
International Journal of Parallel Programming manuscript No.
(will be inserted by the editor)

Parallel Mining of Neuronal Spike Streams on Graphics
Processing Units

Yong Cao · Debprakash Patnaik · Sean
Ponce · Jeremy Archuleta · Patrick Butler ·
Wu-chun Feng · Naren Ramakrishnan

Received: date / Accepted: date

Abstract Multi-electrode arrays (MEAs) provide dynamic and spatial perspectives
into brain function by capturing the temporal behavior of spikes recorded from cul-
tures and living tissue. Understanding the firing patterns of neurons implicit in these
spike trains is crucial to gaining insight into cellular activity. We present a solution
involving a massively parallel graphics processing unit (GPU) to mine spike train
datasets. We focus on mining frequent episodes of firing patterns that capture coor-
dinated events even in the presence of intervening background events. We present
two algorithmic strategies—hybrid mining and two-pass elimination—to map the fi-
nite state machine-based counting algorithms onto GPUs. These strategies explore
different computation-to-core mapping schemes and illustrate innovative parallel al-
gorithm design patterns for temporal data mining. We also provide a multi-GPU min-
ing framework, which exhibits additional performance enhancement. Together, these
contributions move us towards a real-time solution to neuronal data mining.

Keywords Frequent episode mining · graphics processing unit (GPU) · spike train
datasets · computational neuroscience · GPGPU

1 Introduction

Computational neuroscience is undergoing a data revolution similar to what biol-
ogy experienced (and is still experiencing) beginning in the 1990s. Techniques such
as electro-encephalography (EEG), functional magnetic resonance imaging (fMRI),
and multi-electrode arrays (MEAs) provide spatial and temporal perspectives into
brain function. It is now possible to measure the detailed electrophysiology of neural
information flow networks through multiple modalities. However data analysis tech-
niques to process these massive temporal streams and understand dynamic responses

Yong Cao
Virginia Polytechnic Institute and State University
Blacksburg, VA
E-mail: ycao@vt.edu

2 Yong Cao et al.

to stimuli and environmental factors are still in their infancy. Data mining algorithms
are important in understanding the pathways that get triggered by sensory input and
to expose the underlying anatomical connectivity of networks. Uncovering such net-
works can help understand the response of information pathways to the application
of different kinds of stimuli.

A parallel revolution is happening in the related area of brain-computer inter-
faces [1]. Scientists are now able to not only analyze neuronal activity in living or-
ganisms, but also to understand the intent implicit in these signals and use this infor-
mation as control directives to operate external devices. In a landmark study [14], Ser-
ruya et al. described how hands-free operation of a cursor can be achieved in real-time
by monitoring the activities of just a few neurons in the motor cortex of a monkey.
A brain-computer interface for controlling a humanoid robot using signals recorded
from human scalp is described in [3]. Again, the real-time, responsive behavior of the
interface is a remarkable feature that bodes well for its success. Even cognitive under-
standing can now be achieved algorithmically: Mitchell et al. [12] describe how they
are able to map the semantics of words and nouns to regions of brain activity. There
are now many technologies for modeling and recording neuronal activity including
fMRI (functional magnetic resonance imaging), EEG (electroencephalography), and
multi-electrode arrays (MEAs). In this paper, we focus exclusively on event streams
gathered through multi-electrode array (MEA) chips for studying neuronal function
although our algorithms and implementations are applicable to a wider variety of
domains.

An MEA records spiking action potentials from an ensemble of neurons which,
after various pre-processing steps, yields a spike train dataset providing real-time,
dynamic, perspectives into brain function (see Figure 1). Identifying sequences (e.g.,
cascades) of firing neurons, determining their characteristic delays, and reconstruct-
ing the functional connectivity of neuronal circuits are key problems of interest. This
provides critical insights into the cellular activity recorded in the neuronal tissue.

A spike train dataset can be modeled as a discrete symbol stream, where each
symbol/event type corresponds to a specific neuron (or clump of neurons) and the
dataset encodes occurrence times of these events. One class of patterns that is of
interest is frequent episodes which are repetitive patterns of the form A → B → C,
i.e., event A is followed by (not necessarily consecutively) B is followed by C. This
is the primary class of patterns studied here.

With rapid developments in instrumentation and data acquisition technology, the
size of event streams recorded by MEAs has concomitantly grown, leading us to
exhaust the abilities of serial computation. For instance, just a few minutes of cor-
tical recording from a 64-channel MEA can easily generate millions of spikes. Fur-
thermore, it is not uncommon for a typical MEA experiment to span days or even
months [15]. Hence it is imperative that algorithms support fast, real-time computa-
tion, data mining, and visualization of patterns.

In this paper, we address the challenge of finding a real-time solution for temporal
data mining, which is under high demand by neuroscientists. Instead of providing a
parallel data mining system on a supercomputer, we seek a much more economical
solution on a desktop computer powered by many-core graphics processing units
(GPUs). General-purpose computing on the GPU (GPGPU) gives us an alternative

Parallel Mining of Neuronal Spike Streams on Graphics Processing Units 3

Micro-electrode Array

GPGPU

Action Potentials from real neuron cells

Frequent Episodes

Fig. 1 Chip-on-Chip Neuroscience. Spike trains recorded from a multi-electrode array (MEA) are mined
by a GPU to yield frequent episodes which can be summarized to reconstruct the underlying neuronal
circuitry.

approach for solving data mining problems in a parallel computing fashion. As is
well known, GPUs are designed to shine for a special type of applications—data
parallel applications—for which it is easy to map independent computation units onto
the processing cores of GPU. However, temporal data mining does not fall into this
category of applications and makes it difficult to fully utilize the computational power
of GPU. In this paper, we study the challenge of creating an intuitive and balanced
computation-to-core mapping scheme for GPUs and propose real-time solutions with
significant performance increases compared with traditional CPU implementation.
More specifically, our technical contributions are:

1. A hybrid mining approach that leverages the advantages of two computation-to-
core mapping schemes and automatically scales according to the number of input
episodes.

2. A two-pass approach that first performs an episode elimination step with relaxed
constraints, resulting in a large performance gain. The potential false positives in-
troduced in the first pass are then eliminated in a second pass. In both, we employ
computation-to-core mapping schemes suitable for frequent episode mining fully
utilize the massively parallel computing architecture of GPUs.

3. A multi-GPU mining implementation that further enhances the performance of
mining of massive datasets.

This paper extends our previous work [4] by providing a multi-GPU implementa-
tion of the episode mining algorithm and a detailed performance analysis comparing
the multi-GPU implementation with our original approach.

4 Yong Cao et al.

2 Problem Statement

A spike train dataset can be modeled as an event stream, where each symbol/event
type corresponds to a specific neuron (or clump of neurons) and the dataset encodes
occurrence times of these events over the time course.

Definition 1 An event stream is denoted by a sequence of events,

〈(E1, t1), (E2, t2), . . . (En, tn)〉
where n is the total number of events. Each event (Ei, ti) is characterized by an
event type Ei and a time of occurrence ti. The sequence is ordered by time i.e. ti ≤
ti+1 ∀i = 1, . . . , n− 1 and Ei’s are drawn from a finite set ξ.

One class of interesting patterns that we wish to discover are frequently occurring
groups of events (i.e., firing cascades of neurons) with some constraints on ordering
and timing of these events. This is captured by the notion of episodes, the original
framework for which was proposed by Mannila et al [11].

Definition 2 An (serial) episode α is an ordered tuple of event types Vα ⊆ ξ.

For example (A → B → C → D) is a 4-node serial episode, and it captures
the pattern that neuron A fires, followed by neurons B, C and D in that order, but not
necessarily without intervening ‘junk’ firings of neurons (even possibly neurons A,
B, C, or D). This ability to intersperse noise or don’t care states, of arbitrary length,
between the event symbols in the definition of an episode is what makes these patterns
non-trivial, useful, and comprehensible. Serial episodes can also have repeated event
types, for example, (A → B → A → D) is an episode where the event A occurs
twice, once before B and again after B and before D.

