
Partial evaluation is a

technique popular in the

programming languages

community. It is applied here

as a methodology for

personalizing Web content.

Two very different

implementations of the

methodology demonstrate

its effectiveness.

21IEEE INTERNET COMPUTING 1089-7801/ 00/$10.00 ©2000 IEEE h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 2000

P
ER

SO
N

A
LIZ

A
TIO

N

NAREN RAMAKRISHNAN

Virginia Polytechnic Institute and State University

P ersonalization of Web content is one of the fastest-growing seg-
ments of the Internet economy. Because it can help in reducing
information overload and give users a more customized experience

of a Web site, personalization has spawned a multimillion-dollar industry.
Companies like Netperceptions (http://www.netperceptions.com) and
Yodlee (http://www.yodlee.com) are building custom personalization solu-
tions for individual client specifications.

There are two main approaches to personalization.

■ The simplest approach uses content-based techniques that filter content
by keywords, string matching, and so on. Most Web search engines
use these techniques, but they harness only a fraction of the indexable
Web (less than 30 percent, according to one study1) and, even then,
require users to sift through many results to determine relevant selec-
tions. One reason for the low coverage is that the majority of Web
pages are dynamically generated2 and hence not directly accessible via
hyperlinks. Another reason is the lack of sophisticated conceptual mod-
els for Web information retrieval.

■ At the other end of the spectrum are collaborative-filtering techniques that
mine user-access patterns, Web logs, preferences, and profiles to tailor
the content provided at specific sites (for example, “Since you liked Sense
and Sensibility, you might also be interested in Pride and Prejudice”).

There are also some hybrid approaches (see the sidebar, “Related Work in
Personalization,” next page).

While current personalization systems may use sophisticated algo-
rithms and techniques, they also hardwire the interaction sequences in
their interfaces. For example, a personalization facility at an online book-
seller may have some users who think of books primarily by title, others
who look for a particular author, and still others who would like to per-
sonalize with respect to a combination of features. To cover all potential
scenarios, the system designer must anticipate every type of situation
beforehand and implement customization interfaces (algorithms) for all
of them. The absence of an adequate programming model means that
designers must make many assumptions and simplifications in the inter-

PIPE: Web Personalization
by Partial Evaluation

F E A T U R E

22 NOVEMBER • DECEMBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

face design. Some of these result from necessity
(“This site is organized in this manner and I can’t
help it”); others may reflect a lack of understanding
or appreciation of user needs (“I think this is the
best interface to my customers”). In either case, the
user may experience serious cognitive and repre-
sentational frustrations, because the modes of
interaction are hardwired (for example, “This
interface works only if you specify both the ISBN
number and the title”).

I have developed a customizable methodology
called PIPE (short for “Personalization Is Partial
Evaluation”). PIPE is able to personalize Web
resources, without enumerating the interaction
sequences beforehand. It supports information
integration, and varying levels of input by Web vis-
itors. PIPE models personalization as a form of par-
tial evaluation, a technique that uses incomplete
input information to specialize programs.

This article describes the PIPE methodology and
presents experimental results demonstrating its
effectiveness in two different domains.

PIPE METHODOLOGY
PIPE is a programmatic framework to design per-
sonalization systems. It is based on three concepts:
partial evaluation, data mining of semistructured
data, and information integration.

Partial Evaluation
The input to a partial evaluator is a program and
some static information about its arguments. The
output is a specialized version of the program (typ-
ically in the same language) that uses the static
information to “precompile” as many operations as
possible.3

Partial evaluation is traditionally used to speed
up a program and/or remove interpretation over-
head, but it can also be viewed as a technique to
simplify program presentation by removing infor-
mation that doesn’t apply to a particular user or is
otherwise unnecessary. The PIPE methodology
models a collection of Web sites as a program that
abstracts the underlying organization of informa-
tion. The program is then partially evaluated with
respect to user input, and a personalized Web site
is recreated from the specialized program.

