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Cyber physical systems (CPSs) are today ubiquitous in urban environments. Such systems now serve as the
backbone to numerous critical infrastructure applications, from smart grids to IoT installations. Scalable
and seamless operation of such CPSs requires sophisticated tools for monitoring the time series progres-
sion of the system, dynamically tracking relationships, and issuing alerts about anomalies to operators. We
present an online monitoring system (illiad) that models the state of the CPS as a function of its relation-
ships between constituent components, using a combination of model-based and data-driven strategies. In
addition to accurate inference for state estimation and anomaly tracking, illiad also exploits the underlying
network structure of the CPS (wired or wireless) for state estimation purposes. We demonstrate the appli-
cation of illiad to two diverse settings: a wireless sensor motes application and an IEEE 33-bus microgrid.

1. INTRODUCTION
It has been projected that by the year 2030, cities will grow by 590,000 square miles
and add an additional 1.47 billion people, so that 6 out of every 10 people will live in
a city. One of the most consequential changes with this global influx of citizens will be
the stress placed on cyber-physical systems across the urban landscape, from smart
grids to massively distributed IoT installations to support net zero energy objectives.
At the same time, as cities become seen as urban-scale cyber physical systems, a vast
amount of data about system management and operation is continuously being har-
vested and analyzed through sensor networks. Scalable and seamless operation of such
cyber-infrastructure requires sophisticated tools for monitoring the progression of the
system, dynamically tracking relationships, and issuing anomaly alerts to operators.

Leveraging our prior work [Momtazpour et al. 2015], we develop a system dynamics
approach (illiad) to invariant and anomaly detection in cyber-physical systems. Our
key contributions are:

— A state estimation and anomaly detection algorithm (KASE) that combines model-
based (Recursive Bayesian Filtering) and data-driven (Autoregression with Exoge-
nous Inputs and Exploratory Factor Analysis) approaches. The integration of model-
based and data-driven strategies leverages the selective superiorities of both into a
comprehensive system.

— An approach to incorporate the underlying network structure of the cyber-physical
system (wired or wireless) into the state estimation process. We demonstrate how this
idea significantly improves the computational complexity of inference and renders
the approach tractable to large urban settings.

— A visual dashboard application for real-time anomaly detection and alerting in
urban-scale cyber-physical systems. We demonstrate the application of illiad to two
diverse settings: a wireless sensor motes application and an IEEE 33-bus microgrid.
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(a) (b)
(c) Microgrid Example

Fig. 1: Urban microgrid examples and design and deployment scenarios. (a) Represents an AC
grid connected to main grid through a point of common coupling (PCC). (b) Represnts a Diesel
generator along with other Distributed Generation sources without the main grid.

2. BACKGROUND AND RELATED WORK
Availing energy from renewable sources to meet increased energy demands due to
increasing electrification in urban environments is a key challenge we are faced with
today as alluded to by [Zheng et al. 2014]. An integration of microgrids into the existing
power grid has been widely acknowledged as a potential solution. Resilient operation of
power and microgrid systems requires constant monitoring of data to extract or predict
anomalies, and to support rapid system recovery. Figure 1 represents typical urban
microgrids and deployment scenarios. The microgrid consists of several distributed
generation units (DGs) such as a photovoltaic (PV) array and diesel generator, as well
as energy storage systems and loads. These components are connected together using
the power lines, transformers, and feeders. Microgrids can operate in both islanded
and grid-tied modes. In the islanded mode the microgrid is as shown in Figure 1 (b).

Energy systems (e.g. PV, battery, load, diesel generator) are typically installed and
connected to the microgrid controller via TCP/IP with systems that feature Supervi-
sory Control and Data Acquisition (SCADA), exploiting open communication standards
such as OLE for Process Control (OPC) and Modbus RTU/TCP that is a master-slave
protocol for use with its programmable logic controllers (PLCs). Measurement data
and its collected features vary depending on the type of energy device and its commu-
nications protocol such as the format of XML. The measurement data contains active
and reactive output power values of each device, voltage and frequency values as mi-
crogrid data, and state of charge (SOC) for batteries for every second.

Microgrids, including those studied here, are typically based on traditional power
distribution system models, while also incorporating relatively modern urban com-
ponents such as electric vehicles (EVs) and energy storage (ES) devices along with
renewable power generation components such as wind turbines and PV cells [Chowd-
hury and Crossley 2009]. However, such new additions make the operation of the dis-
tribution system more complex [Tsikalakis and Hatziargyriou 2011]. One factor, for
example, would be the uncertain and intermittent power output of the renewable dis-
tributed generation components, specifically PV panels and wind turbines. Such inter-
mittent power output makes system state estimation a challenging task.