Frequency (or Support) of an episode: The notion of frequency of an episode can
be defined in several ways. In [11], it is defined as the fraction of windows in which
the episode occurs. Another measure of frequency is the non-overlapped count which
is the size of the largest set of non-overlapped occurrences of an episode expressed
as a fraction of the total number of events in the data. Two occurrences are non-
overlapped if no event of one occurrence appears in between the events of the other.
In the event stream shown in the following example (1), there are at most two non-
overlapped occurrences of the episode A → B, although there are 8 occurrences in
total.

〈(A, 1), (A, 2), (B, 5), (B, 8), (A, 10), (A, 13), (C, 15), (B, 18), (C, 20)〉 (1)

We use the non-overlapped occurrence count as the frequency or support mea-
sure of choice due to its strong theoretical properties under a generative model of
events [9]. It has also been argued in [13] that, for the neuroscience application,
counting non-overlapped occurrences is natural because episodes then correspond
to causative, “syn-fire”, chains that happen at different times again and again.

Temporal constraints: Besides the frequency threshold, a further level of con-
straint can be imposed on the definition of episodes. In multi-neuronal datasets, if

Parallel Mining of Neuronal Spike Streams on Graphics Processing Units 5

one would like to infer that neuron A’s firings cause a neuron B to fire, then spikes
from neuronB cannot occur immediately or spontaneously afterA’s spikes due to ax-
onal conduction delays. These spikes cannot also occur too much later than A for the
same reason. Such minimum and maximum inter-event delays are common in other
application domains as well. Hence we place inter-event time constraints between
consecutive pairs of events giving rise to episodes such as:

(A
(t1low,t

1
high]

−−−−−−−−→B
(t2low,t

2
high]

−−−−−−−−→C).

In a given occurrence of episode A → B → C, let tA, tB , and tC denote the times
of occurrence of corresponding event types. A valid occurrence of the serial episode
satisfies

t1low < (tB − tA) ≤ t1high; t2low < (tC − tB) ≤ t2high.
In general, an N -node serial episode is associated with N −1 inter-event constraints.

In example (1) there is exactly one occurrence of the episode A
(5,10]→ B

(10,15]→ C
satisfying the desired inter-event constraints, i.e., 〈(A, 2), (B, 8), (C, 20)〉.

The problem we address in this paper is defined as follows.

PROBLEM: Given an event stream {(Ei, ti)}, i ∈ {1 . . . n}, a set of inter-event
constraints I = {(tklow, tkhigh]},k ∈ {1 . . . l}, find all serial episodes α of the form:

α = 〈E
(t

(1)
low,t

(1)
high]

−−−−−−−−→
(1) E(2) . . .

(t
(N−1)
low ,t

(N−1)
high]

−−−−−−−−−−−→E(N)〉

such that the non-overlapped occurrence counts of each episode α is ≥ θ, a user-
specified threshold. HereE(.)’s are the event types in the episode α and (t(.)low, t

(.)
high]’s

∈ I are the corresponding inter-event constraints.
Typically in neuroscience data the number of frequent episodes range from 100

to 1000 depending on the frequency (i.e. support) threshold. In real data frequent
episodes of size larger than 10 (i.e. having more than 10 event types) are seldom
seen.

3 Prior Work

We review prior work in two categories: mining frequent episodes and data mining
using GPGPUs.
Mining Frequent Episodes: The overall mining procedure for frequent episodes is
based on level-wise mining. Within this framework there are two broad classes of
algorithms: window-based [11] and state machine-based [8,9], and they primarily
differ in how they define the frequency of an episode. The window-based algorithms
define frequency of an episode as the fraction of windows on the event sequence
in which the episode occurs. The state machine-based algorithms are more efficient
and define frequency as the size of largest set of non-overlapped occurrences of an
episode. Within the class of state machine algorithms, serial episode discovery us-
ing non-overlapped counts was described in [9], and their extension to temporal

6 Yong Cao et al.

constraints is given in [13]. With the introduction of temporal constraints the state
machine-based algorithms become more complicated. They must keep track of what
part of an episode has been seen, which event is expected next and, when episodes
interleave, they must make a decision of which events to be used in the formation of
an episode.
Data Mining using GPGPUs: Many researchers have harnessed the capabilities of
GPGPUs for data mining. The key to porting a data mining algorithm onto a GPGPU
is to, in one sense, “dumb it down” or simplify it. Specifically, the algorithms need to
reduce the use of conditionals, branching, and complex decision constraints, which
are not easily parallelizable on a GPU, and thus adversely impact performance. How-
ever, designing algorithms under such constraints require significant reworking to fit
this architecture, and unfortunately, temporal episode mining falls in this category.
There are many emerging publications in this area but due to space restrictions, we
survey only a few here. The SIGKDD tutorial by Guha et al. [7] provides a gentle in-
troduction to the aspects of data mining on the GPU through problems like k-means
clustering, reverse nearest neighbor (RNN), discrete wavelet transform (DWT), and
sorting networks. In [5], a bitmap technique is proposed to support counting and is
used to design GPGPU variants of Apriori and k-means clustering. This work also
proposes co-processing for itemset mining where the complicated tie data structure
is kept and updated in the main memory of CPU and only the itemset counting is
executed in parallel on the GPU. A sorting algorithm on the GPU with applications
to frequency counting and histogram construction is discussed in [6] which essen-
tially recreates sorting networks on the GPU. Li et al. [10] present a ‘cut-and-stitch’
algorithm for approximate learning of Kalman filters. Although this is not a GPGPU
solution per se, we point out that our proposed approach shares with this work the
difficulties of mining temporal behavior in a parallel context.

4 GPU Architecture

To understand the algorithmic details behind our approach, we provide a brief overview
of the GPU and its architecture.

The initial purpose of specialized GPUs was to accelerate the display of 2D and
3D graphics, much in the same way that the FPU focused on accelerating floating-
point instructions. However, the advances of GPU’s many-core architecture, coupled
with extraordinary speed-ups of application “toy” benchmarks on the specialized
GPUs, led GPU vendors to transform the GPU from a specialized processor to a
general-purpose graphics processing unit (GPGPU), such as the NVIDIA GTX 280,
as shown in Figure 2. GPUs provide a massively parallel computing architecture that
can support concurrent execution of tens of thousands of threads and manage tril-
lions of threads at the same time. To lessen the steep learning curve, GPU vendors
also introduced programming environments, such as the NVIDIA’s Compute Unified
Device Architecture (CUDA).
Processing Elements: The basic execution unit on the GTX 280 is a scalar process-
ing core, of which 8 together form a multiprocessor. The number of multiprocessors
and processor clock frequency depends on the make and model of the GPU. For ex-

Parallel Mining of Neuronal Spike Streams on Graphics Processing Units 7

Fig. 2 Architecture of the NVIDIA GTX 280 GPU.

ample, GTX 280 has 30 multiprocessors and totally 240 cores, where each of the
cores runs at a speed of 1.296 MHz. GPU multiprocessors execute in SIMT (Single
Instruction, Multiple Thread) fashion, which is similar in nature to SIMD (Single
Instruction, Multiple Data) execution. Each multiprocessor can manage the concur-
rent execution of a maximum 1024 threads, of which 32 forms a warp. Warp is the
minimum threads set that is scheduled independently to run on multiprocessors in
parallel. Therefore, GTX 280 can execute at least 960 threads in parallel at any given
moment. Since each multiprocessor has only one instruction fetch unit, all threads in
a warp must execute the same instruction in a GPU clock cycle. However, if a branch
instruction causes the execution of diverged codepaths within a warp, all different
codepaths have to be executed sequentially, which implies performance slowdown.