Figure 1 shows a simplified example of special-
izing a C power function, pow, to create a new
function, pow2, that computes only the square of
an integer. For a user who computes only squares
of integers, the specialized program works as well
as the full pow function at considerably less com-

Related Work in Personalization

Personalization research has evolved to three types of approaches:

■ Content-based techniques from the information-filtering and
Web database management communities use keywords, string
matching, link patterns, and manually compiled identifiers to
provide simple “Web query languages” for personalization.
Examples include WebSQL, WebOQL, and Florid. For an
excellent survey of these and other content-based techniques
with a database flavor, see Florescu et al.1

■ Collaborative-filtering techniques achieve a higher level of so-
phistication by modeling user behavior, either explicitly or implic-
itly. This line of research has led to ideas such as clustering Web-
access logs, mining user profiles, and collaboratively identifying
a community of users. Examples are the GroupLens project at
the University of Minnesota2 and PHOAKS at AT&T Labs.3

■ Some hybrid systems focus on a major social process (as
observed in the real world), model it in its entirety, and use it to
form the abstraction for a personalization system. A good
example is the Clever search engine4 (http://www.almaden.
ibm.com/cs/k53/clever.html) that models the notion of “authority
conferral.” Such schemes combine content-based and
collaborative-filtering techniques in very sophisticated ways.

Examples of content-based systems include search engines like
AltaVista.com and cross-indices such as Yahoo.com. Some search
engines augment content-based indexing with link analysis (for
example, Google.com) or with conceptual clustering (such as North-
ernLight.com). Examples of collaborative-filtering systems include
the recommender products of companies like Net Perceptions. For
other examples of personalization systems, see the August 2000
special issue of Communications of the ACM on this topic.5

To my knowledge, no methodology comparable to PIPE exists
for designing Web personalization systems, although similar archi-
tectures are available for other aspects of information capture and
access.6

References
1. D. Florescu, A. Levy, and A. Mendelzon, “Database Techniques for the World Wide

Web: A Survey,” SIGMOD Record, vol. 27, no. 3, Sept. 1998, pp. 59-74.

2. J.A. Konstan et al., “GroupLens: Applying Collaborative Filtering to Usenet

News,” Comm. ACM, vol. 40, no. 3, Mar. 1997, pp. 77-87.

3. L. Terveen et al., “PHOAKS: A System for Sharing Recommendations,” Comm. ACM,

vol. 40, no. 3, Mar. 1997, pp. 59-62.

4. S. Chakrabarti et al., “Mining the Web’s Link Structure,” Computer, vol. 32, no.

8, Aug. 1999, pp. 60-67.

5. D. Riecken, “Personalized Views of Personalization,” Comm. ACM, vol. 43, no.

8, Aug. 2000, pp. 27-28.

6. D. Rus and D. Subramanian, “Customizing Information Capture and Access,”

ACM Trans. Information Systems, vol. 15, no. 1, Jan. 1997, pp. 67-101.

P I P E

23IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 2000

putational cost. Furthermore, pow2 can be
obtained automatically from pow by precomput-
ing all expressions that involve exponents, unfold-
ing the for-loop, and performing various other
compiler transformations such as copy propagation
and forward substitution.

Example 1: Abstracting a Web site into a program.
Consider a congressional Web site organized in a
hierarchical fashion to provide information about
U.S. senators, representatives, their parties, precincts,
and state affiliations. In Figure 2, the nodes (circles)
denote individual Web pages for the site, and the
links represent some labeling mechanism such as the
HTML <a href>s that anchor hyperlinks in a Web
page or XML tags. In this case, a Web crawler
employing a depth-first search could be used to
obtain a program that models the links such that the
interpretation of the program refers to the schema
in the Web sources. For example, the data in Figure
2 corresponds to the following program:

if (Senators)
if (Dem)

if (CA)
. . .

else if (NY)
. . .

else if (Rep)
. . .

. . .
else if (Representatives)

if (Dem)
. . .

where the link labels are represented as program
variables.

The program models the mutually exclusive
dichotomies of links at individual nodes by else if
statements (for example, “A Democrat cannot be a
Republican”). Although this example models only
the organization of the Web site, the textual infor-
mation stored at each of the internal nodes can be
modeled by associating augmented data structures
with the program variables. Furthermore, the leaves,
or innermost sections of the program, can store vari-
able assignments to individual home pages.

If a user is interested in personalizing the Web
site to provide information about only Democrat-
ic senators, the program can be partially evaluated
with respect to the variables Dem and Senators (set-
ting them to 1). This produces the following sim-
plified program:

if (CA)
. . .

else if (NY)
. . .

which can be used to recreate Web pages with per-
sonalized content (shown by the circular region in
Figure 2).

The flexibility in this approach allows personal-
ization when variable values are available for a cer-
tain level in the hierarchy but not for levels above

int pow (int base, int exponent) {
int prod = 1;
for (int i=0; i<exponent;i++)

prod = prod * base;
return (prod);

}

int pow2(int base) {
return (base * base);

}

Figure 1. Partial evaluation technique. A general-purpose power func-
tion written in C (left) is specialized (with exponent = 2) to create a new
function, pow2 (right), that computes only the square of an integer.
Such partial evaluations are performed automatically by software
such as C-Mix.

