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Abstract—Mining temporal network models from discrete
event streams is an important problem with applications in
computational neuroscience, physical plant diagnostics, and
human-computer interaction modeling. We focus in this paper
on temporal models representable as excitatory networks where
all connections are stimulative, rather than inhibitive. Through
this emphasis on excitatory networks, we show how they can
be learned by creating bridges to frequent episode mining.
Specifically, we show that frequent episodes help identify nodes
with high mutual information relationships and which can
be summarized into a dynamic Bayesian network (DBN). To
demonstrate the practical feasibility of our approach, we show
how excitatory networks can be inferred from both mathemat-
ical models of spiking neurons as well as real neuroscience
datasets.
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Computational Neuroscience; Spike train analysis; Temporal
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I. INTRODUCTION

Discrete event streams are prevalent in many applications,
such as neuronal spike train analysis, physical plants, and
human-computer interaction modeling. In all these domains,
we are given occurrences of events of interest over a time
course and the goal is to identify trends and behaviors that
serve discriminatory or descriptive purposes.

A Multi-Electrode Array (MEA) records spiking action
potentials from an ensemble of neurons which after various
pre-processing steps, yields a spike train dataset providing
real-time, dynamic, perspectives into brain function (see
Fig. 1). Identifying sequences (e.g., cascades) of firing
neurons, determining their characteristic delays, and recon-
structing the functional connectivity of neuronal circuits are
key problems of interest. This provides critical insights into
the cellular activity recorded in the neuronal tissue.

Similar motivations arise in other domains as well. In
physical plants the discrete event stream denotes diagnostic
and prognostic codes from stations in an assembly line and
the goal is to uncover temporal connections between codes
emitted from different stations. In human-computer inter-
action modeling, the event stream denotes actions taken by
users over a period of time and the goal is to capture aspects
such as user intent and interaction strategy by understanding
causative chains of connections between actions.

Beyond uncovering structural patterns from discrete
events, we seek to go further, and actually uncover a

generative temporal process model for the data. In particular,
our aim is to infer dynamic Bayesian networks (DBNs)
which encode conditional independencies as well as tem-
poral influences and which are also interpretable patterns in
their own right. We focus exclusively on excitatory networks
where the connections are stimulative rather than inhibitory
in nature (e.g., ‘event A stimulates the occurrence of event B
5ms later which goes on to stimulate event C 3ms beyond.’)
This constitutes a large class of networks with relevance in
multiple domains, including neuroscience.

Our main contributions are three-fold:
1) New model class of excitatory networks: Learning

Bayesian networks (dynamic or not) is a hard problem
and to obtain theoretical guarantees we typically have
to place restrictions on network structure, e.g., assume
the BN has a tree structure as done in the Chow-
Liu algorithm. Our focus on excitatory networks places
restrictions on the nature of the conditional probability
tables (CPT) instead of network structure and we show
how this leads to a tractable formulation.

2) New methods for learning DBNs: We demonstrate
that DBNs can be learnt by creating bridges to frequent
episode mining literature. In particular, the focus on ex-
citatory networks allows us to relate frequent episodes
to parent sets for nodes with high mutual information.
This enables us to predominantly apply fast algorithms
for episode mining, while relating them to probabilistic
notions suitable for characterizing DBNs.

3) New applications to spike train analysis: We demon-
strate a successful application of our methodologies to
analyzing neuronal spike train data, both from math-
ematical models of spiking neurons and from real
cortical tissue.

The paper is organized as follows. Sec. II gives a brief
overview of DBNs and Sec. III presents our formalism
for modeling event streams using DBNs. Sec. IV defines
excitatory networks and develops the theoretical basis for
efficiently learning such networks. Sec. V introduces fixed-
delay episodes and relates frequencies of such episodes with
marginal probabilities of a DBN. Our learning algorithm is
presented in Sec. VI, experimental results in Sec. VII and
conclusions in Sec. VIII.



Figure 1. A multi-electrode array (MEA; left) produces a spiking event stream of action potentials (middle top). Mining cascaded firings (middle bottom)
in the event stream helps uncover excitatory circuits (right) in the data.

II. BAYESIAN NETWORKS: STATIC AND DYNAMIC

Formal mathematical notions are presented in the next
section, but here we wish to provide some background
context to past research in Bayesian networks (BNs). As is
well known, BNs use directed acyclic graphs to encode prob-
abilistic notions of conditional independence, such as that
a node is conditionally independent of its non-descendants
given its parents (for more details, see [1]). The earliest
known work for learning BNs is the Chow-Liu algorithm [2].
It showed that, if we restricted the structure of the BN to a
tree, then the optimal BN can be computed using a minimum
spanning tree algorithm. It also established the tractability
of BN inference for this class of graphs.

More recent work, by Williamson [3], generalizes the
Chow-Liu algorithm to show how (discrete) distributions can
be approximated using the same general ingredients as the
Chow-Liu approach, namely mutual information quantities
between random variables. Meila [4] presents an acceler-
ated algorithm that is targeted toward sparse datasets of
high dimensionality. The approximation thread for general
BN inference is perhaps best exemplified by Friedman’s
sparse candidate algorithm [5] that presents various greedy
approaches to learn (suboptimal) BNs.

DBNs are a relatively newer development and best ex-
amples of them can be found in specific state space and
dynamic modeling contexts, such as HMMs. In contrast to
their static counterparts, exact and efficient inference for
general classes of DBNs has not been studied well.