Memory Hierarchy: The GTX 280 contains multiple forms of memory. Beginning
with the furthest from the GPU processing elements, the device memory is located
off-chip on the graphics card and provides the main source of storage for the GPU
while being accessible from the CPU and GPU. Each multiprocessor on the GPU
contains three caches — a texture cache, constant cache, and shared memory. The
texture cache and constant cache are both read-only memory providing fast access to
immutable data. Shared memory, on the other hand, is read-write to provide each core
with fast access to the shared address space of a thread block within a multiprocessor.
Finally, on each core resides a plethora of registers such that there exists minimal
reliance on local memory resident off-chip on the device memory.

Parallelism Abstractions: At the highest level, the CUDA programming model re-
quires the programmer to offload functionality to the GPU as a compute kernel. This
kernel is evaluated as a set of thread blocks logically arranged in a grid to facilitate
organization. In turn, each block contains a set of threads, which will be executed on
the same multiprocessor, with the threads scheduled in warps, as mentioned above.
CUDA allows a two-dimensional grid organization. Each grid can have a maximum
65, 535 × 65, 535 blocks and each block can have a maximum of 512 threads. It

8 Yong Cao et al.

Algorithm 1 Serial Episode Mining

Input: Candidate N -node episode α = 〈E(1)

(t
(1)
low

,t
(1)
high

]
−→ . . . E(N)〉 and event sequence S =

{(Ei, ti)|i = 1 . . . n}.
Output: Count of non-overlapped occurrences of α satisfying inter-event constraints
1: count = 0; s = [[], . . . , []] //List of |α| lists
2: for all (E, t) ∈ S do
3: for i = |α| down to 1 do
4: E(i) = ith event type of α
5: if E = E(i) then
6: iprev = i− 1
7: if i > 1 then
8: k = |s[iprev]|
9: while k > 0 do

10: tprev = s[iprev , k]

11: if t(iprev)

low < t− tprev ≤ t(iprev)

high then
12: if i = |α| − 1 then
13: count+ +; s = [[], . . . , []]; break Line: 3
14: else
15: s[i] = s[i] ∪ t
16: break Line: 9
17: k = k − 1
18: else
19: s[i] = s[i] ∪ t
20: RETURN count

means CUDA-based applications can create and manage more than 2 trillion threads
for massively parallel computing.

5 Approach

Our solution approach is based on a state machine algorithm with inter-event con-
straints [13]. There are two major phases of this algorithm: generating episode can-
didates and counting these episodes. We focus on the latter since it is the key per-
formance bottleneck, typically by a few orders of magnitude. Therefore, our focus in
this paper is on novel algorithm design for accelerating episode counting on GPUs.
We leave the execution of candidate generation on CPU.

Let us first introduce the standard sequential counting algorithm for mining fre-
quent episodes with inter-event constraints. In Algorithm 1, we outline the serial
counting procedure for a single episode α. The algorithm maintains a data structure
s which is a list of lists. Each list s[k] in s corresponds to an event type E(k) ∈ α and
stores the times of occurrences of those events with event-type E(k) which satisfy
the inter-event constraint (t(k−1)

low , t
(k−1)
high] with at least one entry tj ∈ s[k − 1]. This

requirement is relaxed for s[0], thus every time an event E(0) is seen in the data its
occurrence time is pushed into s[0].

When an event of type E(k), 2 ≤ k ≤ N at time t is seen, we look for an entry
tj ∈ s[k − 1] such that t − tj ∈ (t(k−1)

low , t
(k−1)
high]. Therefore, if we are able to add

the event to the list s[k], it implies that there exists at least one previous event with

Parallel Mining of Neuronal Spike Streams on Graphics Processing Units 9

event-type E(k−1) in the data stream for the current event which satisfies the inter-
event constraint between E(k−1) and E(k). Applying this argument recursively, if we
are able to add an event with event-type E(|α|) to its corresponding list in s, then
there exists a sequence of events corresponding to each event type in α satisfying the
respective inter-event constraints. Such an event marks the end of an occurrence after
which the count for α is incremented and the data structure s is reinitialized. Figure

3 illustrates the data structure s for counting A
(5,10]→ B

(10,15]→ C.
The maximality of the left-most and inner-most occurrence counts for a general

serial episode has been shown in [9]. Similar arguments hold for the case of serial
episodes with inter-event constraints and are not shown here for lack of space.

A
(5,10]

B C
(10,15]

Events:

Times:

A A B A A C B C

1 2 5 8 10 13 15 18 20

B

s[A] s[B] s[C]

1

2

10

13

8

18

20

Fig. 3 Illustration of the data structure s for counting A
(5,10]→ B

(10,15]→ C

In the next two sections, we first present a hybrid approach for counting M
episodes on the massively parallel computing architecture of GPUs. The approach
leverages the advantages of two different computation-to-core mapping schemes,
where the highest level of parallelism is achieved. We then propose a two-pass count-
ing approach, where the first counting pass eliminates most of unsupported episodes
and the second counting pass completes the counting tasks for the remaining episodes.
Since the first counting pass uses a less complex algorithm the execution time saved
at this step contributes to an overall performance gain even we though go through
two-pass counting.

5.1 A Hybrid Approach

To parallelize the sequential counting algorithm on GPU, we need to segment the
overall computation into independent units that can be mapped onto GPU cores and
executed in parallel to fully utilize GPU resources. Different computation-to-core
mapping schemes can result in different levels of parallelism, which are suitable
for different inputs for the counting algorithm. We design two mapping schemes
for counting M episodes: 1) one thread for counting each episode; and 2) multiple

10 Yong Cao et al.

threads per episode. Each mapping scheme has its own advantages and disadvan-
tages when counting different numbers of episodes. We propose a hybrid counting
approach that can sense the input condition, so that the optimized level of parallelism
can be chosen to achieve the best performance. Let us present the detail of each
mapping scheme and how our hybrid approach optimizes the counting by selecting
between different mapping schemes according to the number of input episodes M .

Per Thread Per Episode (PTPE). One heuristic for segmenting computation into
parallelizable units is to enforce the maximum independence between these units, so
that minimum effort is needed to combine the results from different units. An intuitive
mapping scheme is to ask each GPU thread to count support for one episode. Since
there is no computational dependency between the counting of different episodes, all
counting threads can be executed in parallel with no result/data synchronization at
the end of the execution. In our implementation, we simply implement Algorithm 1
as the CUDA kernel for each GPU thread, and createM threads to cover the counting
of all input episodes.

This mapping scheme, PTPE, is very intuitive and simple. It fits perfectly to
GPU’s massive data-parallel architecture. However, there is one major disadvantage
of this mapping scheme for episode counting: if the number of episodes M is smaller
than a certain threshold, the GPU resource is underutilized. As we mentioned in Sec-
tion 4, the GTX 280 GPU is capable of executing 960 threads in parallel. Since we
generate one thread for counting one episode, if the number of episodes M is less
than 960, saying M = 1 in the extreme case, the most of GPU cores are left idle, and
GPU resource is heavily underutilized.

Multiple Threads Per Episode (MTPE). Due to inefficiencies in resource usage
whenM is small, we seek to achieve a higher level of parallelism within the counting
of a single episode, so that multiple threads are created for counting one episode. The
basic idea is to segment the input event stream into segments of sub-streams and map
the counting in one segment onto one thread. Therefore, in this new computation-
to-core mapping scheme, MTPE, we increase the level of parallelism by introducing
parallel counting of multiple segments of the input stream. If the number of the seg-
ments is R (which is controllable by the counting algorithm), the total number of
threads we generate is M × R. We need to ensure that M × R is larger enough to
fully utilize GPU processing cores.

The disadvantage of the mapping scheme MTPE is the extra step needed to merge
the sub-counts of all segments for the final count. In this step, we can not simply add
all the sub-counts together for the final count, because there are cases that an oc-
currence of an episode might be divided by the segmentation of the input stream.
Additional work is needed to concatenate the divided occurrence between neighbor-
ing segments. The bigger the number of segments R is, the more computation is
introduced.