Figure 2. First three levels of a hierarchically organized Web site
about U.S. senators and representatives. Lower levels could include
detailed information such as congressional precincts, interests, and
sponsored bills. The labels on edges represent selections made by a
user or navigation program. The circled region indicates the per-
sonalization output when the input is “Democratic Senators.”

Senators Representatives

Dem Dem
Rep Rep

Ind Ind

CA

CA
NY

F E A T U R E

24 NOVEMBER • DECEMBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

it. For example, say a user desires information about
a member of Congress from New York but is
unsure whether the member is a senator or repre-
sentative or a Democrat or Republican. A partially
evaluated output will provide personalized content
by including New York (by setting NY=1) and
excluding other states (by setting variables for other
states, such as CA to zero). It can thus simplify
lower levels of the tree, without requiring informa-
tion about the higher levels.

Mining Semistructured Data
Example 1 illustrates the concept of using partial
evaluation for personalization, but it is not realis-
tic. Most Web sites are not strictly hierarchical and
several use links for purposes other than narrowing
on an information resource. Realistic sites are best
abstracted by semistructured data models that
describe implicit, loose, irregular, and constantly
evolving schema of information.

To scale the PIPE methodology for semistruc-
tured data, we can use data-mining techniques that
extract compressed schema from Web sites. The basic
idea can be illustrated by using the approximation
model of Nestorov et al.,4 which treats Web pages as
atomic objects and models the links between the
pages as relations between the atomic objects.

Example 2: Extracting structure from a Web site.
In the hypothetical Web site depicted in the top left
part of Figure 3, the links are assumed to be tagged
via some labeling mechanism. The first step in
extracting structure from the site is to type the
data—that is, to determine the minimum number
of entities needed to model the Web schema. For
example, the S2 node in the top left part of Figure
3 can be typed as

S2(Y) :– S1(X), link(X,Y,’a’), P1(Z), link(Y,Z,’e’)

which indicates that S2 can be reached from S1
(using a link tagged by the label a) and has a link
to P1 (using a link tagged by the label e).

This kind of typing, expressed in the form of a

logic program, might not yield any compression of
the original data source; so various approximations
and simplifications are applied to reduce its size
before partial evaluation. Commonalities that
show up in encountering the same page multiple
times (top right of Figure 3) are first identified.
They can be easily found by using a hash indexed
by page URL in the Web crawler.

Next, the Nestorov algorithm uses program-
theoretic techniques to find the minimal set of
types necessary to accurately model the original
data source. For example, P1 and P2 have the same
input labels and output labels (to the same page).
As a result, they can be compressed into a single
type P1,2 by computing the greatest fixed point of
the logic program.

Finally, one type can be expressed as the super-
position of multiple other types, thus further reduc-
ing the schema of the original data source and,
therefore, the size of the specialized program. In this
example, P3 can be subsumed by a combination of
P1,2 and P4. Such compressions and approxima-
tions serve to reduce only the schema for partial
evaluation; they do not discard the textual content
in individual pages. The end result of this process
(bottom right of Figure 3) is a succinct schema that
can be used for personalization. The cost of the
mining algorithm is double-quadratic in the size of
the Web site (preleaf nodes).

For Web sites that are purely hierarchical and do
not contain cycles, Nestorov et al.4 provide more
simplifications that enable efficient implementa-
tions of the mining algorithm.

Information Integration
Examples 1 and 2 illustrated only a single site, but
a compelling personalization scenario must inte-
grate information from multiple Web sites and
other sources of information, such as recommender
systems and topic-specific cross-indexes. Recom-
mender systems make selections of artifacts by min-
ing profiles of customer choices and buying pat-
terns (for example, see Aggarwal et al.5).
Topic-specific indexes provide ontologies and tax-
onomies by cross-referencing information from
multiple sites (as in the Yahoo! taxonomy).

The PIPE methodology can be used to integrate
these approaches into the design of personalization
systems.

Example 3: Personalizing stock quotes. The Yahoo!
Finance cross-index at http://quote.yahoo.com pro-
vides a ticker symbol lookup for stock charts, finan-

A compelling personalization
scenario must integrate

information from multiple sources.

P I P E

25IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 2000

cial statistics, and links to company profiles. It is
easy to model and personalize this site by partially
evaluating with respect to ticker symbol.