III. MODELING EVENT STREAMS USING DBNS

Consider a finite alphabet, E = {A1, . . . , AM}, of
event-types (or symbols). Let s = 〈(E1, τ1), (E2, τ2),
. . . , (En, τn)〉 denote a data stream of n events over E . Each
Ei, i = 1, . . . , n, is a symbol from E . Each τi, i = 1, . . . , n,
takes values from the set of positive integers. The events
in s are ordered according to their times of occurrence,
τi+1 ≥ τi, i = 1, . . . , (n−1). The time of occurrence of the
last event in s, is denoted by τn = T . We model the data
stream, s, as a realization of a discrete-time random process

X(t), t = 1, . . . , T ; X(t) = [X1(t)X2(t) · · ·XM (t)]′, where
Xj(t) is an indicator variable for the occurrence of event
type, Aj ∈ E , at time t. Thus, for j = 1, . . . ,M and
t = 1, . . . , T , we will have Xj(t) = 1 if (Aj , t) ∈ s, and
Xj(t) = 0 otherwise. Each Xj(t) is referred to as the event-
indicator random variable for event-type, Aj , at time t.

Example 1: The following is an example event sequence
of n = 7 events over an alphabet, E = {A,B,C, . . . , Z},
of M = 26 event-types:

〈(A, 2), (B, 3), (D, 3), (B, 5), (C, 9), (A, 10), (D, 12)〉 (1)

The maximum time tick is given by T = 12. Each X(t), t =
1, . . . , 12, is a vector of M = 26 indicator random variables.
Since there are no events at time t = 0 in the example
sequence (1), we have X(1) = 0. At time t = 2, we will
have X(2) = [1000 · · · 0]′. Similarly, X(3) = [0101 · · · 0]′,
and so on.

A DBN [6] is a DAG with nodes representing random
variables and arcs representing conditional dependency re-
lationships. We model the random process X(t) (or equiv-
alently, the event stream s), as the output of a DBN. Each
event-indicator, Xj(t), t = 1, . . . , T and j = 1, . . .M ,
corresponds to a node in the network, and is assigned a
set of parents, which is denoted as π(Xj(t)) (or simply
πj(t)). A parent-child relationship is represented by an arc
(from parent to child) in the DAG. In a DBN, nodes are
conditionally independent of their non-descendants given
their parents. The joint probability distribution of X(t)
under the DBN model, can be factorized as a product of
P [Xj(t) |πj(t)] for various j, t. In this paper we restrict the
class of DBNs using the following two constraints:

A1 [Time-bounded causality] For user-defined param-
eter, W > 0, the set, πj(t), of parents for the node,
Xj(t), is a subset of event-indicators out of the W -
length history at time-tick, t, i.e. πj(t) ⊆ {Xk(τ) :
1 ≤ k ≤M, (t−W ) ≤ τ < t}.

A2 [Translation invariance] If πj(t) = {Xj1(t1),
. . . , Xj`(t`)} is an `-size parent set of Xj(t) for
some t > W , then for any other Xj(t′), t′ > W ,



its parent set, πj(t′), is simply a time-shifted ver-
sion of πj(t), and is given by πj(t′) = {Xj1(t1 +
δ), . . . , Xj`(t` + δ)}, where δ = (t′ − t).

While A1 limits the range-of-influence of a random variable,
Xk(τ), to variables within (a user-defined) W time-ticks of
τ , A2 is a structural constraint that allows parent-child re-
lationships to depend only on relative (rather than absolute)
time-stamps of random variables. Further, we also assume
that the underlying data generation model is stationary, so
that joint-statistics can be estimated using frequency counts
of suitably defined temporal patterns in the data.

A3 [Stationarity] For every set of event-indicators,
Xj1(t1), . . . , Xj`(t`), and for every time-shift δ,
we have P [Xj1(t1), . . . , Xj`(t`)] = P [Xj1(t1+δ),
. . . , Xj`(t` + δ)].

Learning network structure involves learning the map,
πj(t), for each Xj(t), j = 1, . . . ,M and t > W . Let
I[Xj(t) ; πj(t)] denotes the mutual information between
Xj(t) and its parents, πj(t). DBN structure learning can be
posed as a problem of approximating the data distribution,
P [·], by a DBN distribution, Q[·]. Let DKL(P ||Q) denote
the KL divergence between P [·] and Q[·]. Using A1, A2 and
A3, and following the lines of [2], [3], it is possible to show
that for parent sets with sufficiently high mutual information
to Xj(t), DKL(P ||Q) will be concomitantly lower [7].
In other words, a good DBN-based approximation of the
underlying stochastics (i.e. one with small KL divergence)
can be achieved by picking, for each node, a parent-set
whose corresponding mutual information exceeds a user-
defined threshold.

However, picking such sets with high mutual information
(while yields a good approximation) falls short of unearthing
useful dependencies among the random variables. This is
because mutual information is non-decreasing as more ran-
dom variables are added to a parent-set (leading to a fully-
connected network always being optimal). For a parent-set to
be interesting, it should not only exhibit sufficient correlation
(or mutual information) with the corresponding child-node,
but should also successfully encode the conditional inde-
pendencies among random variables in the system. This can
be done by checking if, conditioned on a candidate parent-
set, the mutual information between the corresponding child-
node and all its non-descendants is always close to zero. (We
provide more details later in Sec. VI-C).