Let us discuss the detail about how this two-step, Counting and Merging, map-
ping scheme is designed. When we divide the input stream into segments, there are
chances that some occurrences of an episode span across the boundaries of consecu-
tive segments. As an example, see Fig. 4 which depicts a data sequence divided into
two segments. The shaded rectangles on the top mark the non-overlapped occurrences
h1 . . . h4 of an episode (A → B → C) (assume for now that inter-event constraints

Parallel Mining of Neuronal Spike Streams on Graphics Processing Units 11

h1 h2 h3 h4

α0 : count = 4

α1 : count = 1 α2 : count = 2

g1 g2 g3 g4

Partial occurrence

Segment 1 Segment 2

A B C A B CA B CA B C A B CEvent

Sequence

Fig. 4 Illustration of splitting a data sequence into segments and counting within each segment.

are always satisfied), as seen by a state machine α0 on the unified event sequence.
α0 is thus the reference (serial) state machine. Let α1 and α2 be the state machines
counting occurrences in segment 1 and segment 2 respectively. During the Counting
step, α1 and α2 are executed in parallel, and each state machine can see a local view
of the episode occurrences, which are shown by empty rectangles below the event
sequence. α1 sees the occurrence g1 and a partial occurrence g2. For α2, it will first
see the occurrence g3 and therefore miss h3 before moving onto g4.

We propose Counting and Merging steps that use multiple state machines in each
segment, so that the counting of a segment is able to anticipate partial occurrences
near boundaries. Let us explain in detail why multiple state machines are necessary,
and how we design the Counting step and Merging step to maintain the correctness
of counting.

E(1) E(2) E(N). . .

Possible locations of split

Fig. 5 Illustration of different possibilities of an occurrence splitting across two adjacent data segments.

Assume that we are counting an episode α = 〈E(1)

(t
(1)
low,t

(1)
high]−→ . . . E(N)〉, the

data sequence is divided into P segments, and events in the pth data segment are in
the range (τp, τp+1]. An occurrence of episode α can be split across two adjacent
segments in at least N ways as shown in Figure 5. For each possible split, we need
one state machine, αkp , 0 ≤ k ≤ N − 1, to count the second segment, starting at

t = τp−
∑k
i=1 t

(i)
high. So we haveN different state machines all counting occurrences

of episode α using Algorithm 1, handling all possible cases of split between current
segment and previous segment.

For each segment p, the Counting step is designed as follows, and illustrated in
Figure 6.

1. Each state machine αkp maintains its own count = countkp .
2. αkp does not increment count for occurrences ending at time t ≤ τp.

12 Yong Cao et al.

Segment-pEvent sequence

α0
p

α1
p

αN−1
p

τp

τp − t(1)high

τp τp+1

τp −
∑N−1

i=1 t
(i)
high

a0
p b0pcount0p

a1
p b1p

aN−1
p

bN−1
p

count1p

countN−1
p

τp+1 +
∑N−1

i=1 t
(i)
high

Fig. 6 Illustration of a Counting step.

3. αkp stores the end time of the first occurrence that completes at time t, τp < t <

τp +
∑N−1
i=1 t

(i)
high. Let this be akp . If there is no such occurrence akp is set to τp.

4. αkp on reaching end of the segment, crosses over into the next segment to com-

pletes the current partial occurrence and continues until t < τp+1 +
∑N−1
i=1 t

(i)
high.

Let the end time of this occurrence be bkp . Note that count is not incremented for
this occurrence. In case the occurrence cannot be completed bkp is set to τp+1.

The result of the Counting step for each segment p is tuples of (akp, count
k
p, b

k
p).

Based on these results, we design our Merging step for pairs of consecutive segments
as follows, and illustrated in Figure 7.

Segment 1 Segment 2 Segment 3 Segment 4

(a0
1, count01, b

0
1) (a0

2, count02, b
0
2)

(a1
2, count12, b

1
2)

(a2
2, count22, b

2
2)

(a0
3, count03, b

0
3)

(a1
3, count13, b

1
3)

(a2
3, count23, b

2
3)

(a0
4, count04, b

0
4)

(a1
4, count14, b

1
4)

(a2
4, count24, b

2
4)

(a0
1, count01 + count22, b

2
2) (a0

3, count03 + count14, b
1
4)

(a1
3, count13 + count24, b

2
4)

(a2
3, count23 + count04, b

0
4)

Level 1:

Level 2:

Level 3: (a0
1, count01 + count22 + count23 + count04, b

0
4)

Fig. 7 Illustration of a Merging step.

1. Start Merging step at level 1.
2. For level i, concatenate the tuples of segment (j − 1)2i + 1 with the tuples of

segment (j−1)2i+1+2j−1 for all possible j. The procedure for concatenating the

Parallel Mining of Neuronal Spike Streams on Graphics Processing Units 13

Algorithm 2 A Hybrid GPU Mining Algorithm
1: if S > MP ×BMP × TB × f(N) then
2: Call PTPE Algorithm
3: else
4: Call MTPE Algorithm

tuples of sth segment and tthsegment is: find all pairs of tuples (aks , count
k
s , b

k
s)

and (alt, count
l
t, b

k
t) such that bks = alt, and then concatenate these pairs to obtain

the next level (i+ 1) tuples (aks , count
k
s + countlt, b

l
t) for sthsegment.

3. After all adjacent segment pairs are concatenated for level i, increase the level to
i+1 and repeat the previous step until there is only one segment left for this level.

It is worth mentioning that, at level i of Merging step, segment (j − 1)2i + 1 and
segment (j − 1)2i + 1 + 2j−1 are considered as adjacent segments. We also choose
segment number p to be a power of 2, say 2q , so that the Merging step takes exactly
q + 1 levels and 2q+1 − 1 concatenate operations to finish.

A Hybrid Algorithm. The MTPE mapping scheme can greatly outperform the
PTPE in cases when the number of episodes, M , is small and some GPU cores are
idle for the PTPE algorithm. For other cases, the PTPE algorithm would run much
faster than MTPE. So, as a practical approach, we would like to use their selective
superiorities to automatically decide the right algorithm to execute. The logic for
making these choices can be very simple: if the GPU can be fully utilized with the
PTPE algorithm, then we choose it, else we choose MTPE. In NVIDIA’s CUDA
framework, the GPU is fully utilized when:

S > MP ×BMP × TB (2)

where S is the number of episodes to be counted, TB is the number of threads per
block as defined by the algorithm, MP is the number of multiprocessors on the
GPGPU, and BMP is the number of blocks that the compiler determines can be fit
into one multi-processor.

Another key factor that determines the selective superiority is the size/length (N)
of the episode being counted. For example, MTPE will run slower on larger N , since
the Counting step needs N state machines to count each event segment, forcing the
Merging step to take more time to concatenate the state machines together. The per-
formance of the PTPE algorithm is also dependent onN , but will not change as much
as MTPE, since it only uses one state machine to count each episode. Therefore, we
need to consider the effect of N when deciding which algorithm to use:

S > MP ×BMP × TB × f(N) (3)

where f(N) is a performance penalty factor dependent on the episode length/level of
the mining algorithm. We use the term crossover point to designate the point (i.e.,
number of episodes) at which the PTPE algorithm will outperform MTPE.

By considering both GPU utilization and episode size, we propose the Hybrid
algorithm for mining temporal episodes on the GPU as shown in algorithm 2.

14 Yong Cao et al.

5.2 A Two-Pass Elimination Approach

After a thorough analysis of GPU performance of our hybrid mining algorithm, we
find that the performance is largely limited by the requirement of large amount of
shared memory and large number of GPU registers for each GPU thread. For exam-
ple, if the episode size is 5, each thread requires 220 bytes of shared memory and
97 bytes of register file. This means that only 32 threads can be allocated on a GPU
multi-processor, which has 16K bytes of shared memory and register file. When each
thread requires more resources, only fewer threads can run on GPU at the same time,
resulting in more execution time for each thread.