But what if a user knows only the company name
and does not know the ticker symbol? What if he or
she wants to build an index on the basis of an online
brokerage’s recommendations? The key issue, then, is

to integrate information from Web resources that
use different terminology and organizational schema.
For example, the online brokerage might refer to its
recommendations by company name (Microsoft),
but the Yahoo! cross-index uses the ticker symbol
(MSFT). Financial terms also carry with them the
twin idiosyncrasies of synonymy and polysemy:

S2

a b c

S5

d

P1

e

P2

e

P3

e

P3

e

P4

e

P4

f

M1

g

M1

g

M2

h

M1

g h g

M2

h

M2

h

S1

S3 S4

(a) (b)

(c) (d)

S1

S2

a

S3

b

S4

c

S5

d

P1,2

e e

P4

e f

M1

g g

M2

hh

S1

S2

a

S3

b

S4

c

S5

d

P1,2

e e

P3

e e

P4

e f

M1

g g

M2

h h

S1

S2

a

S3

b

S4

c

S5

d

P1

e

P2

e

P3

e e

P4

e

M1

g g g

M2

h h

f

Figure 3. Four stages in mining schema from a semistructured data source. The input is a graph with labeled and direct-
ed edges (top left). Commonalities encountered in building the tree are factored first (top right). At this stage, multiple
internal nodes may possess the same input and output labels (for example, P1 and P2). An algorithm then types the data,
thus collapsing P1 and P2 (bottom left). Finally, the algorithm allows nodes to belong to multiple types, rendering P3 redun-
dant and expressing it as a superposition of P1,2 and P4 (bottom right).

F E A T U R E

26 NOVEMBER • DECEMBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

“Investments” on one Web site might be “ventures”
on another (synonymy), but “ventures” might also
mean something completely different on a Web site
not focused on finance (polysemy).

To solve these problems, the PIPE methodology
can model the choices made by an individual recom-
mender system as statements in a program that
abstracts the control flow of the selection algorithm.
For stocks, a special function can take the current user
profile as input and return a ticker symbol recom-
mendation. This function can be called from a main()
routine to model the Yahoo! Finance cross-index for
ticker symbols. The routine can then use the ticker
symbols to set variables for the personalized program.

Synonymy can be addressed by introducing
additional assertions such as

if (MSFT)
Microsoft = TRUE;

if (Microsoft)
MSFT = TRUE;

at the beginning of the composite program, which
could then abstract the task models underlying the
application. This is the most domain-specific part
of the methodology and cannot be easily automat-
ed. The literature on information integration pro-

poses various solutions to this problem, notably
wrappers and mediator-based schemes.2

CASE STUDIES
Implementing the PIPE methodology first requires
the identification of “starting points” for personal-
ization at different Web sites. This is a domain-spe-
cific consideration. The system developer should
model the site schemas by using labeled graphs and
modeling semistructured data. The second step is to
extract typing rules from each site structure by using
the mining algorithm. The third step is to merge the
diverse schema into a composite program, taking
care to ensure that entities referred to in different
ways by individual Web sources are correctly merged.
The information space represented by the composite
program is called a recommendation space.

These three preliminary steps are performed
offline and only once for any one specific imple-
mentation. The final step is the online partial eval-
uation of the composite program and reconstruc-
tion of the original information from the specialized
program. I have implemented this approach in two
different domains with good results.

Scientific and Engineering Software
The first implementation created Web pages to rec-
ommend mathematical and scientific software for
scientists and engineers. An effective personaliza-
tion system in this domain involves at least three
different sources:

■ In the experiment reported here, I chose the
Netlib software repository maintained by AT&T
Bell Labs, the University of Tennessee, and the
Oak Ridge National Laboratory (http://www.
netlib.org). Netlib provides access to thousands
of pieces of software, much of it organized into
Fortran libraries. For example, the Quadpack
library provides software routines for numeri-
cal quadrature.

■ The GAUSS recommender system selects algo-
rithms for numerical quadrature.6 Recom-
mender systems in the computational science
domain take a problem description and identi-
fy an algorithm that satisfies user-specified per-
formance constraints for errors, time, and so
on. The recommendation process is a very com-
plex, domain-specific issue, and is not covered
here (for more details, see Ramakrishnan,
Houstis, and Rice6).

■ The Guide to Available Mathematical Software
(GAMS) system (http://gams.nist.gov) provides

Figure 4. Snapshot of the GAMS interface (http://gams.nist.gov) at
three levels of the hierarchy. The Problem Decision Tree (upper left)
is the highest level of the cross-index. Finite Interval Quadrature (the
H2a1 node, upper right), is four branches down. At the lowest level
is a list of algorithms (bottom).