State estimation of the power system is typically accomplished by learning invari-
ant relationships between system components, and such invariants are then used in an
energy management system (EMS) to construct a real-time network model [Monticelli
2000]. In Cobelo et al.[2007] the authors proposed a method aimed at providing the
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distribution management system controller with real-time information from the mi-
crogrid to increase the penetration of the renewable distributed generation. Rana and
Li[2015] have proposed a Kalman filter based microgrid state estimation method using
an IoT network to acquire information about the distributed generation grid. Wang
et al.[2014] also proposed a linear filtering based state estimation method which
mainly focused on small signal models. Hu et al.[2011] developed a probabilistic model
to conduct real-time linear state estimation through belief propagation. Instead of fo-
cusing on a single microgrid, Korres et al.[2011] proposed a multi-microgrid state esti-
mator with limited real-time measurement and investigated the impact of distributed
generation in both grid-connected and islanded scenarios. However, most existing re-
search has focused on accuracy of estimation rather than anomaly detection using
invariant relationships between components. Even fewer approaches exist which suc-
cessfully combine model-based and data-driven approaches with the goal of anomaly
detection through state estimation. Anomaly detection in microgrids using sensor lo-
cation and connection information can be considered a spatio-temporal anomaly de-
tection problem and some relevant work has been carried out by [Chawla et al. 2012]
in the transportation domain. In [Zheng et al. 2015] the authors propose a spatio-
temporal anomaly detection system for detecting collective anomalies by leveraging
multi-domain datastreams.

3. PROBLEM FORMULATION
As described earlier, our work builds upon the preliminary framework described
in [Momtazpour et al. 2015], and we begin by introducing this approach in context.

We are given a set of n timeseries D = x1(t)..xn(t) in a single or across multiple
cyber-physical systems, each timeseries xi(t) is modeled as a vector. The values of the
vector for a time window tk...tk+w are represented as

X k:k+wi = [xi(tk), xi(tk+1), ..xi(tk+w)]T (1)

Each timeseries xi(t) is represented by a random variable Xi and is assumed to be
drawn from a distribution represented by Xi. Every CPS has many direct and latent
interactions amongst the components and having sufficient insight into these interac-
tions and relationships is crucial to effectively manage the system.

Definition 3.1. (Approximate Dependency): At time step tm, time series xj(t) ∈
D approximately depends on xi(t) ∈ D if and only if, there exists a function f : R → R
that for appropriately small ε > 0:

x̂j(tm) = f(X 1:m−1
j ,X 1:m

i ) (2)

and

|xj(tm)− x̂j(tm)| < ε (3)

This dependency is depicted by xj(t)
ε−→ xi(t)|tm

Definition 3.2. (System Invariants): Two timeseries xj(t) ∈ D and xi(t) ∈ D,
are system-invariant up to time T within range of ε if and only if at least one of the
following is satisfied:

∃f : R→ R and ∀ t | 0 ≤ t ≤ T : xj(t)
ε−→ xi(t)|0≤t≤T

or

∃f : R→ R and ∀ t | 0 ≤ t ≤ T : xi(t)
ε−→ xj(t)|0≤t≤T
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We denote an invariant time series by xi(t)
ε−⇀↽− xj(t)

Based on the nature of the system, dependencies between time series can be linear or
nonlinear and this is modeled by the function f . In complex cyber-physical systems,
when we have a large number of time series, it is appropriate to represent the
invariants in the form of a graph.

Definition 3.3. (Invariant Graph): Graph G = (V,E) with the set of vertices V =
{v1, ..., vn} and the set of edges E = {e1, ..., en} is called an invariant graph of a system
with observed timeseries D = {x1, ...xn}, where e = (vi, vj) ∈ E if and only if xi(t)

ε−⇀↽−
xj(t)

From Definition 3.3 we can surmise that vertex vi is equivalent to a timeseries xi(t).
System invariants and invariant graphs represent features and system-function un-
der normal conditions. In the presence of anomalies, when the function of the system
deviates from the norm, these dependencies might disappear. While two timeseries
xi(t) and xj(t) might be invariant under normal conditions, the invariant relationship
might disappear in the case of an anomaly.

Definition 3.4. Broken Invariants: We say that system invariant xi(t)
ε−⇀↽− xj(t)

is broken at time T = tm if and only if timeseries xi(t) and xj(t) satisfy the following
conditions:

∃f : R→ R
and

∀ t | 0 ≤ t < T =tm :(
xj(t)

ε−→ xi(t)|t<T ∧ |xj(tm)− f(X 1:m−1
j ,X 1:m

i )| ≥ ε

)
or(

xi(t)
ε−→ xj(t)|t<T ∧ |xi(tm)− f(X 1:m−1

i ,X 1:m
j )| ≥ ε

)

In a CPS the existence of certain unobserved factors has an effect on overall system
behavior. But modeling these factors and their effects on all the electro-mechanical
devices in a CPS is a non-trivial task. Characterizing these latent effects can aid in
state estimation.

Figure 2 shows the network topology of an example CPS with N components
X1, ..., XN . Here, the solid lines indicate direct relationships between sensors through
physical connections while the dashed lines indicate indirect relationships between
sensors. We see five direct and two indirect relationships depicted here. Figures 3
and 4 represent invariant graphs that can be inferred using current state-of-the-art
methods (ARX and ARX+ARXL; introduced in [Momtazpour et al. 2015]). ARX is a
classical autoregression method (with exogenous inputs) and thus captures only direct
relationships, as shown in figure 3. ARX+ARXL, as shown in figure 4 does learn in-
direct relationships but these relationships are linear and rather simplistic in nature.
Our proposed approach (KASE) aims to identify more complex hidden relationships
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Fig. 2: Original
System Topology

Fig. 3: ARX In-
variant Graph

Fig. 4: Original
Method (ARX +
ARXL) Invariant
Graph

Fig. 5: KASE
Method Invariant
Graph

through hidden factors labeled h1, ...hk and Kalman state estimates in figure 5 . These
support the modeling of the system at higher orders.