The only way to address this problem is to reduce the complexity of the algorithm
without losing correctness. In this section, we introduce a two-pass elimination ap-
proach that more efficiently searches larger numbers of episodes, further improving
the overall performance. The idea is to use a far less complex algorithm, called PreE-
lim, to eliminate most of non-supported episodes, and only use the complex hybrid
algorithm to determine if the rest of the episodes are supported or not. In order to
introduce algorithm PreElim, we consider the solution to a slight relaxed problem,
which plays an important role in our two-pass elimination approach.

Less-Constrained Mining: Algorithm PreElim. Let us consider a constrained
version of out data mining problem. Instead of enforcing both lower limits and upper
limits on inter-event constraints, we design a counting solution that enforces only
upper limits.

Let α′ be an episode with the same event types as in α, where α uses the original
episode definition from Problem 1. The lower bounds on the inter-event constraints
in α are relaxed for α′ as shown below.

α′ = 〈E
(0,t

(1)
high]

−−−−−→
(1) E(2) . . .

(0,t
(N−1)
high]

−−−−−−−→E(N)〉
Observation 1 In Algorithm 1, if lower bounds of inter-event constraints in episode
α are relaxed as α′, the list size of s[k], 1 ≤ k ≤ N can be reduced to 1.

Proof In Algorithm 1, when an event of type E(k) is seen at time t while going down
the event sequence, s[E(k−1)] is looked up for at least one tk−1

i , such that t− tk−1
i ∈

(0, t(k−1)
high]. Note that tk−1

i represents the ith entry of s[E(k−1)] corresponding the
(k − 1)th event-type in α.

Let s[E(k−1)] = {tk−1
1 . . . tk−1

m } and tk−1
i be the first entry which satisfies the

inter-event constraint (0, t(k−1)
high], i.e.,

0 < t− tk−1
i ≤ t(k−1)

high (4)

Also Equation 5 below follows from the fact that tk−1
i is the first entry in s[E(k−1)]

matching the time constraint.

tk−1
i < tk−1

j ≤ t, ∀j ∈ {i+ 1 . . .m} (5)

From Equation 4 and 5, Equation 6 follows.

0 < t− tk−1
j ≤ t(k−1)

high ,∀j ∈ {i+ 1 . . .m} (6)

Parallel Mining of Neuronal Spike Streams on Graphics Processing Units 15

Algorithm 3 Less-Constrained Mining: PreElim

Input: Candidate episode α = 〈E(1)

(0,t
(1)
high

]
−→ . . . E(N)〉 is a N -node episode, event sequence S =

{(Ei, ti)}, i ∈ {1 . . . n}.
Output: Count of non-overlapped occurrences of α
1: count = 0; s = [] //List of |α| time stamps
2: for all (E, t) ∈ S do
3: for i = |α| to 1 do
4: E(i) = ith event type ∈ α
5: if E = E(i) then
6: iprev = i− 1
7: if i > 1 then
8: if t− s[iprev] ≤ t(iprev)

high then
9: if i = |α| then

10: count+ +; s = []; break Line: 3
11: else
12: s[i] = t
13: else
14: s[i] = t
15: Output: count

This shows that every entry in s[E(k−1)] following tk−1
i also satisfies the inter-event

constraint. This follows from the relaxation of the lower-bound. Therefore it is suffi-
cient to keep only the latest time stamp tk−1

m only in s[E(k−1)] since it can serve the
purpose for itself and all entries above/before it, thus reducing s[E(k−1)] to a single
time stamp rather than a list (as in Algorithm 1).

Based on Observation 1, we develop a new Algorithm A2 for ‘less-constrained’
mining. In comparison to AlgorithmA1,A2 reduces the time complexity of the inter-
event constraint check from O(|s[E(k−1)]|) to O(1), and also gives a static memory
bound for s, which greatly decreases the execution time and runtime memory require-
ment.

Combined Algorithm: Two-Pass Elimination. Now, we can return to the orig-
inal mining problem (with both upper and lower bounds). By combining Algorithm
PreElim with our hybrid algorithm, we can develop a two-pass elimination approach
that can deal with the cases on which the hybrid algorithm cannot be executed. The
Two-Pass Elimination algorithm is as follows.

Algorithm 4 Two-Pass Elimination Algorithm
1: (First pass) For each episode α, run PreElim on its less-constrained counterpart, α′.
2: Eliminate every episode α, if count(α′) < CTh, where CTh is the support count threshold.
3: (Second Pass) Run the hybrid algorithm on each remaining episode, α, with both inter-event con-

straints enforced.

The two-pass elimination algorithm yields the correct solution for Problem 1. Al-
though the set of episodes mined under the less constrained version are not a superset
of those mined under the original problem definition, we can show the following
result:

16 Yong Cao et al.

Theorem 1 count(α′) ≥ count(α), i.e., the count obtained from Algorithm PreElim
is an upper-bound on the count obtained from the hybrid algorithm.

Proof Let h be an occurrence of α. Note that h is a map from event types in α
to events in the data sequence S. Let the time stamps for each event type in h be
{t(1) . . . t(k)}. Since h is an occurrence of α, it follows that

tilow < t(i) − t(i−1) ≤ tihigh,∀i ∈ {1 . . . k − 1} (7)

Note that tilow > 0. The inequality in Equation 7 still holds after we replace tilow with
0 to get Eqn.8.

0 < t(i) − t(i−1) ≤ tihigh,∀i ∈ {1 . . . k − 1} (8)

The above corresponds to the relaxed inter-event constraint in α′. Therefore every
occurrence of α is also an occurrence of α′ but the opposite may not be true. Hence
we have that count(α′) ≥ count(α).

In our two-pass elimination approach, algorithm PreElim is less complex and runs
faster than the hybrid algorithm, because it reduces the time complexity of the inter-
event constraint check from O(|s[E(k−1)]|) to O(1). Therefore, the performance of
two-pass elimination algorithm is significantly better than the hybrid algorithm when
the number of episodes is very large and the number of episodes culled in the first
pass is also large as shown by our experimental results described next.

6 Multi-GPU Mining

With multi-GPU becoming a standard setting in high performance computing re-
search, we implement a multi-GPU mining solution for our two-pass elimination al-
gorithm. In this section, we first describe how multi-GPU computing is supported by
NVIDIA’s CUDA programming framework. We then illustrate the multi-GPU mining
solution for the two-pass elimination algorithm.

6.1 Multi-GPU Computing and Synchronization Support in CUDA

The CUDA programming framework provides utility functions to launch kernels
across multiple GPUs in parallel. In this framework, kernel execution on each GPU
is managed by a corresponding thread on the CPU (we shall call this a device thread).
Multi-threading on the CPU is required for multi-GPU applications as each GPU
kernel-launch effectively blocks the calling CPU thread.

In order to manage device memory and other device specific resources from
within a CPU (or device) thread, CUDA framework provides the notion of a context.
A context is created for each GPU device and is specific to the CPU thread control-
ling it. It is also available only so long as the CPU thread is alive and is maintained
in a way transparent to the application programmer.

The following are some of the general considerations for multi-GPU computing:

1. Data communication between GPUs has to go through CPU and host memory.

Parallel Mining of Neuronal Spike Streams on Graphics Processing Units 17

2. Each GPU has to be controlled by a separate CPU thread.
3. Synchronization between GPUs has to be achieved by the synchronization be-

tween CPU threads.
4. Device memory pointers are only retained within a GPU context.