P I P E

27IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 2000

a Web-based index for locating
and identifying algorithms for
scientific computing. GAMS
indexes nearly 10,000 algo-
rithms and employs a tree-
structured taxonomy of
mathematical and software
problems to classify software
modules. Figure 4 shows
three screen shots of a GAMS
session, in which a user selects
the H category and proceeds
to make further selections,
finally arriving at the leaves, where there are sev-
eral choices of algorithms for a specific problem.

PIPE was implemented to personalize recommen-
dations about quadrature software. Without PIPE,
scientists typically use GAUSS to obtain a recom-
mendation for a quadrature algorithm. Then they
manually navigate through the GAMS taxonomy,
starting from the root and seeking the category that
contains an implementation for the recommended
algorithm. Finally, they browse the Netlib site to
download the source code and documentation for
the recommendation. Clearly, no one of these
resources provides enough information for person-
alization.

Experimental setup. The Netlib site’s schema was
first extracted and personalized for the input
(Quadpack=1, which provides the algorithms for
quadrature). The tree-building algorithm (written
in Perl) used the navigation capabilities of the Lynx
Web browser. Commonalities encountered in tree
building were identified, in part, by Perl hashes that
use arrays indexed by page URL.

The mining algorithm did not yield any com-
pression to the original Netlib schema for Quad-
pack because the site has a strict two-level hierar-
chy. A simplified portion of the schema obtained
from Netlib is shown below:

if (dqc25s.f)
URL = “http://www.netlib.org/

quadpack/dqc25s.f”
. . .

Next, tree building and data mining were con-
ducted for the GAMS Web site, rooted at the H2a
node (one-dimensional numerical quadrature). The
compressions from mining the GAMS schema
were of two main varieties: reductions achieved by

factoring common nodes at the preleaf level (typi-
cally module sets) and those achieved by mining
links that violated the tree taxonomy. Tree build-
ing reduced 80 internal nodes in the H2a tree to
74 nodes. Data mining and collapsing multiple
roles further reduced the number to 69 nodes.
Thus, a compression of 14 percent was observed
for the H2a GAMS subtree. At this stage, the com-
posite program is given by

if (Quadrature_Problem)
if (One–Dimensional_Problem)

if (Finite_Interval)
if (Specific_Integrand)

if (Automatic_Accuracy)
. . .

where Quadrature_Problem and Automatic_Accu-
racy are the link labels at the GAMS site. The rec-
ommendation rules from GAUSS are already in
programmatic form; they take a vector of problem
features and performance criteria as input and make
a recommendation for an algorithm.6 Therefore, the
three schema (and their respective programs) can be
merged, taking into account their inconsistent label-
ing. For example, Int in GAUSS is referred to as
Quadrature_Problem in GAMS, Finite in GAUSS
is cross-referenced as Finite_Interval in GAMS, and
so on.

The composite program was represented in the
CLIPS programming language,7 which provides
procedural, rule-based, object-oriented paradigms
for representation. The final program is structured
as shown in Figure 5 to model the control flow that
is then partially evaluated.

Figure 6 (next page) shows PIPE’s end-user
interface. The user provides the input problem in
self-describing mathematical terms. PIPE first pars-
es the input symbolically to obtain as many features
as possible. For instance, in the example shown in

main()
{

/* assign feature values */ ...
/* code for matching variables that are cross-referenced */ ...
/* include program from GAUSS recommender system */ ...
/* include program from GAMS H2a website */ ...
/* include program for Netlib site */ ...

}

Figure 5. Final program for the first case study.

F E A T U R E

28 NOVEMBER • DECEMBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

Figure 6, simple parsing reveals that the problem is
a quadrature problem (indicated by the Int opera-
tor), is one dimensional (indicated by the range
restriction), and has an oscillatory integrand on a
finite domain (indicated by the Sin (...) operator
and the range of [0,1], respectively).6

Partially evaluating the earlier CLIPS program
with this information by setting the appropriate
feature values to 1 starts a domino effect of pro-
gram simplification, removing nearly 95 percent
of the original information. The recommendation
rules from GAUSS are partially evaluated, in turn
navigating the GAMS taxonomy rules and mov-

ing toward finding the selected algorithm in
Netlib. In this case, the evaluation is actually a
complete evaluation because the user has provid-
ed enough information to find a final leaf. The
resulting program is then parsed to determine the
individual program variables that are set at the end
of this process. These are then used by the program
segment

printout Algorithm “available in”
GAMS_annotation
“Available in CMLIB (QUADPKD in Netlib)”
URL;

to produce output that includes the algorithm, the
GAMS annotation, and the Netlib annotation
showing where the algorithm can be downloaded
(Figure 6).