3.1. State Estimation with Kalman Filters
Anomaly detection in sensor networks can be addressed using a dynamic state estima-
tion technique [Nishiya et al. 1982] wherein at any time point twe wish to estimate the
state of each component in the system. As a function of these state estimates and cor-
responding actual state measurements, we can then infer whether the system is stable
or if there is an anomaly in one or more components in the system. One of the most ro-
bust and widely used methods for state estimation is the Kalman filter [Kalman 1960]
which is a special case of recursive Bayesian estimation wherein the data is considered
to obey the Gaussian distribution [Chen 2003]. In this paper, we consider the effects of
state estimation in CPS using the linear Kalman filter. We model the Kalman filter as
described by Welch and Bishop[2001]. It attempts to estimate the state x ∈ Rn at time
step k of a discrete-time controlled process with a measurement z ∈ Rn, The Kalman
filtering process assumes that the matrices A ,H ,Q ,R which represent the process
transition matrix, the measurement transition matrix, the process covariance matrix
and measurement covariance matrix respectively and the initial mean and covariance
of the data are known at the outset. In our work, we estimate A, Q and R using expec-
tation maximization [Borman 2004]. The matrix H is the identity matrix. The initial
state mean and covariance (µ0 and Σ0) are estimated from historical data.

3.2. Leveraging the Neighborhood Assumption
Section 3 outlines the basic problem framework and provides definitions about invari-
ants, and anomalies. Although the original (ARX + ARXL) method attempts to find
all direct and indirect dependencies in addition to learning complex latent variables,
we hypothesize that considering the network topology of the CPS to learn only a set
of direct relationships for each component yields equal or stronger state estimation
and anomaly detection capabilities. We term this approach SAIL for Structure Aware
Invariant Learning.

Let us first consider the case when the topology of the CPS is known, e.g., con-
sider the sample CPS depicted in figure 2. Here, the system consists of N components
X1, ..., XN . If we consider X1, it has two direct connections, one to X3 and the other to
X2 along with an indirect relationship with XN . Our hypothesis in the context of X1

claims that the state of X1(t) can be estimated simply using only the values X1:t−1
1 ,

X1:t
3 , X1:t

2 and the Kalman filter a posteriori state estimate k1(t). Hence set {X2, X3}
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forms the SAIL neighborhood of X1 denoted S1
n. In the context of wireless sensor net-

works that lack a connected network topological structure, we exploit the physical
locations of sensors to obtain a proximal set of nearest neighbors for each component
in the wireless network of CPS components.

The SAIL approach requires us to augment our previously stated definition 3.1 as
follows:

Definition 3.5. (Structure Aware Approximate Dependency): At time step tm,
time series xj(t) ∈ D with SAIL neighborhood Sjn approximately depends on xi(t) ∈ D
if and only if, xi(t) ∈ Sjn and there exists a function f : R → R that for appropriately
small ε > 0:

x̂j(tm) = f(X 1:m−1
j ,X 1:m

i ) (4)

and

|xj(tm)− x̂j(tm)| < ε (5)

This dependency is depicted by xj(t)
ε−→ xi(t)|tm

The aforementioned structure informed invariant learning methods help scale the
invariant learning procedure to large systems as they reduce the quadratic complexity
of the algorithm. This is because, although the complexity of the algorithm techni-
cally is still quadratic in the worst case, the complexity of the newly proposed KASE
(Kalman Autoregressive State Estimation with Latent Factors and Exogenous Inputs)
invariant learning algorithm is a function of the average cardinality of the SAIL neigh-
borhood for all the components. Since it is highly unlikely that all or even most of the
components of a CPS will be directly connected, the SAIL neighborhood of each com-
ponent will be relatively sparse hence achieving the scalability and speeding up the
algorithm relative to benchmarks that do not exploit the neighborhood assumption.

We now outline the proposed KASE approach and explain the algorithm in detail
in section 4. In figure 5 we observe different colored nodes and edges. If we consider
one node say X2(t) we see that the SAIL neighborhood of X2(t) denoted S2

n contains
{X1(t),X3(t)}. The blue colored incoming edges from X1(t) and X3(t) to X2(t) denote
the invariants calculated for state estimation of X2(t). The self-loop labelled k2(t) indi-
cates the Kalman filter state estimate for X2(t) at time t. The latent factors h1, ...hk are
the same as stated previously. Hence the KASE algorithm performs state estimation
as a function of the current Kalman filter state estimate, the current measurements
of proximal components as well as the system-wide relationships learned through the
latent factors. The system hence seamlessly combines both model-based (Kalman fil-
ters) as well as data-driven approaches (latent factor based autoregression) for state
estimation.

4. METHODS
In this section we describe the KASE algorithm for invariant learning and anomaly
detection. We also outline the working of the entire illiad application.

4.1. Factor Analysis
Let X1, ...Xn denote random variables and H1, ..,Hk denote k hidden factors, and as-
sume that the latent variables are generated using factor analysis with the assump-
tion that they can be expressed as linear combinations of the observed variables. Fac-
tor analysis attempts to model the variation of the data and hence models the latent
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sources that cause said variation [De Winter and Dodou 2016]. Factor analysis al-
though similar to PCA is more generalizable due to consistency of factor loadings for
different feature subsets [Suhr 2005]. Details of the exact factor analysis procedure we
have used can be obtained from [Momtazpour et al. 2015]. Other resources for factor
analysis are also available [Jöreskog 1967; Harman 1976].