6.2 Multi-GPU Mining for Two-Pass Elimination Algorithm

Multi-GPU architecture provides us another layer of parallel computing hierarchy. It
means additional levels of parallelism can be achieved by distributing tasks between
different GPUs. In our multi-GPU mining framework, we improve the level of par-
allelism by dividing the total episode candidates into several groups and assigning
the counting of each candidate group to a different GPU. Inside each GPU, the PTPE
algorithm is used where each GPU thread will count one episode candidate from the
candidate group. Given N GPUs, we evenly divide the episode candidates into N
groups, and each group contains 1/N th of the total episodes. Therefore, our main
CPU thread will create another N CPU threads (we call them device threads), each
of which controls one GPU device and synchronizes with other CPU threads. The ith
device thread will be responsible for the following tasks:

1. Copy the entire event sequence into the ith GPU’s device memory.
2. Copy the assigned 1

N of episode candidates to the ith GPU’s device memory.
3. Launch the GPU kernel for counting episodes.
4. Copy the support or frequency count of each episode back to the CPU

The tasks 2 and 3 are interleaved with candidate generation on the CPU main thread.
It might seem natural to have different sets of threads control each of the tasks

independently. That is, first N threads are launched to copy the event sequence into
the devices while the main thread waits for them to terminate (using a barrier or
thread-join). After completion, the main thread generates the candidate episodes and
another set of N threads are launched which in turn copy the candidates to each
device, launch the counting kernel and copy back the supports and so on. The problem
with this approach is the following. The CUDA context which is responsible for
maintaining the device memory pointers and other resources is created locally for
each CPU device thread. The second set of threads which launch the GPU kernel
do not have the same context as the first set of threads. The device pointers and
other resources are context-bound and will be lost as soon as the first set of threads
terminate. This is because a completely new context would have been created by now
for each thread.

To resolve this GPU context issue, we keep the device threads alive until the
entire level-wise mining is completed. We use mutexes and conditional variables
(pthread cond t) to synchronize the execution between all device threads and the
main CPU thread. While mutexes implement synchronization by controlling thread
access to data, condition variables allow signaling threads to wait or block and sub-
sequently notify causing them to unblock. Figure 8 shows the synchronization points
between the device threads and the main thread. for the PTPE algorithm. The main
CPU thread after completing candidate generation issues a broadcast wake-up sig-
nal to all the N device threads and the main thread itself blocks on a conditional

18 Yong Cao et al.

Next level
of

candidates

Launch
Counting

GPU kernels

Generate next size
candidate episodes

Device Threads

Main Thread

wait/notify

wait/notify

…

Wait for GPUs to
complete counting

Wait for candidate
generation

Fig. 8 Synchronization between GPU kernel execution and CPU main thread in a multi-GPU setting.

variable. Subsequently, the device threads launch the GPU counting kernel on cor-
responding devices. At completion of the kernel launch each device thread indicates
that its counting task is complete and wakes up the main thread. The main thread
keeps a counter and does not resume until all the device threads have reported their
task-completion status. Once all device threads have finished their counting task, the
main thread determined the frequent episodes from the counts and continues with
candidate generation. This implementation has the least overhead in terms of both
initialization of thread contexts (and CUDA device contexts) and also waiting times
for the different CPU threads (compared to polling based synchronization). In total
we use two mutexes, two conditional variables, a counter for tracking the status of
the N threads GPU controlling threads, and a logical variable for the status of main
thread.

For our two-pass elimination approach, besides the set of tasks described above,
there is another set of data transfer for episode candidates across the device and CPU
memory, and an extra kernel-launch for PreElim algorithm.

7 Experimental Results

7.1 Datasets and Testbed

Our datasets are drawn from both mathematical models of spiking neurons as well
as real datasets gathered by Wagenar et al. [15] in their analysis of cortical cultures.
Both these sources of data are described in detail in [13]. The mathematical model in-
volves 26 neurons (event types) whose activity is modeled via inhomogeneous Pois-
son processes. Each neuron has a basal firing rate of 20 Hz and two causal chains
of connections—one short and one long—are embedded in the data. This dataset

Parallel Mining of Neuronal Spike Streams on Graphics Processing Units 19

(Sym26) involves 60 seconds with 50,000 events. The real datasets (2-1-33, 2-1-34,
2-1-35) observe dissociated cultures on days 33, 34, and 35 from over five weeks of
development. The original goal of this study was to characterize bursty behavior of
neurons during development.

We evaluated the performance of our GPU algorithms on a machine equipped
with Intel Core 2 Quad 2.33 GHz and 4GB system memory. We used a NVIDIA
GTX280 GPU, which has 240 processor cores with 1.3 GHz clock for each core, and
1GB of device memory.

There are two CUDA runtime parameters we need to determine for each execu-
tion on the GPU: number of threads per block, T , and the total number of blocks. The
second parameter is always calculated based on T so that all required computation
can be finished with T threads per block and within one CUDA kernel function call.

Parameter T is determined by the algorithm and the size of the episode (N).
For the PTPE algorithm, we calculate the maximum number of threads per block at
each N . The larger N is, more shared memory is needed per thread. When N = 1,
we use 128 threads, and as N increases, the maximum number of threads per block
decrease due to the shared memory limit. When N = 6, we cannot have more than
32 threads per block. For MTPE, the event stream is segmented into a number (R)
of sub-streams, as mentioned in Section 5.1. Recall that we need to create multiple
threads to count all sub-streams independently and run multiple state machines, as
shown in Figure 6. The number of threads for each block T can be calculated as
T = R × N , since there are R sub-streams and N state machines. Again, we must
limit the number of sub-streams to reduce the number of threads due to the shared
memory limit affected byN . For the PreElim algorithm, we generate as many threads
as possible per block until shared memory usage reaches the hardware limit (16KB).
In this case, T is normally much larger than 32, since we do not have a strict memory
requirement for the GPU for PreElim algorithm.

7.2 Performance of the Hybrid Algorithm

In order to evaluate the performance of the hybrid algorithm, we shall first provide
the performance comparison between PTPE and MTPE algorithms. As seen in Fig-
ure 9(a), it is clear that blindly choosing to execute the PTPE or MTPE approach for
all levels is not the best solution. For episode sizes of 1, 2, and 5 both approaches
complete in roughly the same amount of time. However, PTPE significantly outper-
forms MTPE at episode sizes of 3 and 4 by 3.96X and 2.84X, respectively. On the
other hand, PTPE performs slower than MTPE for episodes of size 6 (1.32X) and 7
(2.63X). In Figure 9(b), we also provide the evaluation results for our hybrid algo-
rithm. Since the hybrid algorithm leverage the advantages of both PTPE and MTPE
algorithms, it demonstrates a better performance than PTPE and MTPE.

The crossover points exist in all of our tests for this dataset. Table 1 shows the
crossover points determined experimentally for the Sym26 dataset.

Recall Equation 3 in Section 5.1 where optimal execution occurs when the GPU
is fully utilized and a small factor of episode size is taken into account. Using the

20 Yong Cao et al.

(a) Run Times at Different Episode Sizes.

(b) Speedups at Different Support Thresholds.

Fig. 9 Comparison of PTPE, MTPE, and Hybrid Algorithm on Sym26 dataset.

Table 1 Crossover Points on number of episodes below which MTPE should be run (for the fewer episodes
case). For other episode sizes—1, 2, and >8—MTPE should be chosen.

Level 3 4 5 6 7 8
Crossover 415 190 200 100 100 60

table above, with M = 30, TB = 32, and BM = 1, we find that f(N) of the form
a
N + b is a better fit than a×N + b as seen in Figure 10.

With these crossover points determined, the hybrid approach was evaluated on
the same support thresholds and the speedup for this approach over both PTPE and
MTPE is visible in Figure 9(b). The range of improvement over PTPE is almost 3X
and over 4.5X for MTPE. When the number of episodes is large (i.e., low support
threshold) there are enough episodes to fully utilize the GPU and as such the hybrid
algorithm shows little improvement over PTPE. Conversely, the hybrid algorithm
shows little improvement over MTPE when the support threshold is high with very
few episodes.