IV. EXCITATORY NETWORKS

The structure-learning approach described in Sec. III is
applicable to any general DBN that satisfies A1 and A2.
In this paper, we focus on a further specialized class of net-
works, called excitatory networks, where only certain kinds
of conditional dependencies among nodes are permitted. In
general, each event-type has some baseline propensity in
the data which is small and less than 0.5 (This corresponds

to a sparse-data assumption). A collection, Π, of random
variables is said to have an excitatory influence on an
event-type, A ∈ E , if occurrence of events corresponding
to the variables in Π, increases the propensity of A to
greater than 0.5. We define an excitatory network as one
in which nodes can only exert excitatory influences on
one another. For example, in an excitatory network it is
possible that “if B, C and D occur (say) 2 time-ticks apart,
the probability of A increases.” By contrast, in excitatory
networks, it is not possible to model relationships like “when
A does not occur, the probability of B occurring 3 time-ticks
later increases.” Similarly, excitatory networks cannot model
inhibitory relationships like “when A occurs, the probability
of B occurring 3 time-ticks later decreases.” Excitatory
networks are natural in neuroscience, where one is interested
in unearthing conditional dependency relationships among
neuron spiking patterns. Several regions in the brain are
known to exhibit predominantly excitatory relationships [8]
and our model is targeted toward unearthing these.

Table I
EXAMPLE OF A CONDITIONAL PROBABILITY TABLE IN AN EXCITATORY

NETWORK.

Π
P [XA = 1 | aj ]XB XC XD

a0 0 0 0 ε < 1
2

a1 0 0 1 ε1 ≥ ε
a2 0 1 0 ε2 ≥ ε
a3 0 1 1 ε3 ≥ ε, ε1, ε2
a4 1 0 0 ε4 ≥ ε
a5 1 0 1 ε5 ≥ ε, ε1, ε4
a6 1 1 0 ε6 ≥ ε, ε2, ε4

a7(a∗) 1 1 1 φ > ε, 1
2
, εj∀j

The excitatory assumption manifests as a set of constraints
on the conditional probability tables associated with the
DBN. Consider a node1 XA (an indicator variable for event-
type A ∈ E) and let Π denote a parent-set for XA. In excita-
tory networks, the probability that A occurs, conditioned on
the occurrence of all the events associated with Π, should be
at least as high as the corresponding conditional probability
when only some (though not all) of the events of Π occur.
Further, the probability of A is less than 0.5 when none of
the events of Π occur and greater than 0.5 when all the
events of Π occur. For example, let Π = {XB , XC , XD}.
The conditional probability table for A given Π is shown in
Table I. The different conditioning contexts come about by
the occurrence or otherwise of each of the events in Π. These
are denoted by aj , j = 0, . . . , 7. So while a0 represents
the all-zero assignment (i.e. none of the events B, C or D
occur), a7 (or a∗) denotes the all-ones assignment (i.e. all
the events B, C and D occur). The last column of the table
lists the corresponding conditional probabilities along with
the associated excitatory constraints. The baseline propensity

1To facilitate simple exposition, time-stamps of random-variables are
dropped from the notation in this discussion.



of A is denoted by ε and the only constraint on it is that
it must be less than 1

2 . Conditioned on the occurrence of
any event of Π, the propensity of A can only increase, and
hence, εj ≥ ε ∀j and φ ≥ ε. Similarly, when both C and D
occur, the probability must be at least as high as that when
either C or D occurred alone (i.e. we must have ε3 ≥ ε1 and
ε3 ≥ ε2). Finally, for the all-ones case, denoted by Π = a∗,
the conditional probability must be greater than 1

2 and must
also satisfy φ ≥ εj ∀j.

In the context of DBN structure learning, excitatory
networks ensure that event-types will occur frequently after
their respective parents (with suitable delays). This will
allow us to estimate DBN structure using frequent pattern
discovery algorithms (which have been a mainstay in data
mining for many years). We now have a simple necessary
condition on the probability (or frequency) of parent-sets in
an excitatory network.

Theorem 4.1: Let XA denote a node in the Dynamic
Bayesian Network corresponding to the event-type A ∈ E .
Let Π denote a parent-set with excitatory influence on
A. Let ε∗ be an upper-bound for conditional probabilities
P [XA = 1 | Π = a] for all a 6= a∗ (i.e. for all but
the all-ones assignment in Π). If the mutual information
I[XA ; Π] exceeds ϑ(> 0), then the joint probability of
an occurrence of A along with all events of Π satisfies
P [XA = 1,Π = a∗] ≥ PminΦmin, where

Pmin =
P [XA = 1]− ε∗

1− ε∗
(2)

Φmin = h−1

[
min

(
1,
h(P [XA = 1])− ϑ

Pmin

)]
(3)

and where h(·) denotes the binary entropy function h(q) =
−q log q− (1− q) log(1− q), 0 < q < 1 and h−1[·] denotes
its pre-image greater than 1

2 .
Proof: Under the excitatory model we have P [XA = 1 |Π =
a∗] > P [XA = 1 | Π = a] ∀a 6= a∗. First we apply ε∗ to
terms in the expression for P [XA = 1]:

P [XA = 1] = P [Π = a∗]P [XA = 1 |Π = a∗]

+
∑
a 6=a∗

P [Π = a]P [XA = 1 |Π = a]

