GELL also inherits the parameter K which refers to the K + 1
indicators for disease onset or clinical features (see Section 3). In
Table 5, we provide the list of all parameters, the explored values
for each parameter and the applicable models corresponding to
each parameter. We selected the optimal parameter configuration
for each model based on the maximum average QS value as well as
maximum average of the individual feature accuracies across the
matches.

5 RESULTS
In this section we try to ascertain the efficacy and applicability of
GELL by investigating some of the pertinent questions related to
the problem of automated line listing.

Multiple indicators vs single indicator - which is the bet-
ter method for automated line listing?

As mentioned in section 4, GELL (SGNS) and GELL (SGHS)
uses multiple indicators discovered by word2vec, whereas the base-
line Baseline uses only the seed indicator to infer line list features.
We executed our automated line listing models taking as input the
same set of 64 WHO MERS bulletins from which 241 human an-
notated line list cases were extracted. In Table 2, we observe that
the number of automated line list cases (198) and the matches (182)
after maximum bipartite matching is same for all the models. This
is due to the reason that level 0 modeling (age and gender extrac-
tion) is the common modeling component in all the models and the
number of extracted line list cases depends on the age and gender
extraction (see section 3). In Table 2, we also compared the average
QS achieved by each model. We observe that GELL (SGNS) is the
best performing model achieving an average QS of 0.74 over GELL
(SGHS) (0.71) and Baseline (0.67). To further validate the results in
Table 2, we also show the QS distribution for each model in Figure 6
where x-axis represents the QS values and the y-axis represents the
number of automated line list cases having a particular QS value.
For Baseline, the peak of QS distribution is at 0.62. However, for
GELL (SGNS) and GELL (SGHS), the peak of the distribution is at
0.75. We further observe thatGELL (SGNS) extracts higher number
of line list cases with a perfect QS of 1 in comparison to Baseline.

We also compared the models on the basis of individual accura-
cies of the line list features across the matches in Tables 3 and 4.
In Table 3, all the models achieve similar performance for the de-
mographic features since level 0 modeling is similar for all the
models (see section 3). However, for the disease onset features,
both GELL (SGNS) and GELL (SGHS) outperform the baseline
achieving an average accuracy of 0.45 and 0.43 in comparison to
Baseline (0.12) respectively. GELL (SGNS) is the best perform-
ing model for onset date. However, for hospitalization date and
outcome date, GELL (SGHS) is the better performing model than
GELL (SGNS). In Table 4, for the clinical features, we observe
that GELL (SGNS) performs better than GELL (SGHS) and Base-
line for comorbidities and specified HCW on the basis of average
F1-score. Specifically, for specified HCW, GELL (SGNS) outper-
forms GELL (SGHS) and Baseline for the minority class Y. For
animal contact, GELL (SGHS) emerges out to be the best perform-
ing model in terms of average F1-score, specifically outperforming



Figure 6: Distribution of QS values for each automated line
listing model corresponding to MERS line list in Saudi Ara-
bia. X-axis represents QS values and Y-axis represents the
number of automated line list cases having a particular QS
value

the competing models for the minority class Y. Baseline only per-
forms better for secondary contact, even though the performance
for the minority class Y is almost similar to GELL (SGHS) and
GELL (SGNS). Overall, we can conclude from Table 4 that GELL
employing multiple indicators discovered via SGNS or SGHS shows
superior performance than Baseline in majority of the scenarios,
specifically for the minority class of each clinical feature.

Table 2: Average Quality Score (QS) achieved by each auto-
mated line listing model for MERS line list in Saudi Arabia.
As can be seen, GELL (SGNS) shows best performance achiev-
ing an average QS of 0.73

Models Human
lists

Auto
lists Matches Average

QS
Baseline 241 198 182 0.67
GELL
(SGHS) 241 198 182 0.71

GELL
(SGNS) 241 198 182 0.74

What are beneficial parameter settings for automated line
listing?