Parallel Mining of Neuronal Spike Streams on Graphics Processing Units 21

Fig. 10 Crossover points fitted to a
N

+ b and a×N + b

7.3 Performance of the Two-Pass Elimination Algorithm

As stated in Section 5.2, the performance of the hybrid algorithm suffers from the re-
quirement of large shared memory and large register file, especially when the episode
size is big. So we introduce algorithm PreElim that can eliminate most of the non-
supported episodes and requires much less shared memory and register file, then the
complex hybrid algorithm can be executed on much fewer number of episodes, re-
sulting in performance gains. The amount of elimination that PreElim conducts can
greatly affect the execution time at different episode sizes. In Figure 11(a), the PreE-
lim algorithm eliminates over 99.9% (43634 out of 43656) of the episodes of size
four. The end result is a speedup of 3.6X over the hybrid algorithm for this episode
size and an overall speedup for this support threshold of 2.53X. Speedups for three
different datasets at different support thresholds are shown in Figure 11(b) where in
every case, the two-pass elimination algorithm outperforms the hybrid algorithm with
speedups ranging from 1.2X to 2.8X.

We also use CUDA Visual Profiler to analyze the execution of the hybrid algo-
rithm and PreElim algorithm to give a quantitative measurement of how PreElim
outperforms the hybrid algorithm on the GPU. We have analyzed various GPU per-
formance factors, such as GPU occupancy, coalesced global memory access, shared
memory bank conflict, divergent branching, and local memory loads and stores. We
find the last two factors are primarily attributed to the performance difference be-
tween th e hybrid algorithm and PreElim, which are shown in Figure 12. The hy-
brid algorithm requires 17 registers and 80 bytes of local memory for each count-
ing thread, while PreElim algorithm only requires 13 registers and no local memory.
Since local memory is used as supplement for registers and mapped onto global mem-
ory space, it is accessed very frequently and has the same high memory latency as
global memory. In Figure 12 (a), the total amount of local memory access of both
two-pass elimination algorithm and the hybrid algorithm comes from the hybrid al-
gorithm. Since the PreElim algorithm eliminates most of the non-supported episodes
and requires no local memory access, the local memory access of two-pass approach
is much less than one-pass approach when the size of episode increases. At the size
of 4, the PreElim algorithm eliminates all episode candidates, thus there is no execu-

22 Yong Cao et al.

(a) Execution time of Two-Pass Elimination and Hybrid algorithms for Support=3600 on Dataset 2-1-35
at different episode sizes.

(b) Speedup of Two-Pass Elimination over Hybrid Algorithm for multiple support thresholds on multiple
datasets.

Fig. 11 Execution time and speedup comparison of the Hybrid algorithm versus Two-Pass Elimination
algorithm.

tion for the hybrid algorithm and no local memory access, resulting a large perfor-
mance gain for two-pass elimination algorithm over the hybrid algorithm. As shown
in Figure 12 (b), the amount of divergent branching also affects the GPU performance
difference between the two-pass elimination algorithm and the hybrid algorithm.

7.4 Performance of Multi-GPU Mining

We test our multi-GPU implementation of the episode mining algorithm on a worksta-
tion with eight GPUs (i.e., four GTX 295 graphics cards, each with two GPUs). The
set of candidate episodes are distributed among the different GPUs and the counting
kernel is launched in parallel. This approach incurs additional performance overhead
due to the data transfer between main memory and the GPU device memory. Since
the approach is task parallel, the data needs to be copied to each device separately.
In addition, there is synchronization overhead for thread barriers and communication
between threads. Despite the performance overhead, we observe significant speedup
at low support thresholds, when comparing the eight-GPU implementation to the

Parallel Mining of Neuronal Spike Streams on Graphics Processing Units 23

0	

20	

40	

60	

80	

100	

120	

Size	 2	 Size	 3	 Size	 4	 Lo
ca
l	 l
oa

d	
an

d	
st
or
e	
(M

ill
io
ns
)	

Hybrid	

Two-‐pass	

0	

1	

2	

3	

4	

5	

6	

7	

8	

Size	 2	 Size	 3	 Size	 4	

D
iv
er
ge
nt
	 B
ra
nc
h	
(M

ill
io
ns
)	

Hybrid	

Two-‐pass	

(a) (b)

Fig. 12 Comparison between the Hybrid algorithm and Two-pass Elimination algorithm for support
threshold 1650 on dataset 2-1-33. (a) Total number of loads and stores of local memory. (b) Total number
of divergent branches.

single-GPU implementation, as shown in Figure 13. For dataset 2-1-33, we achieve
more than a 2.5-fold speedup when using a threshold of 500. For a threshold larger
than 800, the performance overhead of the eight-GPU implementation is so high that
the overall performance is worse than the single GPU one. Similar trends can be seen
for the other datasets with different thresholds. As such, the advantages of a multi-
GPU implementation emerge only at low support thresholds, i.e., when there are an
extremely large number of episode candidates.

We also compare the performance between the PTPE and the two-pass elimina-
tion algorithms with multi-GPU implementations. Figure 14 shows the overall per-
formance speedup of the two-pass elimination algorithm over the PTPE algorithm.
There is not a large performance gain using this approach in the multi-GPU imple-
mentation. For example, for dataset 2-1-34 with a support threshold of 1,500, the
speedup of the two-pass elimination algorithm over the PTPE algorithm is 1.1 us-
ing the eight-GPU implementation. When using the single-GPU implementation, the
speedup is 2.5. Because there are fewer candidates to count in each GPU for the
eight-GPU implementation, the performance gain obtained from the early elimina-
tion of candidates by PreElim algorithm is not very significant.

To quantify the performance overhead involved in the multi-GPU implementation
of the two-pass elimination mining algorithm, we profile the execution time for dif-
ferent steps of the single GPU implementation and the eight-GPU implementation, as
shown in Figure 15. When using the Dataset 2-1-33, Figure 15(a) shows the execu-
tion time profile with a threshold of 500, and Figure 15(b) shows the execution time
profile with 1300 as the threshold. From the figure, we see that the data transfer time
for the eight-GPU implementation is eight times that of the single GPU implemen-
tation. This is due to the fact that the data transfer from CPU main memory to each
GPU has to share the same system bus (PCI-E), resulting in serialized copies from
the CPU to all GPUs. While the data transfer time is kept the same for both counting
thresholds, the counting time is quite different. For the threshold of 1300, there are
much fewer episode candidates for each GPU to count, as shown in Table 2, resulting

24 Yong Cao et al.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

500 600 700 800 900 1000 1100 1200 1300

(a) Dataset 2-1-33

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

700 800 900 1000 1100 1200 1300 1400 1500

(b) Dataset 2-1-34

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

1.40	

1.60	

2000	 2100	 2200	 2300	 2400	 2500	 2600	 2700	 2800	 2900	 3000	

(c) Dataset 2-1-35

Fig. 13 Speedup of multi-GPU over single GPU implementation.

1.15

1.20

1.25

1.30

1.35

1.40

1.45

500 600 700 800 900 1000 1100 1200 1300

(a) Dataset 2-1-33

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

700 800 900 1000 1100 1200 1300 1400 1500

(b) Dataset 2-1-34

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

(c) Dataset 2-1-35

Fig. 14 Speedup of two-pass elimination algorithm over PTPE algorithm with eight-GPU implementation.

Parallel Mining of Neuronal Spike Streams on Graphics Processing Units 25

in GPU under-utilization. For example, only 1 episode of size of 3 is assigned for
a GPU to count, whereas at least 960 episodes (32 threads per MP × 30 MPs) are
needed to fully utilize the GPU.

Table 2 Number of candidate episodes counted by each GPU in the eight-GPU implementation at fre-
quency thresholds of 500 and 1300.