≤ P [Π = a∗] + (1− P [Π = a∗])ε∗

This gives us P [Π = a∗] ≥ Pmin (see Fig. 2). Next, since
we are given that mutual information I[XA ; Π] exceeds ϑ,
the corresponding conditional entropy must satisfy:

H[XA |Π] = P [Π = a∗]h(P [XA = 1 |Π = a∗])

+
∑
a6=a∗

P [Π = a]h(P [XA = 1 |Π = a])

< H[XA]− ϑ = h(P [XA = 1])− ϑ

Every term in the expression for H[XA |Π] is non-negative,
and hence, each term (including the first one) must be less
than (h(P [XA = 1]) − ϑ). Using (P [Π = a∗] ≥ Pmin) in

Curve B: H[X]- θ

Curve A: H[XA]

h(ε*)

h(φ)

ε* φ

H[XA]

P[XA=1]

H[XA] - θ

θ

1

Pmin

1-Pmin

Line B
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Line C

Figure 2. An illustration of the results obtained in Theorem 4.1. x-axis
of the plot is the range of P [XA = 1] and y-axis is the corresponding
range of entropy H[XA]. For the required mutual information criteria, the
conditional entropy must lie below H[XA] − ϑ and on line A. At the
boundary condition [φ = 1], Line A splits Line B in the ratio Pmin :
(1− Pmin). This gives the expression for Pmin.

the above inequality and observing that P [XA = 1 |Π = a∗]
must be greater than 0.5 for an excitatory network, we now
get (P [XA = 1 | Π = a∗] > Φmin). This completes the
proof. �

V. FIXED-DELAY EPISODES

In the framework of frequent episode discovery [9] the
data is a single long stream of events over a finite alphabet
(cf. Sec. III and Example 1). An `-node (serial) episode, α,
is defined as a tuple, (Vα, <α, gα), where Vα = {v1, . . . , v`}
denotes a collection of nodes, <α denotes a total order2 such
that vi <α vi+1, i = 1, . . . , (`− 1). If gα(vj) = Aij , Aij ∈
E , j = 1, . . . , `, we use the graphical notation (Ai1 → · · · →
Ai`) to represent α. An occurrence of α in event stream,
s = 〈(E1, τ1), (E2, τ2), . . . , (En, τn)〉, is a map h : Vα →
{1, . . . , n} such that (i) Eh(vj) = g(vj) ∀vj ∈ Vα, and
(ii) for all vi <α vj in Vα, the times of occurrence of the
ith and jth events in the occurrence satisfy τh(vi) ≤ τh(vj)

in s.
Example 2: Consider a 3-node episode α = (Vα, <α,

gα), such that, Vα = {v1, v2, v3}, v1 <α v2, v2 <α v3
and v1 <α v3, and gα(v1) = A, gα(v2) = B and
gα(v3) = C. The graphical representation for this episode is
α = (A→ B → C), indicating that in every occurrence of
α, an event of type A must appear before an event of type B,
and the B must appear before an event of type C. For exam-
ple, in sequence (1), the subsequence 〈(A, 1), (B, 3), (C, 9)〉
constitutes an occurrence of (A → B → C). For this

2In general, <α can be any partial order over Vα. We focus on only
total orders here and show how multiple such total orders can be used to
model DBNs of arbitrary -arity. In [9], such total orders are referred to as
serial episodes.



occurrence, the corresponding h-map is given by, h(v1) = 1,
h(v2) = 2 and h(v3) = 5.

There are many ways to incorporate explicit time con-
straints in episode occurrences like the windows-width con-
straint of [9]. Episodes with inter-event gap constraints were
introduced in [10]. For example, the framework of [10]
can express the temporal pattern “B must follow A within
5 time-ticks and C must follow B within 10 time-ticks.”
Such a pattern is represented using the graphical notation,
(A

[0–5]−→ B
[0–10]−→ C). In this paper, we use a simple

sub-case of the inter-event gap constraints, in the form of
fixed inter-event time-delays. For example, (A 5→ B

10→ C)
represents a fixed-delay episode, every occurrence of which
must comprise an A, followed by a B exactly 5 time-ticks
later, which in-turn is followed by a C exactly 10 time-ticks
later.

Definition 5.1: An `-node fixed-delay episode is defined
as a pair, (α,D), where α = (Vα, <α, gα) is the usual
(serial) episode of [9], and D = (δ1, . . . , δ`−1) is a sequence
of (` − 1) non-negative delays. Every occurrence, h, of
the fixed-delay episode in an event sequence smust satisfy
the inter-event constraints, δi = (τh(vi+1) − τh(vi)), i =

1, . . . , (` − 1). (Aj1
δ1−→ · · · δ`−1−→ Aj`) is the graphi-

cal notation for inter-event episode, (α,D), where Aji =
gα(vi), i = 1, . . . , `.

Definition 5.2: Two occurrences, h1 and h2, of a fixed-
delay episode, (α,D), are said to be distinct, if they do not
share any events in the data stream, s. Given a user-defined,
W > 0, frequency of (α,D) in s, denoted fs(α,D,W ), is
defined as the total number of distinct occurrences of (α,D)
in s that terminate strictly after W .