4.2. KASE - Kalman Autoregressive State Estimation with Latent Factors and Exogenous
Inputs

If we were to once again consider the set D = {x1(t),x2(t),....xn(t)} then according to the
ARX model in [Jiang et al. 2006],the state estimate for a timeseries at time t is given
by

x̂j(t) =

u∑
p=1

apxj(t− p) +

v∑
p=0

bpxi(t− l − p) (6)

Here x̂j(t) represents the state estimate of the timeseries xj at time t and this is cal-
culated as a function of the previous values of timeseries xj and the values of the
exogenous timeseries xi. The parameters u, v, l represent the order of the model and
control the number of previous timesteps that affect the state estimate at the current
timestep. ap and bp represent weight parameters that control the effect of each of the
historical values on the current timestep. In our model, u = v and the values are esti-
mated using cross-validation. In our case we assume that l = 0 as there is no lag.

Incorporating the above assumptions, the corresponding equation for the Latent Fac-
tor ARX model (ARX + ARXL) as outlined in [Momtazpour et al. 2015] is

x̂j(t) =

u∑
p=1

apxj(t− p) +

u∑
p=0

bpxi(t− p) +

u∑
p=0

k∑
q=1

cpqhk(t− p) (7)

Here k indicates the number of latent factors and u indicates the size of the sliding
window we use (the number of previous values we consider). For our experiments we
have set u = 10.

We modify Eqn. 7 to incorporate the Kalman filter state estimates step as follows:

x̂j(t) =

u∑
p=1

apxj(t− p) +

u∑
p=0

bpxi(t− p) +

u∑
p=0

k∑
q=1

cpqhk(t− p) +

u∑
p=0

dpkji(t− p) (8)

Equation 8 incorporates the Kalman state estimates for timeseries xj , represented
by the symbol kji(t). The dp’s represent the corresponding weights of each historical
state estimate. The symbol kji(t) indicates the Kalman filter state estimate for xj(t)
calculated using the measurements of timeseries xj and xi at time t.

4.2.1. Learning Invariant Based State Estimates.
In the context of two timeseries xi and xj wherein xj is the output timeseries and xi is
the input timeseries, we calculate the state estimate of xj(t) as follows:

Let x̄k ∈ R2X1 indicate the Kalman prior state mean of the state at time k, then the
transition equations of the Kalman filter is given by

x̄k = Axk−1 + Buk + wk−1 (9)
Here A ∈ R2X2 is the transition matrix. xk−1 ∈ R2X1 indicates the a posteriori state
estimate at time k−1. We ignore the optional control input term Buk and make the as-
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sumption as stated previously that wk−1 ∈ R2X1 is a white-noise process that indicates
the error at time k − 1.

yk = zk −Hx̄k (10)

H ∈ R2X2 is the measurement matrix. This in our case is the identity matrix.
zk ∈ R2X1 are the actual measurements at time k. In the case of the two timeseries xi
(input) and xj (output)

zk =

[
xj(k)
xi(k)

]
yk ∈ R2X1 indicates the residual at time k.

xk = x̄k + Kyk (11)

K ∈ R2X2 represents the Kalman gain and is calculated as a function of the process
and measurement covariance matrices P and Q and the measurement matrix H1

xk ∈ R2X1 represents the posterior state estimate. In the context of the time series xi
and xj , where xj is the output timeseries whose state at time t is to be estimated,

xt =

[
kji(t)
kij(t)

]
Here kji(t) ∈ R indicates the aposteriori state estimate (mean) for timeseries xj using
the exogenous input xi for time t. If we now refer back to figure 5, and consider the
node X2(t) in blue, the self-loop labelled k2(t) ∈ RCX1 represents a vector of aposterior
state means where C = |S2

n|. Where the SAIL set S2
n of timeseries X2 = {X1, X3}.

k2(t) =

[
k21(t)
k23(t)

]
A, P ,Q are estimated (and periodically re-estimated) from historical data using the
expectation maximization algorithm [Borman 2004]. The initial state mean and co-
variance µ0 and Σ0 are estimated from the data.

As acknowledged by [Jiang et al. 2006; Ge et al. 2013; Chen et al. 2010, 2008; Sharma
et al. 2013], ARX only takes into account direct linear relationships. Hence we retain
the latent factor model to take into account the complex underlying relationships be-
tween the components in the system. We also consider the model-based Kalman filter-
ing approach owing to the advantages and improvemnt of system performance in fault
detection and health monitoring of hybrid-approaches (model-based + data-driven) dis-
cussed in [Tidriri et al. 2016].