To identify which parameter settings are beneficial for auto-
mated line listing, we looked at the best parameter configuration
(see Table 5) of GELL (SGNS) and GELL (SGHS) which achieved
the accuracy values in Tables 2, 3 and 4. In Table 5, we explored
the standard settings of each word2vec parameter (dimensionality
of word embeddings, window size, negative samples and training
iterations) in accordance with previous research [12]. Regarding
dimensionality of word embeddings, GELL (SGHS) prefers 600
dimensions, whereas GELL (SGNS) prefers 300 dimensions. For
the window size, both the models seem to benefit from smaller-
sized (5) context windows. Most sentences in WHO corpus contain
information about multiple columns, therefore relevant contexts of

Table 3: Comparing the automated line listing models based
on the accuracy score for the demographics and disease on-
set features. For the disease onset features, GELL (SGNS)
emerges out to be the best performing model. However, for
the demographic features, all the models achieve almost
similar performance

Feature
type Features Baseline GELL

(SGHS)
GELL
(SGNS)

Demographics Age 0.87 0.91 0.87
Gender 0.99 0.98 0.97
Average 0.93 0.95 0.92

Disease
onset

Onset
date 0.01 0.01 0.37

Hospitalization
date 0.11 0.63 0.62

Outcome
date 0.48 0.66 0.36

Average 0.20 0.43 0.45

Table 4: Comparing the performance of the automated line
listing models for extracting clinical features correspond-
ing to MERS line list in Saudi Arabia. We report the F1-
score for class Y, class N and average F1-score across the two
classes. For animal contact, GELL (SGHS) emerges out to be
the best performing model. For comorbidities and specified
HCW, GELL (SGNS) shows best performance. However, for
secondary contact, Baseline achieve superior performance
in comparison to GELL

Clinical Feature
(Y:N) Class Baseline GELL

(SGHS)
GELL
(SGNS)

Animal contact
(1:3)

Y 0.33 0.68 0.37
N 0.87 0.91 0.88

Average 0.60 0.79 0.63

Secondary contact
(1:3)

Y 0.57 0.52 0.56
N 0.86 0.70 0.72

Average 0.71 0.61 0.64

Comorbidities
(2:1)

Y 0.52 0.52 0.81
N 0.56 0.54 0.61

Average 0.54 0.53 0.71

Specified HCW
(1:6)

Y 0.26 0.35 0.44
N 0.95 0.93 0.90

Average 0.61 0.64 0.67

indicators are in their immediate vicinities leading to smaller win-
dow sizes. The number of negative samples is applicable only for
GELL (SGNS)where it seems to prefer a single negative sample. Fi-
nally, for the training iterations, both the models benefit from more
than 1 training iteration. This is expected as the WHO corpus used
for generating WHO word embeddings (see section 4) is a smaller-
sized corpus with a vocabulary of onlyW = 4447 words. In such
scenarios, word2vec models (SGNS or SGHS) generate improved
embeddings with higher number of training iterations. Finally, both
the models are also associated with the parameter K which refers
to the number of indicators K + 1 used for extracting the disease



onset and clinical features. As expected, the models prefer at least 5
indicators, along with the seed indicator to be used for automated
line listing. Using higher number of indicators increases the chance
of discovering an informative indicator for a line list feature.

Table 5: Parameter settings inGELL (SGNS) andGELL (SGHS)
for which both the models achieve optimal performance in
terms of average QS and individual feature accuracies corre-
sponding to MERS line list in Saudi Arabia. Non-applicable
combinations are marked by NA

Models Dimensionality
(300:600)

Window
size

(5:10:15)

Negative
samples
(1:5:15)

Training
Iterations
(1:2:5)

Indicators
(K = 3:5:7)

GELL
(SGHS) 600 5 NA 5 7

GELL
(SGNS) 300 5 1 2 5

Which indicator keywords discoveredusingword2vec con-
tribute to the improved performance of GELL?

Next, we investigate the informative indicators discovered using
word2vec which contribute to the improved performance of GELL
(SGNS) or GELL (SGHS) in Tables 3 and 4. In Figure 7, we show
the accuracies (or, average F1-score) of individual indicators (in-
cluding the seed indicator) corresponding to the best performing
model for a particular line list feature. Regarding onset date (see
Figure 7a), GELL (SGNS) is the best performing model and the
seed indicator provided as input is onset. We observe that symptoms
is the most informative indicator achieving an accuracy of 0.36
similar to the overall accuracy (see Table 3). Rest of the indicators
(including the seed indicator) achieve negligible accuracies and
therefore, do not contribute to the overall performance of GELL
(SGNS). Similarly, for hospitalization date with the seed keyword
hospitalization provided as input, admitted emerges out to be most
informative indicator followed by the seed indicator, hospitalised
and treated (see Figure 7b). Finally, for the outcome date, died (seed
indicator) and passed are the two most informative indicators as
observed in Figure 7c.

Regarding the clinical features, we show the average F1-score
of individual indicators. For animal contact, the seed indicator pro-
vided as input is animals. We observe in Figure 7d that the most
informative indicator for animal contact is camels followed by in-
dicators such as animals (seed), sheep and direct. This shows that
contact with camels is the major transmission mechanism for MERS
disease. The informative indicators found for comorbidities are pa-
tient, comorbidities and history. Finally, regarding specified HCW,
the informative indicators discovered are healthcare (seed), tracing
and intensive.