In general, counting distinct occurrences of episodes suffers
from computational inefficiencies [11]. (Each occurrence of
an episode (A → B → C) is a substring that looks like
A ∗ B ∗ C, where ∗ denotes a variable-length don’t-care,
and hence, counting all distinct occurrences in the data
stream can require memory of the same order as the data
sequence which typically runs very long). However, in case
of fixed-delay episodes, it is easy to track distinct occur-
rences efficiently. For example, when counting frequency
of (A 3−→ B

5−→ C), if we encounter an A at time t,
to recognize an occurrence involving this A we only need
to check for a B at time (t + 3) and for a C at time
(t + 8). In addition to being attractive from an efficiency
point-of-view, we show next in Sec. V-A that the distinct
occurrences-based frequency count for fixed-delay episodes
will allow us to interpret relative frequencies as probabilities
of DBN marginals. (Note that the W in Definition 5.2 is
same as length of the history window used in the constraint
A1. Skipping occurrences terminating in the first W time-
ticks makes it easy to normalize the frequency count into a
probability measure).

A. Marginals from episode frequencies

In this section, we describe how to compute mutual infor-
mation from the frequency counts of fixed-delay episodes.
For this, every subset of event-indicators in the network is
associated with a fixed-delay episode.

Definition 5.3: Let {Xj(t) : j = 1, . . . ,M ; t =
1, . . . , T} denote the collection of event-indicators used
to model event stream, s = 〈(E1, τ1), . . . (En, τn)〉, over
alphabet, E = {A1, . . . , AM}. Consider an `-size subset,
X = {Xj1(t1), . . . , Xj`(t`)}, of these indicators, and
without loss of generality, assume t1 ≤ · · · ≤ t`. Define
the (` − 1) inter-event delays in X as follows: δj =
(tj+1 − tj), j = 1, . . . , (` − 1). The fixed-delay episode,
(α(X ),D(X )), that is associated with the subset, X , of
event-indicators is defined by α(X ) = (Aj1 → · · · → Aj`),
and D(X ) = {δ1, . . . , δ`−1}. In graphical notation, the
fixed-delay episode associated with X can be represented
as follows:

(α(X ),D(X )) = (Aj1
δ1→ · · · δ`−1→ Aj`) (4)

For computing mutual information we need the marginals
of various subsets of event-indicators in the network. Given
a subset like X = {Xj1(t1), . . . , Xj`(t`)}, we need esti-
mates for probabilities of the form, P [Xj1(t1) = a1, . . . ,
Xj`(t`) = a`], where aj ∈ {0, 1}, j = 1, . . . , `. The fixed-
delay episode, (α(X ),D(X )), that is associated with X is
given by Definition 5.3 and its frequency in the data stream,
s, is denoted by fs(α(X ),D(X ),W ) (as per Definition 5.2)
where W denotes length of history window as per A1. Since
an occurrence of the fixed-delay episode, (α(X ),D(X )),
can terminate in each of the (T − W ) time-ticks in s,
the probability of an all-ones assignment for the random
variables in X is given by:

P [Xj1(t1) = 1, . . . , Xj`(t`) = 1] =
fs(α(X ),D(X ),W )

T −W
(5)

For all other assignments (i.e. for assignments that are
not all-ones) we use inclusion-exclusion to obtain corre-
sponding probabilities. Inclusion-exclusion has been used
before in data mining, e.g., in [12], to obtain exact or
approximate frequency counts for arbitrary boolean queries
using only counts of frequent itemsets in the data. In our
case, counting distinct occurrences of fixed-delay episodes
facilitates use of the inclusion-exclusion formula for ob-
taining the probabilities needed for computing mutual in-
formation of different candidate parent-sets. Consider the
set, X = {Xj1(t1), . . . , Xj`(t`)}, of ` event-indicators, and
let A = (a1, . . . , a`), aj ∈ {0, 1}, j = 1, . . . , `, be an
assignment for the event-indicators in X . Let U ⊂ X denote
the subset of indicators out of X for which corresponding
assignments (in A) are 1’s, i. e. U = {Xjk ∈ X : k s.t.



Procedure 1 Overall Procedure
Input: Alphabet E , event stream s = 〈(E1, τ1), . . . ,

(En, τn = T )〉, length W of history window, condi-
tional probability upper-bound ε∗, mutual information
threshold, ϑ

Output: DBN structure (parent-set for each node in the
network)

1: for all A ∈ E do
2: XA := event-indicator of A at any time t > W
3: Set fmin = (T −W )PminΦmin, using Eqs. (2)-(3)
4: Obtain set, C, of fixed-delay episodes ending in A,

with frequencies greater than fmin (cf. Sec. VI-B,
Procedure 2)

5: for all fixed-delay episodes (α,D) ∈ C do
6: X(α,D) := event-indicators corresponding to (α,D)
7: Compute mutual information I[XA ; X(α,D)]
8: Remove (α,D) from C if I[XA ; X(α,D)] < ϑ
9: Prune C using conditional mutual information cri-

teria to distinguish direct from indirect influences
(cf. Sec. VI-C)

10: Return (as parent-set for XA) event-indicators corre-
sponding to episodes in C

ak = 1 in A, 1 ≤ k ≤ `}. Inclusion-exclusion is used to
compute the probabilities as follows:

P [Xj1 = a1, . . . , Xj` = a`]

=
∑
Y s.t.

U ⊆ Y ⊆ X

(−1)|Y\U|
(
fs(Y)
T −W

)
(6)

where fs(Y) is short-hand for fs(α(Y),D(Y),W ), the
frequency (cf. Definition 5.2) of the fixed-delay episode,
(α(Y),D(Y)).