Algorithm 1 represents the newly designed KASE algorithm that combines both
model-based and data-driven approaches in learning the invariant graph. The algo-
rithm defined in [Momtazpour et al. 2015] has been augmented to incorporate topolog-
ical structural assumptions (line 6). At each timestep t, the UpdateKalman function
(line 16) takes in the measurements of a pair of timeseries xi(t), xj(t) and updates the
model using equations 9 , 10 , 11. The posterior state estimate of the updated model
is then used to learn θKASEji . The F ∗

ji’s are calculated and superiority threshold (∆),

1The notation for equations 9,10 and 11 has been taken from [Labbe Jr 2014; Welch and Bishop 2001].
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ALGORITHM 1: KASE Invariant Search Algorithm
Input: xi, i ∈ {1, ..., n}: set of timeseries, ∆: ARX superiority threshold, τ : minimum acceptable

score, ts and te: start and end time of training dataset.
Output: G: Invariant Graph

1 SARX = {};
2 SARXL = {};
3 SKASE = {};
4 for i = 1 to n do
5 for j = 1 to n do
6 if

(
(i == j) or (xi /∈ Sj

n)
)

then
7 continue;
8 end
9 foreach ts ≤ t ≤ te do

10 Learn an ARX model, θARX
ji , using Eq. 6;

11 Calculate x̂ARX
j (t) using θARX

ji ;
12 Compute FARX

ji (t) ;
13 Learn an ARXL model, θARXL

ji , using Eq. 7;
14 Calculate x̂ARXL

j (t) using θARXL
ji ;

15 Compute FARXL
ji (t) ;

16 UpdateKalman(xi(t), xj(t) ) /*Add Measurements*/
17 Learn a KASE model, θKASE

ji , using Eq. 8;
18 Calculate x̂KASE

j (t) using θKASE
ji ;

19 Compute FKASE
ji (t) ;

20 end
21 if

(∑te
t=ts
FARX

ji (t) ≥ max(
∑te

t=ts
FARXL

ji and
∑te

t=ts
FKASE

ji )−∆
)

and

(mint(F
ARX
ji (t)) ≥ τ ) then

22 SARX = SARX ∪ {xi ⇀↽ xj};
23 else if

(∑te
t=ts
FARXL

ji ≥ (
∑te

t=ts
FKASE

ji −∆)
)

and (mint(F
ARXL
ji (t)) ≥ τ ) then

24 SARXL = SARXL ∪ {xi ⇀↽ xj};
25 else
26 /*Indicates that FKASE

ji has highest score*/
27 SKASE = SKASE ∪ {xi ⇀↽ xj};
28 end
29 end

minimum acceptable score (τ ) are enforced similar to [Momtazpour et al. 2015]. We
also adopt the same alerting and anomaly ranking and localization procedure with the
RMSE evaluation metric. In section 5, we provide a comparison of the anomaly detec-
tion ranking scores of both the original algorithm (ARX + ARXL) proposed in [Mom-
tazpour et al. 2015] and our newly proposed KASE algorithm.

4.3. illiad System Architecture
We outline the functioning of the illiad anomaly detection system in this section. Fig-
ure 6 depicts the process flow/ architecture diagram of the illiad system. The system
periodically re-trains the Kalman filter and the factor analysis model using historical
data while also continuously updating the state estimate of the Kalman filter using
new data instances. The system also has a front-end dashboard with the invariant
graph depicted on screen aiding the system maintainer to easily glean whether the
system has anomalous components. Figures 7 and 8 represent the dashboard of the
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Fig. 6: illiad System Architecture

Fig. 7: illiad Dash-
board - Sensormotes

Fig. 8: illiad Dashboard - IEEE 33 Bus
Microgrid
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wireless sensor motes temperature sensor network and the IEEE 33 bus microgrid
network described later in Section 5.1. The dashboard is interactive and allows for
the user to click on nodes in the network to view various historical data and metrics
about them. In case of an anomaly, an alert is issued (indicated by a red box under
the invariant graph) on the dashboard and the corresponding broken invariants are
highlighted in red as shown in the figures. It is apparent from the broken invariants
in figure 7 that Sensor 4 has an anomaly. The time series graphs at the bottom of the
dashboard represent the residuals of each of the invariants of the anomalous sensor
(sensor 4 in figure 7 and Bus 30 in figure 8). In addition to residuals, the actual temper-
ature readings and the voltage magnitudes , phase angles and PV , Wind Generation
statistics are also included in their respective dashboards.The illiad system can thus
be used for system health monitoring and fault detection both for wired and wireless
cyber-physical systems.

5. EXPERIMENTAL RESULTS
We present the application of our methodology to two diverse datasets in urban com-
puting. Through these experiments we seek to showcase that our system is applicable
to both wireless and wired sensor networks in real-world settings. We will showcase
how structural and proximal relationships are inferred automatically in the case of
wireless sensor networks. Most importantly, we wish to demonstrate how our system
leads to an improvement in the quality of anomaly and invariant detection over ex-
isting benchmarks. To this end, we conduct experiments to showcase the strength of
invariant graphs learned by illiad as well as its ability to accurately identify anoma-
lies even with a relatively sparse invariant graph. We also discuss the benefits of the
SAIL invariant learning approach over the combinatorial invariant learning approach
used in prior work by analyzing the runtime behavior of the two systems.

We first describe the application of illiad to a wireless sensor network and subse-
quently to a microgrid system.