Does indirect negation detection play a useful role in ex-
tracting clinical features?

In level 2 modeling for extracting clinical features, both direct
and indirect negation detection are used. For more details, please
see section 3. To identify if indirect negation detection contributes
positively, we compared the performance of GELL with and with-
out indirect negation detection for each clinical feature in Table 6 by
reporting the F1-score for each class as well as average F1-score. We
observe that indirect negation detection has a positive effect on the
performance for animal contact and secondary contact. However,

for comorbidities and specified HCW, indirect negation detection
plays an insignificant role.

Table 6: Comparing the performance of GELL on extraction
of clinical features with or without indirect negation for
MERS line list in Saudi Arabia. It can be seen that indirect
negation improves the performance of GELL for animal con-
tact and secondary contact.

Clinical Feature Class Direct Negation Direct + Indirect Negation

Animal contact
Y 0.56 0.63
N 0.80 0.90

Average 0.68 0.77

Secondary contact
Y 0.55 0.54
N 0.65 0.72

Average 0.60 0.63

Comorbidities
Y 0.86 0.82
N 0.64 0.62

Average 0.75 0.72

Specified HCW
Y 0.44 0.44
N 0.90 0.90

Average 0.67 0.67

What insights can epidemiologists gain about the MERS
disease from automatically extracted line lists?

Finally, we show some of the utilities of automated line lists
by inferring different epidemiological insights from the line list
extracted by GELL.
Demographic distribution. In Figure 1, we show the age and
gender distribution of the affected individuals in the extracted line
list. We observe that males are more prone to getting infected by
MERS rather than females. This is expected as males have a higher
probability of getting contacted with infected animals (animal con-
tact) or with each other (secondary contact). Also individuals aged
between 40 and 70 are more prone to getting infected as evident
from the age distribution.
Analysis of disease onset features. We analyzed the symptoms-
to-hospitalization period by analyzing the difference (in days) be-
tween onset date and hospitalization date in the extracted line list as
shown in Figure 8a. We observe that most of the affected individuals
with onset of symptoms got admitted to the hospital either on the
same day or within 5 days. This depicts a prompt responsiveness of
the concerned health authorities in Saudi Arabia in terms of admit-
ting the individuals showing symptoms of MERS. In Figure 8b, we
also show a distribution of the hospitalization-to-outcome period
(in days). Interestingly, we see that the distribution has a peak at 0
which indicates that most of the infected individuals admitted to
the hospital died on the same day indicating high fatality rate of
MERS case.

6 CONCLUSIONS AND FUTUREWORK
In this manuscript, we have introduced GELL, the first automated
framework for building epidemiological line lists from open source
reports of emerging diseases. GELL uses word2vec techniques
(SGNS or SGHS) to discover multiple indicators for each line list
feature and these indicators were subsequently used to guide de-
pendency parsing based shortest distance and negation detection
approaches for final feature extraction. We demonstrated the supe-
rior performance of GELL (SGNS) and GELL (SGHS), specifically
for disease onset and clinical features by comparing it against a
baseline model Baseline which doesn’t use any word embedding



(a) Onset date (b) Hospital date (c) Outcome date

(d) Animal contact (e) Comorbidities (f) Specified HCW

Figure 7: Accuracy of individual indicators (including the seed indicator) discovered via word2vec methods in GELL (SGNS) or
GELL (SGHS) for each line list feature. For clinical features, we show the average F1-score. This figure depicts the informative
indicators (indicators showing higher accuracies or F1-scores) which contribute to the improved performance of GELL (SGNS)
or GELL (SGHS) for a particular feature. E.g. for animal contact, the most informative indicator contributing to the superior
performance of GELL (SGHS) is camels followed by animals (seed), sheep and direct

(a) Symptoms-to-hospitalization
period distribution

(b) Hospitalization-to-outcome
period distribution

Figure 8: Analysis of disease onset features in the extracted line list

model and only utilizes the seed indicator to extract line list fea-
tures. Our results showed that relative performance improvement of
GELL over Baseline is dependent on the discovery of informative
indicators using word2vec.

Our future work will focus on adapting GELL to extracting line
lists from highly unstructured open sources (compared to WHO)

such as HealthMap [4] using advanced NLP techniques, such as
CRFs and LSTMs specifically for negation detection in Level 2
Modeling. Moreover, we aim to extract line lists using GELL for
modeling other emerging diseases, such as Ebola, H7N9 at different
geographical regions of the world.
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