VI. ALGORITHMS

A. Overall approach

In Secs. III-V, we developed the formalism for learning an
optimal DBN structure from event streams by using distinct
occurrences-based counts of fixed-delay episodes to compute
the DBN marginal probabilities. The top-level algorithm
(cf. Sec. III) for discovering the network is to fix any time
t > W , to consider each Xj(t), j = 1, . . . ,M , in-turn, and
to find its set of parents in the network. Due to the translation
invariance assumption A2, we need to do this only once for
each event-type in the alphabet.

The algorithm is outlined in Procedure 1. For each A ∈ E ,
we first compute the minimum frequency for episodes
ending in A based on the relationship between mutual
information and joint probabilities as per Theorem 4.1 (line
3, Procedure 1). Then we use a pattern-growth approach
(see Procedure 2) to discover all patterns terminating in A

Procedure 2 pattern grow(α,D,L(α,D))

Input: `-node episode (α,D) = (Aj1
δ1→ · · · δ`−1→ Aj`)

and event sequence s = 〈(E1, τ1), . . . , (En, τn = T )〉,
Length of history window W , Frequency threshold
fmin.

1: ∆ = W − span(α,D)
2: for all A ∈ E do
3: for δ = 0 to ∆ do
4: if δ = 0 and (Aj1 > A or ` = 1) then
5: continue
6: (α′,D′) = A

δ→ α; L(α′,D′) = {}; fs(α′,D′) = 0
7: for all τi ∈ L(α,D) do
8: if ∃(Ej , τj) such that Ej = A and τi − τj = δ

then
9: Increment fs(α′,D′)

10: L(α′,D′) = L(α′,D′) ∪ {τj}
11: if fs(α′,D′) ≥ fmin then
12: Add (α′,D′) to output set C
13: if span(α′,D′) ≤W then
14: pattern grow(α′,D′,L(α′,D′))

(line 4, Procedure 1). Each frequent pattern corresponds to
a set of event-indicators (line 6, Procedure 1). The mutual
information between this set of indicators and the node XA

is computed using exclusion-exclusion formula and only sets
for which this mutual information exceeds ϑ are retained as
candidate parent-sets (lines 5-8, Procedure 1). Finally, we
prune out candidate parent-sets which have only indirect
influences on A and return the final parent-sets for nodes
corresponding to event-type A (lines 9-10, Procedure 1).
This pruning step is based on some conditional mutual
information criteria (to be described later in Sec. VI-C).

B. Discovering fixed-delay episodes

We employ a pattern-growth algorithm (Procedure 2)
for mining frequent fixed-delay episodes because, unlike
Apriori-style algorithms, pattern-growth procedures allow
use of different frequency thresholds for episodes ending
in different alphabets. This is needed in our case, since, in
general, Theorem 4.1 prescribes different frequency thresh-
olds for nodes in the network corresponding to different
alphabets. The recursive procedure is invoked with (α,D) =
(A, φ) and frequency threshold fmin = (T −W )Pminφmin
(Recall that in the main loop of Procedure 1, we look for
parents of nodes corresponding to event-type A ∈ E).

The pattern-growth algorithm listed in Procedure 2 takes
as input, an episode (α,D), a set of start times L(α,D), and
the event sequence s. L(α,D) is a set of time stamps τi such
that there is an occurrence of (α,D) starting at τi in s. For
example, if at level 1 we have (α,D) = (C, φ), then L(C,φ)

= {1, 4, 5, 8, 9} in the event sequence s shown in Fig 3.
The algorithm obtains counts for all episodes like (α′,D′)
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Figure 3. An event sequence showing 3 distinct occurrences of the episode
A

1→ B
2→ C.

generated by extending (α,D) e.g. B 1→ C, . . ., A 5→ C etc.
For an episode say (α′,D′) = B

2→ C, the count is obtained
by looking for occurrences of event B at times τj = τi − 2
where τi ∈ L(C,φ). In the example such B’s at τj ∈ L

B
2→C

= {2, 3, 6}. The number of such occurrences (= 3) gives the
count of B 2→ C. At every step the algorithm tries to grow
an episode with count fs > fmin otherwise stops.

C. Conditional MI criteria

The final step in determining the parents of a node XA

involves testing of some conditional mutual information
criteria (cf. line 10, Procedure 1). The input to the step
is a set C of (frequent) fixed-delay episodes ending in A.
Each episode in C is associated with a set of event-indicators
whose mutual information with XA exceeds ϑ. Consider two
such sets Y and Z , each having sufficient mutual information
with XA. Our conditional mutual information criterion is:
remove Y from the set of candidate parents (of XA), if
I[XA ; Y | Z] = 03. We repeat this test for every pair of
episodes in C.

To understand the utility of this criterion, there are two
cases to consider: (i) either Y ⊂ Z or Z ⊂ Y , and (ii) both
Y 6⊂ Z and Z 6⊂ Y . In the first case, our conditional mutual
criterion will ensure that we pick the larger set as a parent
only if it brings more information about XA than the smaller
set. In the second case, we are interested in eliminating sets
which have a high mutual information with XA because of
indirect influences. For example, if the network were such
that C excites B and B excites A, then XC can have high
mutual information with XA, but we do not want to report
XC as a parent of XA, since C influences A only through
B. Our conditional mutual information criterion will detect
this and eliminate XC from the set of candidate parents (of
XA) because it will detect I[XA ; XC |XB ] = 0.