5.1. Sensor Motes
Dataset Description: The sensor motes dataset contains measurements from wire-
less sensors at Intel Berkeley Research lab2. There are a total of 54 sensors located at
a lab measuring temperature, humidity, light, and voltage between February 28th and
April 5th, 2004. Each sensor was able to record different variables every 31 seconds.
Figure 9 shows the location of each sensor in different parts of the lab. We focus on
temperature recordings between February 28th and March 10th for the purpose of our
study.
Data Processing: We cleanse the data by eliminating sensors with a large number
of missing entries. The missing temperature readings in the remaining set of sen-
sors were addressed using linear interpolation [Meijering 2002]. The dataset was then
down-sampled to 10 minute intervals with the mean as the sampling rule. Figure 10
depicts a representation of all the filtered set of sensors used in our analysis, clustered
according to their temperature readings. Figure 11 shows the temperature values of a
group of sensors that are part of the same cluster. We can see that all the sensors in
the figure showcase similar patterns of temperature variation.
Results and Discussion: In figure 12 we plot the average normalized relationship
strength (1 − avg prediction error) per temperature sensor. The relationship strength
is indicative of how well the invariants that a sensor is involved in are able to estimate
the current state of the sensor. We observe that the relationship strengths of sensors
obtained using KASE is higher than that obtained using the original (ARX + ARXL)

2http://db.csail.mit.edu/labdata/labdata.html
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Fig. 9: Lab Layout Sensor Motes
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Fig. 10: Clustering of Sensors Based on
Original Temperature Readings. A fair de-
gree of spatial correlation can be observed.
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Fig. 11: Temperature Trends of Sensors in the top right yellow cluster in figure 10

method indicating that KASE is able to infer a higher number of invariant relation-
ships that are stronger. This theory is further corroborated by figure 13 which depicts
the average residuals per temperature sensor; in this case as well, we observe that
KASE is able to generalize better on the test set and produce more accurate tempera-
ture state estimates. The network structure of the wireless sensor network is derived
using the SAIL method (using sensor locations) described in section 3 and is shown in
figure 14. The invariant graph learned using this network from the KASE algorithm
is depicted in figure 15. We observe that the invariant graph is identical to the original
network structure shown in figure 14. Figure 16 indicates a similar invariant graph
obtained by executing the original (ARX + ARXL) algorithm with the SAIL neighbor-
hood constraint on the same temperature sensormotes dataset. We observe that the
number of edges learned in the invariant graph is lower than in the case of KASE. The
missing edges are depicted in red in figure 16.
Anomaly Detection: Apart from the invariant discovery and state estimation accu-
racy, we also conducted experiments to test the anomaly detection capabilities of the
KASE algorithm in comparison to the original (ARX + ARXL) algorithm. The exper-
iment was carried out by first injecting anomalies into temperature sensor number
4 between 11 AM and 23:59 pm on 03/09/2004 and then running the two algorithms
(original ARX + ARXL and the KASE algorithm) to understand the behavior of the two
systems when faced with an anomaly. The anomalous snippet of the time series of sen-
sor 4 and the original timeseries have been shown in figure 17. The anomalies were
generated by adding Gaussian noise with 0 mean and 2.0 standard deviation to the
sensor 4 temperature values at certain pre-determined timepoints between 11 AM and
23:59 PM on 03/09/2004. These anomalies have been indicated in red in figure 17. We
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Fig. 13: Average Residual Per Temperature Sensor.
use the anomaly ranking algorithm used in [Momtazpour et al. 2015] to quantify and
compare the anomaly detection quality of both methods. The results of the anomaly
detection are indicated in Table I. Here we observe that although a significant number
of invariants concerning the anomalous sensor (sensor 4) are broken, there are almost
an equivalent number of invariants still existing in the system indicating that these
invariants do not register the anomaly. The KASE algorithm however recognizes the
anomaly by breaking all the existing invariants (in this case sensor 4 initially has 2
invariants which are both broken) and hence obtaining a higher anomaly score and
also providing for a more interpretable detection mechanism.
Discussion: State estimation in the current illiad system could suffer if the sensor
distribution is significantly skewed spatially. Since we consider the spatially closest
neighbors to a particular sensor as candidates for invariant learning, a significant
skew in that distribution could make estimation challenging due to sparse data in
some locations. This in turn could lead to fewer invariants inferred and thus dimin-
ished capacity for anomaly detection. The use of Gaussian processes for dynamic sen-
sor placement [Ramakrishnan et al. 2005; Krause et al. 2008] can aid in judicious
placement of sensors. A second issue in generalization has to do with potential mobil-
ity of sensors in practical settings (in which case, some violations of invariants could be
normal). In IoT settings, we need to inherently model sensor mobility into the analytics
engine.

Table I: Anomaly Detection Score Sensormotes

Component Method Name Remaining Links Broken Links Ranking Score
Sensor 4 Original (ARX + ARXL) 14 15 0.517
Sensor 4 KASE 0 2 1.0

5.2. Electric Power Microgrid
Dataset Description: This simulated dataset is based on the (real) IEEE 33-bus stan-
dard distribution power system, a commonly used example distribution network. It is
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Fig. 14: Original Nearest-Neighbor
Graph (based on sensor location infor-
mation.)
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Snapshot.