The current implementation customizes HTML
content by using Perl’s text-manipulation capabili-
ties, but programmatic reconstruction of Web
pages through systems like WebStrudel2 can elimi-
nate restructuring when more Web sources or addi-
tional rating mechanisms are introduced.

Evaluation. This case study involved a domain
important to computational scientists. Scientists
and engineers would be experts at building mod-
els in their particular domain, but would be
novices at understanding the intricacies of the
mathematical models and the software systems
required to solve them. Therefore, to characterize
the results, I used a benchmark set of problems,6

ran the recommended algorithms to see whether
they indeed satisfied the user’s constraints, and
ensured that the Web links from GAMS and
Netlib were properly associated with all the rec-
ommendations.

A selection was considered invalid if the algo-
rithm was inappropriate for the given problem or
if a wrong page from GAMS/Netlib was indexed.
All selections made by this PIPE implementation
were valid. Furthermore, the best algorithm (the
one that achieved the highest accuracy with the
smallest computational cost) was selected for 87
percent of the queries, the second best for 7 per-
cent, and an acceptable choice for 3 percent. A
wrong selection was made for the remaining 3 per-
cent of the queries, but these arose from uncer-
tainties in the GAUSS recommender system, not
from PIPE’s methodology.

In short, 97 percent of PIPE’s recommendations
in this case study were suitable to the query.

Figure 6. Sample result of PIPE implementation for personalizing con-
tent for a numerical quadrature problem. The recommendation
includes details of the algorithm (and its implementation), the GAMS
site where documentation is available, and the Netlib Web reposi-
tory where the source code can be downloaded.

P I P E

29IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 2000

BEV Tourist Information
The Blacksburg Electronic Village (http://www.
bev.net) provides a community resource for the
New River Valley in southwestern Virginia, USA,
where nearly 70 percent of the population active-
ly uses the Internet. Now in its seventh year, BEV
offers a wide array of information pertaining to
arts, religion, sports, education, tourism, travel,
museums, health, and more. The goal of this
implementation of PIPE is to direct tourists to
appropriate resources in the town of Blacksburg.

The first plan for implementing PIPE in this
context was to use two personalization sources: the
BEV Web site (and various other pages that it links
to) and the Blacksburg Community Directory (an
offshoot of the BEV site). However, ambiguities in
the descriptions of BEV entities caused problems
early on. For example, assume that a user queries for
art galleries. Blacksburg has nearly 25 art galleries,
but only nine places describe themselves as such.
Other such businesses register their organizations
with BEV as showrooms, centers, or museums.

Experimental setup. To overcome this problem, I
introduced a third personalization source, called
Topic, which was a computational distillation of
basic keywords and topics from the BEV site. The
exact computational algorithm is beyond the scope
of this article, but the basic idea is to use orthogo-
nal decompositions (such as singular-value decom-
positions of the term-document matrix, or Lanczos
decompositions) to geometrically model semantic
relationships. The resulting distilled “index” iden-
tifies hidden structures in word usage, thus enabling
searches that go beyond simple keyword matching
(for an example of this approach, see Booker et al.8;
for more information on algorithmic and schemat-
ic issues involving the organization of topical Web
resources, see Terveen, Hill, and Amento9).

The Topic source produced rules (such as
Microsoft = MSFT) that could be used to model
recurrent low-dimensional subspaces in the BEV site.

I applied the same data-mining algorithm to the
BEV site that was applied to Netlib and GAMS,
but it did not compress the original data as much.
One reason for this could be the lack of global
“controls” in the construction of Web pages by
BEV users and administrators.

Partial evaluation, on the other hand, yielded
very effective results, as shown in the sample query
in Figure 7. In this case, the evaluation is truly par-
tial, reproducing a collection of subtrees pertaining
to coffee shops. The second result depicted in Fig-

ure 7 is a false positive, resulting from the associa-
tion Topic made of the word coffee with café,
although none of the resources identified in Blacks-
burg To Go are related to coffee shops.