VII. EXPERIMENTAL RESULTS

We present results on data gathered from both mathemat-
ical models of spiking neurons as well as real neuroscience
datasets.

A. Neuronal network model

The approach here is to model each neuron as an inho-
mogeneous Poisson process whose firing rate is a function

3We use a small threshold parameter to ascertain this equality.

of the input received by the neuron is recent past [13]:

λi(t) =
λ

1 + exp(−Ii(t) + δ)
(7)

Eq. (7) gives the firing rate of the ith neuron at time t.
The network inter-connect allowed by this model gives it
the amount of sophistication required for simulating higher-
order interactions. More importantly, the model allows for
variable delays which mimic the delays in conduction path-
ways of real neurons.

Ii(t) =
∑
j

βijYj(t−τij)+. . .+
∑
ij...l

βij...lYj(t−τij) . . . Yl(t−τil)

(8)
In Eq. (8), Yj(t−τij) is the indicator of the event of a spike
on jth neuron τij time earlier and the β(.)s are the weight
parameters for the interactions. The higher order terms in
the input contribute to the firing rate only when the ith

neuron received inputs from all the neurons in the term with
corresponding delays. With suitable choices of parameters
β(.), one can simulate a wide range of networks.

B. Types of Networks

In this section we demonstrate the effectiveness of our
approach in unearthing different types of networks. Each of
these networks was simulated by setting up the appropriate
inter-connections, of suitable order, in our mathematical
model.

Causative chains and higher order structures: A higher-
order chain is one where parent sets are not restricted to be
of cardinality one. In the example network of Fig. 4(a), there
are four disconnected components with two of them having
cycles. (Recall this would be ‘illegal’ in a static Bayesian
network formulation.) Also the component consisting of
nodes 18, 19, 20, 21 exhibits higher-order interactions. The
node 20 fires with high probability when node 18 has fired
4 ms before and node 18 has fired 5 ms before. Similarly
node 21 is activated by node 18, 19, 20 firing at respective
delays. The complete network consists of 100 nodes (with
the remainder of the nodes firing independently). Spike train
data is generated for runs of 60 sec using the multi-neuronal
simulator. The base firing rate for neurons is set at 20Hz and
the activation probability of a child node (i.e. the conditional
probability that the child node fires given its parents) is
varied form 0.6 to 0.8 (by suitably selecting βij’s). Our
algorithm reports good precision and recall over a range
of ϑ (0.05 ≤ ϑ ≤ 0.5) and ε∗ (0.02 ≤ ε∗ ≤ 0.04). For
lower values of (simulation) conditional probability, recall
gradually drops but precision remains high (100%). Details
are shown in Table II.

Overlapping causative chains: The graph shown in
Fig. 4(a) (b) has two chains 0 → 1 → 2 → 3 and
12 → 1 → 13 → 14 → 15 → which share the node 1.
Here 1 can be independently excited by 0 or 12. Also 2
is activated by 0, 1 together and 13 is activated by 13, 1.



Table II
RESULTS FOR NETWORK SHOWN IN FIG. 4(A) FOR VARYING

CONDITIONAL PROBABILITY (USED IN GENERATION) AND MIN.
MI ϑ; BASE FIRING RATE = 20HZ [PROBABILITY=0.02 IN 1MS

BINS]; BASE RATE THRESHOLD ε∗ = .03.

Cond. ϑ Time Recall Prec-
prob (sec) (%) ision (%)

.6 .05 7.5 69.6 100

.6 .075 7.4 60.9 100

.6 .1 7.1 4.3 100

.6 .25 2.8 0.0 100

.9 .05 41.8 100 92.0

.9 .075 42.6 87.0 95.2

.9 .1 42.0 69.6 100

.9 .25 30.0 47.8 100

.9 .5 26.0 0.0 100

Thus a firing event on 0 excites the chain 0→ 1→ 2→ 3
where as a firing event on 12 excites the other chain. This
shows one possible way in which neurons can participate in
several different circuits at the same time (e.g. polychronous
circuits [14]). Depending on the stimulus sequence, the same
neurons can participate in different cascade firing events (en-
coding completely unrelated pieces of information). For each
node, our formulation reports multiple sets of nodes that
satisfy the minimum mutual information ε∗, thus unearthing
0 and 12 as two sets activating 1. 0, 1 and 12, 1 are also
found to be the parent sets of 2 and 3 respectively (with
high precision and recall).

Syn-fire chains: Another important pattern often reported
in neuronal spike train data is that of synfire chains. This
consists of groups of synchronously firing neurons strung
together repeating over time. In [10], it was noted that
discovering such patterns required a combination of serial
and parallel episode mining. But the DBN approach applies
more naturally to mining such network structures. Again
we are able to find the structure for a wide range of
parameters. For larger histories or influence windows W ,
many combinations of nodes are frequent, slowing down the
mining process. (For instance, network 4(c) takes 180 sec
to mine as compared to 60 sec for network 4(a), on a dual
core 3GHz Windows Vista computer with 3GB RAM.)

Polychronous circuits: Groups of neurons that fire in a
time-locked manner with respect to each other are referred to
as polychronous groups. This notion was introduced in [14]
and gives rise to an important class of patterns. Once again,
our DBN formulation is a natural fit for discovering such
groups from spike train data. A polychronous circuit is
shown in Fig 4(d). We are also able to discover overlapping
polychronous circuits (where different sets of nodes can
excite the same node). For relatively deep networks (having
nodes with long ancestry) recall drops mainly because the
nodes lower down in the graph are not excited sufficiently
often (and hence do not meet the mutual information thresh-
old). Detailed results are listed in Table III.