composed of 33 electric buses or nodes. Bus 1 is a transformer connecting the distri-
bution level system and bulk transmission power system. It is the feeder to the whole
system, through which all the electric power flows into the network. It serves as the
regular energy source. The other 32 buses are all load buses initially, which means
that they only consume energy. We model all energy consumers and not the energy
source in Bus 1 during our experiments as the voltage and power of the transformer is
assumed constant throughout the dataset generation process. In order to imitate a typ-
ical mircrogrid, we have integrated multiple non-traditional elements into the system,
including two types of renewable distributed energy sources: PV and wind turbines,
electric vehicles, and an energy storage device.
Data Processing: The hourly operating conditions of this distribution system are sim-
ulated for a year with a 1-hour sampling rate, which is 8760 cases in total, using the
MatPower package [Zimmerman and Gan 1997]. We conducted 8760 power flow calcu-
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(a) IEEE 33-bus system microgrid.
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(b) SAIL Network Representation- IEEE 33 Bus
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(c) KASE Algorithm Broken Invariants Representation

Fig. 18: Original Network IEEE 33 Bus with Invariants and Anomalies
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lations based on hourly scales of the regular and irregular load and the hourly outputs
of the renewable distributed generation. The load consumption, solar radiation and
wind intensity values required as input for data generation were all considered for the
city of Richmond, Virginia USA, to ensure consistency between the electric load, and
the energy produced using distributed generation. The 8760-hour load data has been
taken from a dataset containing commercial and residential hourly load profiles for all
TMY3 locations in the United States3. For different load buses, we use 5% uniformly
distributed deviation to generate different load curves that follow the same general

3https://en.openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
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pattern. The load at Bus 33 has a solar panel attached to it. The solar radiation data
used to generate the synthetic PV output is available from the National Solar Ra-
diation Data Base4. One wind turbine is attached to Bus 15, and the power output
of a wind farm located close to Richmond the data for which was obtained from the
National Renewable Energy Laboratory Wind Prospector Data Set5 was used as a ref-
erence for the simulation. We have also attached an EV charging station to Bus 10. A
one year charging load for this station was obtained from Idaho National Laboratory
EV Project Quarterly and Annual Report Data6. An energy storage battery is attached
to Bus 2. For simplicity, we adopt a charging/discharging strategy that assumes that
the battery is charged during the load valley from 00:00 am to 8:00 am and that it
is discharged from 9:00 am to 11:00 pm. The physical connections among the various
components of the microgrid system have been specified in Figure 18 (a). It must be
noted that the energy storage device depicted at Bus 2 hasn’t been modeled as an ex-
plicit separate component; instead the load at Bus 2 has been modified appropriately
to depict behavior of having an energy storage device attached to it. Hence we do not
model the battery as a separate component in our experiments.
Results and Discussion: Figure 18 (a) represents the circuit diagram of the IEEE 33
Bus network used in our experiments. We use the network structure depicted in the
figure (excluding the dashed lines that depict open switches) to learn the SAIL neigh-
borhoods of each of the 35 components. The Wind turbine, PV Cell and the Electric
Vehicle Load have been renamed Bus 35, Bus 36 and Bus 37 respectively. The SAIL
neighborhood learned by the KASE algorithm has been depicted in figure 18 (b) and
the broken links due to anomalies have been depicted in figure 18 (c). We see that the
invariants learned by the KASE algorithm correspond to the original circuit diagram.
The KASE has three sub-components , (ARX , ARXL , Kalman State Estimation).
These three algorithms each try to learn relationships between each pair of invari-
ants. From Algorithm 1 (lines 21 to 29), it is clear that the invariant learning process
attempts to select the strongest relationship between a pair of components learned by
ARX, ARXL and Kalman state estimation. Hence we can conclude that the algorithm
that contributes the most number of invariants to the graph has the property of learn-
ing stronger relationships between components. Table II depicts the number of invari-
ants learned as a function of Maximum Acceptable Error (MAE). The MAE is the max-
imum prediction error (per invariant) below which invariant-relationships learned by
any of the aforementioned procedures qualify for selection (this can also be considered
to be 1 - τ where τ indicates the minimum acceptable invariant-relationship strength)
during the invariant learning process. The original SAIL column represents the (ARX
+ ARXL) original algorithm run using the SAIL neighborhood assumption. The KASE
column represents algorithm 1 and KASE ARX, KASE ARXL, KASE KSE represent
the number of invariants learned by each of ARX, ARXL and Kalman state estima-
tion sub-components of KASE, respectively.We observe that for any particular value of
Maximum Acceptable Error, KASE learns a greater subset of the true set of invariants
(the IEEE 33 Bus network has a total of 68 invariants) than the Original SAIL algo-
rithm. Even amongst the KASE sub-components, we can see that a majority of edges
are contributed by the KSE procedure indicating that the Kalman filtering procedure
plays a major role leading to the KASE algorithm learning a more diverse set of edges
and stronger invariant relationships as compared to the Original (ARX + ARXL) algo-
rithm. We provide quantitative proof of our claim that the KASE algorithm is indeed a
better state-estimator by recording the average values for residual, RMSE (root mean

4http://rredc.nrel.gov/solar/old data/nsrdb/1991-2005/tmy3/by state and city.html
5https://mapsbeta.nrel.gov/wind-prospector/?visible=wind 3tier site metadata
6https://avt.inl.gov/project-type/downloads
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Table II: Number of Invariants Learned as a function of MAE.