Threshold 500 Threshold 1300
Episode
size

#Episodes
(PreElim)

#Episodes
(Second Pass)

Episode
size

#Episodes
(PreElim)

#Episodes
(Second Pass)

1 8 7 1 8 6
2 358 266 2 259 145
3 6028 6023 3 1 1
4 2870 2879 4 N/A N/A

7.5 Performance Gain over CPU

To demonstrate the performance gain of our GPU approach, we developed a C++
implementation of Algorithm 1 on a quad-core CPU with four threads. Each thread
counts one-fourth of the total episodes and accesses each event in the input stream
only once to ensure the best cache performance. As illustrated in Algorithm 1, we
use a state machine to count each episode. At the beginning, each state machine is
initialized to a wait state corresponding to the first event in the episode. As the thread
processes each event in the stream, the algorithm looks through the list of episodes
waiting for that particular event and updates the state machines so that they are now
also waiting for the next event in the episodes. Furthermore, each state machine is
annotated with the time of the event so that intervals may be accounted for. This
complex state machine implementation is required to correctly account for intervals
between two subsequent events in a candidate episode. When the thread finds the last
event in an episode, it then increments that count for the corresponding episode and
resets the state machine to the initial state of waiting for the first event of the episode.

In order to have a fair comparison with the GPU implementation, we also imple-
mented the two-pass elimination algorithm on the CPU. Counting using the two-pass
algorithm allows a simplified and faster state machine to quickly eliminate possible
candidates before using the slower but more complete state machine described in the
preceding paragraph.

Compared with the performance of the CPU implementation, our GPU algo-
rithms exhibit a significant speedup, as shown in Figure 16. For the 2-1-33 dataset,
the speedup is approximately 15-fold for a support threshold of 500 when using a
single GPU. With the eight-GPU implementation, the speedup is about 35-fold. Note
that due to additional overhead involved in the multi-GPU solution, the speedup is
not eight times that of the single GPU case. Similar speedups are seen for the other
datasets at low support thresholds. For higher thresholds, the advantage of using mul-
tiple GPUs erods as the number of episode candidates becomes smaller and the GPUs

26 Yong Cao et al.

0 5000 10000 15000 20000 25000 30000 35000

Data Transfer (CPU->GPU)

Candidate Generation (CPU)

Counting (PreElim)

Culling (CPU)

Counting (Actual)

Storing Results to file

Total time taken

Time (ms)

1-GPU 8-GPU

(a) Frequency threshold = 500

0 1000 2000 3000 4000 5000 6000 7000

Data Transfer (CPU->GPU)

Candidate Generation (CPU)

Counting (PreElim)

Culling (CPU)

Counting (Actual)

Storing Results to file

Total time taken

Time (ms)

1-GPU 8-GPU

(b) Frequency threshold = 1300

Fig. 15 Comparison of time-taken by different subroutines in the frequent episode mining algorithm (2-
Pass) for the Dataset 2-1-33 at different frequency thresholds.

tend to get under-utilized. This is what causes the speedup of the multi-GPU im-
plementation to fall behind the single GPU implementation, as shown in all three
datasets.

8 Discussion

We have presented a powerful and non-trivial framework for conducting frequent
episode mining on GPUs and shown its capabilities for mining neuronal circuits in
spike train datasets. For the first time, neuroscientists can enjoy the benefits of data
mining algorithms without needing access to costly and specialized clusters of work-
stations to track evolving cultures to reveal the progression of neural development in
real-time.

Our future work is in four categories. First, our experiences with the neuroscience
application have opened up the interesting topic of mapping finite state machine

Parallel Mining of Neuronal Spike Streams on Graphics Processing Units 27

0
5

10
15
20
25
30
35
40
45

500 600 700 800 900 1000 1100 1200 1300

Speed-Up (1-GPU) Speed-Up (8-GPU)

(a) Dataset 2-1-33

0

5

10

15

20

25

30

700 800 900 1000 1100 1200 1300 1400 1500

Speed-Up (1-GPU) Speed-Up (8-GPU)

(b) Dataset 2-1-34

0

5

10

15

20

25

30

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

Speed-Up (1-GPU) Speed-Up (8-GPU)

(c) Dataset 2-1-35

Fig. 16 Speedup of GPU implementations (single and multiple GPUs) over the CPU implementation.

based algorithms onto the GPU. A general framework to map any finite state ma-
chine algorithm for counting will be extremely powerful not just for neuroscience but
for many other areas such as (massive) sequence analysis in bioinformatics and lin-
guistics. Second, the development of the hybrid algorithm highlights the importance
of developing new, additional, programming abstractions specifically geared toward
data mining on GPUs. Third, we found that the two-pass approach performs signifi-
cantly better than running the complex counting algorithm over the entire input. The
first pass generates an upper bound that helps reduce the input size for the complex
second pass, speeding up the entire process. We seek to develop better bounds that
incorporate more domain-specific information about neuronal firing rates and con-
nectivities. Finally, we wish to integrate more aspects of the application context into
our algorithmic pipeline, such as candidate generation, streaming analysis, and rapid
“fast-forward” and “slow-play” facilities for visualizing the development of neuronal
circuits.

References

1. Adee, S.: Mastering the Brain-Computer Interface. IEEE Spectrum (2008)
2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:

Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94,
pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1994). URL
http://portal.acm.org/citation.cfm?id=645920.672836

3. Bell, C., Shenoy, P., Chalodhorn, R., Rao, R.: Control of a humanoid robot by a noninvasive brain-
computer interface in humans. J. Neural Eng. Vol. 5, 214–220 (2008)

28 Yong Cao et al.

4. Cao, Y., Patnaik, D., Ponce, S., Archuleta, J., Butler, P., chun Feng, W., Ramakrishnan, N.: Towards
chip-on-chip neuroscience: Fast mining of neuronal spike streams using graphics hardware. In: CF
’10: Proceedings of the 7th ACM international conference on Computing frontiers, 978-1-4503-0044-
5, pp. 1–10. ACM, Bertinoro, Italy (2010)

5. Fang, W., Lau, K., Lu, M., Xiao, X., Lam, C., Yang, P., He, B., Luo, Q., Sander, P., Yang, K.: Parallel
data mining on graphics processors. Tech. Rep. HKUST-CS08-07, Hong Kong University of Science
and Technology (2008)

6. Govindaraju, N., Raghuvanshi, N., Manocha, D.: Fast and approximate stream mining of quantiles
and frequencies using graphics processors. In: Proc. SIGMOD’05, pp. 611–622 (2005)

7. Guha, S., Krishnan, S., Venkatasubramanian, S.: Data Visualization and Mining using the GPU. Tu-
torial at ACM SIGKDD’05 (2005)

8. Hingston, P.: Using finite state automata for sequence mining. Australian Computer Science Commu-
nications Vol. 24(1), 105–110 (2002)

9. Laxman, S., Sastry, P., Unnikrishnan, K.: A fast algorithm for finding frequent episodes in event
streams. In: Proc. KDD’07, pp. 410–419 (2007)

10. Li, L., Fu, W., Guo, F., Mowry, T., Faloutsos, C.: Cut-and-stitch: efficient parallel learning of linear
dynamical systems on SMPs. In: Proc. KDD’08 (2008)

11. Mannila, H., Toivonen, H., Verkamo, A.: Discovery of frequent episodes in event sequences. DMKD
Vol. 1(3), pages 259–289 (1997)

12. Mitchell, T., Shinkareva, S., Carlson, A., Chang, K., Malave, V., Mason, R., Just, M.: Predicting
Human Brain Activity Associated with the Meanings of Nouns. Science Vol. 320(1191) (2008)

13. Patnaik, D., Sastry, P., Unnikrishnan, K.: Inferring Neuronal Network Connectivity from Spike Data:
A Temporal Data Mining Approach. Scientific Programming 16(1), 49–77 (2008). DOI 10.3233/SPR-
2008-0242

14. Serruya, M., Hatsopoulos, N., Paninski, L., Fellows, M., Donoghue, J.: Brain-machine interface: In-
stant neural control of a movement signal. Nature Vol. 416, 141–142 (2002)

15. Wagenaar, D.A., Pine, J., Potter, S.M.: An extremely rich repertoire of bursting patterns during the
development of cortical cultures. BMC Neuroscience (2006)