Table III
RESULTS FOR NETWORK SHOWN IN FIG. 4(D) FOR VARYING

BASE RATE THRESHOLD ε∗ AND MIN. MI ϑ; BASE FIRING RATE
= 20HZ AND COND. PROB. = 0.9.

ε∗ ϑ Time Recall Prec-
(in sec) (%) ision (%)

0.005 0.04 56.0 80.0 66.7
0.01 0.04 56.3 80.0 66.7
0.03 0.04 45.8 66.7 66.7
0.06 0.04 0.9 0.0 100.0
0.1 0.04 0.9 0.0 100.0

0.03 0.05 44.2 66.7 66.7
0.03 0.075 6.1 26.7 80.0
0.03 0.1 6.0 13.3 100.0
0.03 0.25 1.2 0.0 100.0
0.03 0.5 0.8 0.0 100.0

C. Scalability

The scalability of our approach with respect to data
length and number of variables is shown in Fig 5(a). Here
four different networks with 50, 75, 100 and 125 variables
respectively were simulated for time durations ranging from
20 sec to 120 sec. The base firing rate of all the networks
was fixed at 20 Hz. In each network 40% of the nodes were
chosen to have upto three parents. The parameters of the
DBN mining algorithm were chosen such that recall and
precision are both high (> 80%). It can be seen in the figures
that for a network with 125 variables, the total run-time is
of the order of few minutes along with recall > 80% and
precision at almost 100%.

Another way to study scalability is w.r.t. the density of
the network, defined as the ratio of the number of nodes
that are descendants for some other node to the total number
of nodes in the network. Fig 5(b) shows the time taken for
mining DBNs when the density is varied from 0.1 to 0.6,
averaged over 36 datasets. We observe near linear growth
in time taken and the absolute figures can be improved
using native implementation (currently our algorithms are
implemented in Python).
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Figure 5. Plot of total time taken for DBN discovery



(a) Higher-order causative chains (b) Overlapping
causative chains

(c) Syn-fire Chains (d) Polychronous Circuits

Figure 4. Four classes of DBNs investigated in our experiments.

D. Sensitivity

Finally, we discuss the sensitivity of the DBN mining
algorithm to the parameters ϑ, ε∗ and cond. mutual infor-
mation threshold (used to check for MI=zero). To obtain
precision-recall curves for our algorithm applied to data se-
quences with different characteristics, we vary the parameter
ϑ in the range [0.04-0.06] and repeat for different cond.
mutual information threshold values. The data sequence for
this experiment is generated from the multi-neuronal simu-
lator using different settings of base firing rate, conditional
probability, number of nodes in the network, and the density
of the network.

The set of precision-recall curves are shown in Fig 6.
The general trends observed here show that for a range of
settings of the conditional probability, base firing rates, and
network topology, both high precision and high recall can
be obtained. As the stringency of the conditional mutual
information threshold is increased (compare Fig. 6 (top) to
Fig. 6 (bottom), we observe a deterioration of performance
only w.r.t. the base rate threshold.

E. Cortical cultures

Multi-electrode arrays provide high throughput recordings
of the spiking activity in neuronal tissue and are hence rich
sources of event data where events correspond to specific
neurons being activated. We use data from dissociated corti-
cal cultures gathered by Steve Potter’s laboratory at Georgia
Tech [15] which gathered data over several days. The mining
is done with mutual information threshold ϑ = 0.001 with
DBN search parameter ε∗ = 0.02.

In order to establish the significance of the networks
discovered we run our algorithm on several surrogate spike
trains generated by replacing the neuron labels of spikes in
the real data with randomly chosen labels. These surrogates
break the temporal correlations in the data and yet preserve
the overall summary statistics. No network structure was
found in such surrogate sequences. We are currently in the
process of characterizing and interpreting the usefulness of

Figure 7. DBN structure discovered from first 15 min of spike train
recording on day 35 of culture 2-1 [15].

such networks found in real data. An example network is
shown in Fig. 7, reflecting the sustained bursts observed in
this culture by Wagenaar et al [15].

VIII. DISCUSSION

Our work marries frequent pattern mining with probabilis-
tic modeling for analyzing discrete event stream datasets.
DBNs provide a formal probabilistic basis to model rela-
tionships between time-indexed random variables but are
intractable to learn in the general case. Conversely, frequent
episode mining is scalable to large datasets but does not
exhibit the rigorous probabilistic interpretations that are the
mainstay of the graphical models literature. We have pre-
sented the beginnings of research to relate these two diverse
threads and demonstrated its potential to mine excitatory
networks with applications in spike train analysis.

Two key directions of future work are being explored.
The excitatory assumption as modeled here posits an order
over the entries of the conditional probability table but
does not impose strict distinctions of magnitude over these
entries. This suggests that, besides the conditional indepen-
dencies inferred by our approach, there could potentially
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Figure 6. Precision-recall curves for different parameter values in the DBN mining algorithm.

be additional ‘structural’ constraints masquerading inside
the conditional probability tables. We seek to tease out
these relationships further. A second, more open, question
is whether there are other useful classes of DBNs that have
both practical relevance (like excitatory circuits) and which
also can be tractably inferred using sufficient statistics of the
form studied here.
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