Evaluation. This implementation was trickier to eval-
uate, but the results illustrate the true potential of the
PIPE methodology. First, 10 Blacksburg residents
were selected randomly and asked to identify 10
queries each that might be pertinent to a visitor (for
example, hiking trails). The 10 most frequently cited
queries were used to test PIPE. The queries were stan-
dardized by eliminating stopwords (terms like “of”
and “the” in queries) and by stemming words (for
instance, “hikers” was mapped to “hiking”).

Then 25 different Blacksburg residents were given
the 10 queries and asked to enumerate their answers
before PIPE was executed. After it was executed, they
were given the personalization results and asked if

Figure 7. Results of personalizing the Blacksburg Electronic Village
for the query “Coffee Shops.” Information such as addresses and
phone numbers is indexed alongside the nodes as annotations and
is displayed when PIPE selects a node to include in the final answer.

F E A T U R E

30 NOVEMBER • DECEMBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

they would like to change their original answers or if
they thought the results were deficient in any respect.
For each query, each user voted on the mismatch
between the personalization results and any expect-
ed answers, using a scale of 1 to 5 (with 1 indicating
complete satisfaction with the results).

Among the 250 votes cast, all but 32 were in the
1–2 range, and the 32 votes were 3s. For each query,
I then conducted a distribution-free test (Kruskal-
Wallis10) of the hypothesis that the results were unan-
imous (versus the alternative that they were not all
equal). A “unanimous” result indicates statistical
agreement among the 25 residents about the out-
come. The hypotheses for all 10 queries were accept-
ed at the 95 percent level, indicating conclusively that
the results were very close to the expected answers.

The 32 votes cast for “3” were spread over seven
people who were less “effusive” than others with their
ratings. Handling the effusivity factor in user-sup-
plied ratings and evaluations is a problem not unfa-
miliar to recommender systems research, as noted by
Aggarwal et al.5 One way to overcome this problem
is to replace absolute ranks with relative ranks (or by
using linear transformations) so that they could be
captured by certain two-way statistical tests (such as
the Friedman, Kendall, and Babington-Smith test10).

The results for one query—namely, trails—had
consistently lower ratings from nearly all 25 resi-
dent participants. The results failed to reproduce
two of the most popular trails in the vicinity. Not
surprisingly, these trails were not mentioned on any
Web pages in the considered collection.

The PIPE results fared well when compared
with the traditional Web search facilities available
in the BEV site. For example, at the time of this
writing, the standard BEV search engine produced
no results for the query “coffee shops” (or “coffee”).

DISCUSSION OF RESULTS
The effectiveness of the PIPE methodology relies on
three factors—systematic design of the personaliza-
tion system, accurate modeling of Web resources,
and consistent methodologies for evaluation. We dis-

cuss PIPE under each of these categories.
First, PIPE integrates the design of personaliza-

tion systems with the task models that underlie the
assumed scenarios of interaction. This property lets
the designer view the personalization system as a
composition of individual subsystems (to use a pro-
gramming metaphor). PIPE is therefore restricted
to those domains that are most amenable to such
decomposition and analysis techniques. It is not a
good fit for more amorphous domains, such as
social networks in an organizational setting.

Second, the implementations described here
require the link labels to represent navigational
choices and the values for such labels (program vari-
ables) to be ascertainable from user input. This was
easy to achieve in both case studies because the
GAMS/GAUSS and BEV sites serve as ontologies
to help guide the personalization process. In the
absence of such ontologies, personalization would
be only as effective as the ease with which link labels
are supplied by the user or extracted from user
input. For example, if a medical informatics site is
organized according to scientific names of diseases
and ailments, personalizing for “headaches” would
require a parallel ontology or cross-index that maps
everyday words into scientific nomenclature.

In addition, data-mining techniques that extract
structures (DTDs) at the level of a single page can
be incorporated in the PIPE framework (for a mod-
eling method for a single page, see Garofalakis et
al.11). Moreover, the loops and complex control
structures that can make partial evaluation a costly
computation are seldom present in the kinds of
applications considered here. The PIPE data-mining
process factors out links that point back to higher
levels of the hierarchy, thus avoiding code blowups.
Further studies are nevertheless required to charac-
terize the scale-up for larger domains. Also, PIPE’s
use of else if statements supports both disjunctions
and conjunctions in the personalization queries. In
typical Web sites, the links are either mutually exclu-
sive (as in Example 1 and the GAMS case study) or
inclusive (as in the BEV case study). Automating
support for this aspect of personalization in a Web
crawler requires more study. Metadata or explicit user
direction offer possible alternatives.

Finally, the BEV case study shows that it is
acceptable (even desirable) to be less strict in vari-
able assignments for certain domains, even though
it yields more false positives. In the GAMS case
study, more stringent demands are made of per-
sonalization. These factors hence directly affect the
design and efficacy of the end system.

The hypotheses for
all 10 queries were accepted

at the 95 percent level.

CONCLUSION
The role of methodologies like PIPE in the future
of the Internet is captured well in an analogy drawn
by Rus and Subramanian.12 I conclude here with
an annotated quotation of it:

Whether users of the information superhighway
prefer to build their own “hot rods” [through
methodologies like PIPE] or take “public
transportation” [for example, a Web search
engine] that serves all uniformly is an empirical
question and will be judged by history.

ACKNOWLEDGMENTS
I would like to thank Saverio Perugini, Akash Rai, and Priya

Lakshminarayanan for helpful discussions on the PIPE method-

ology. B. Arul Pandian assisted with the implementation of the

BEV case study, and Mary Beth Rosson provided guidance on

conducting its evaluation. I also thank the nearly 40 volunteers

who helped in the evaluation of the BEV study. Feedback from

several anonymous referees helped clarify the presentation and

improve the article.

REFERENCES
1. S. Lawrence and C. Lee Giles, “Searching the World Wide

Web,” Science, vol. 280, no. 5,360, 1998, pp. 98-100.

2. D. Florescu, A. Levy, and A. Mendelzon, “Database Tech-

niques for the World Wide Web: A Survey,” SIGMOD

Record, vol. 27, no. 3, Sept. 1998, pp. 59-74.

3. N.D. Jones, “An Introduction to Partial Evaluation,” ACM

Computing Surveys, vol. 28, no. 3, Sept. 1996, pp. 480-503.

4. S. Nestorov, S. Abiteboul, and R. Motwani, “Extracting

Schema from Semistructured Data,” Proc. ACM Int’l Conf.

Management of Data (SIGMOD), ACM Press, New York,

1998, pp. 295-306.

5. C.C. Aggarwal et al., “Horting Hatches an Egg: A New

Graph-Theoretic Approach to Collaborative Filtering,”

Proc. ACM SIGKDD Conf. Knowledge Discovery and Data

Mining, ACM Press, New York, 1999, pp. 201-212.

6. N. Ramakrishnan, E.N. Houstis, and J.R. Rice, “Recom-

mender Systems for Problem Solving Environments,” Tech.

Report WS-98-08 (Working Notes of the AAAI-98 Workshop

on Recommender Systems), H. Kautz, ed., AAAI/MIT Press,

Menlo Park, Calif., 1998, pp. 91-95.

7. J.C. Giarratano, CLIPS User’s Guide, version 5.1, NASA,

Houston, Texas, 1991.

8. A. Booker et al., “Visualizing Text Data Sets,” IEEE Com-

puting in Science and Eng., vol. 1, no. 4, July/Aug. 1999,

pp. 26-34.

9. L. Terveen, W. Hill, and B. Amento, “Constructing, Orga-

nizing, and Visualizing Collections of Topically Related

Web Resources,” ACM Trans. Computer-Human Interac-

tion, vol. 6, no. 1, Mar. 1999, pp. 67-94.

10. M. Hollander and D.A. Wolfe, Nonparametric Statistical

Methods, John Wiley & Sons, New York, 1973.

11. M. Garofalakis et al., “XTRACT: A System for Extracting

Document Type Descriptors from XML Documents,” Proc.

ACM Int’l Conf. Management of Data (SIGMOD), ACM

Press, New York, 2000, pp. 165-176.

12. D. Rus and D. Subramanian, “Customizing Information

Capture and Access,” ACM Trans. Information Systems, vol.

15, no. 1, Jan. 1997, pp. 67-101.

Naren Ramakrishnan is an assistant professor of computer sci-

ence at Virginia Tech. His research interests include rec-

ommender systems, problem-solving environments, per-

sonalization, and data mining. He obtained a PhD in

computer sciences from Purdue University in August 1997.

He is a member of the ACM, the IEEE Computer Society,

and AAAI.

Readers may contact Ramakrishnan via e-mail at

naren@cs.vt.edu.

P I P E

31IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 2000

SET INDUSTRY
STANDARDS

computer.org/standards/

HELP SHAPE FUTURE TECHNOLOG IES • JO IN A COMPUTER SOC IETY STANDARDS WORK ING GROUP AT

Computer Society members work together to define standards like
IEEE 1003, 1394, 802, 1284, and many more.

Posix

FireWire
t o ke n r i n g s

gigabit Ethernet

wireless
networks

enhanced parallel ports