Max. Acceptable Error (MAE) Original SAIL KASE KASE ARX KASE ARXL KASE KSE
0.0001 0 0 0 0 0
0.001 11 12 0 3 9
0.002 20 21 0 6 15
0.003 22 27 0 6 21
0.004 34 38 0 8 30
0.005 46 48 0 15 33
0.006 66 67 0 17 50

0.0851 68 68 0 18 50

squared error), RSE (relative squared error), RAE (relative absolute error) on the test
set in Table III and figures 19,20,21. We find that the KASE algorithm achieves a
significant percentage improvement over the Original (ARX + ARXL) algorithm in all
cases. We must note that we have left out the componenents (Bus20,Bus30,Bus7) in
which anomalies were injected in the test set as they will skew the results with high
error values 7. Since this table specifically has been included to showcase the state-
estimation capability of the KASE algorithm, we feel excluding the anomalous nodes
will have no effect as we have already demonstrated the anomaly detection capabilities
in Table IV.
Anomaly Detection: We introduce anomalies in the data to simulate a load surge
at certain time steps by decreasing the voltage at three different buses. We decrease
the voltage magnitude at Bus 7 between time steps 7500 and 7565. We also decrease
the voltage at Bus 20 from time step 8500 to 8550 and at Bus 30 from time step 8500
to 8545 and showcase the effect of these anomalies on the anomaly detection mecha-
nism. These anomalies test the ability of the system not only to detect and report the
anomalies, but also the localization capability of the system in the presence of a single
as well as multiple anomalous components. The voltages of the three buses around
the time steps of their respective anomalies have been depicted in figures 22, 23,24.
In each figure the anomalous region has been bound by vertical red lines. Since the
invariant relationships learned are stronger, the anomaly detection procedure is also
able to perform in a more robust manner when it encounters an anomaly. This can
be seen in figure 18 (c) where all the invariants of Buses 7, 20, and 30 are broken in
response to the injected anomalies. We also show that the KASE algorithm is better at
ranking anomalies; on average a higher score is learned using the ranking procedure
from [Momtazpour et al. 2015]. Table IV shows that for each of the three buses, all
invariants involving the anomalous bus are broken for the KASE algorithm yielding
a higher anomaly score relative to the Original (ARX + ARXL) algorithm, further en-
forcing our belief that the KASE algorithm proposed in this paper learns stronger and
more robust invariants most or all of which are violated in case an anomaly occurs in
the system.

Finally, we depict the advantage of the SAIL methods towards increasing the scal-
ability of the invariant learning algorithms discussed in this paper thereby enabling
the algorithms to be run with larger datasets. In order to conduct this experiment we
generated a random matrix X ∈ RmXn where we varied n between 10−100. Here n rep-
resents the number of unique timeseries (or unique components in the CPS). We then
ran both the Original and the Original method with the SAIL assumption. We sim-
ulated the SAIL neighborhood by assuming that the underlying network of the CPS

7if there is an anomaly, the system under / overestimates the state significantly, which is what is indicative
of the anomaly
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Table III: IEEE 33 Bus Avg. Residual, Avg. Errors and percentage Improvement of KASE over
Original

Name Original KASE % Improvement
RMSE 0.004153 0.003964 4.5639
RSE 0.148742 0.134409 9.6363
RAE 0.365744 0.347662 4.944

Residual 0.002909 0.0027889 4.14

Table IV: Ranking and Anomaly Localization

Component Method Remaining Links Broken Links Score
Bus7 Original(ARX+ARXL) 6 14 0.7

KASE 0 2 1.0
Bus20 Original(ARX+ARXL) 11 21 0.66

KASE 0 2 1.0
Bus30 Original(ARX+ARXL) 4 13 0.76

KASE 0 2 1.0

had a 0.3 graph density (each component is connected to 30% of the other components
in the network) which is much denser than either of our examples depicted in this
paper and is much denser than most connected CPSs. Figure 25 shows the significant
advantage in terms of running time of incorporating the network information in the in-
variant learning. The figure clearly shows that the Original (ARX + ARXL) algorithm
with the SAIL assumption scales much better than its non SAIL counterpart.
Discussion: Although we have taken great care to model our microgrid design using
actual load profiles, and real solar and wind intensity data to simulate the generation
of the PV and wind turbines, the lack of open datasets for microgrids is a serious bottle-
neck in this area of research. Similarly, our injection of anomalies can be generalized
into a greater taxonomy of faults, e.g.,component failure, cyber-attacks, and changing
environmental situations. We aim to build upon the work here to develop a broader
framework for microgrid analytics.

5.3. System Function - Wireless vs. Wired Networks
It is instructive to compare and contrast our wired and wireless network studies. While
we have shown that our method works in both settings, wireless networks exhibit
broader profiles of fault-tolerance not witnessed in wired networks (e.g., a sensor mal-
function in a wireless network might not affect the overall system dynamics as much
as a component failure in a microgrid might, e.g., potentially leading to cascading fail-
ures). The illiad system has a built-in rule to raise an alert when a a threshold number
of samples from some component of the CPS have failed to register but more elaborate
fault models can be explored within our framework.

5.4. System Characteristics and Minimum Requirements
The proposed system has been shown to work with both wireless and wired sensor
networks and has been tuned to work with power systems like microgrids as well as
sensors that measure physical indicators such as temperature. Further, the system is
able to perform with either a static dataset or streaming data, for both wired and wire-
less sensor networks. The minimum requirement for the system is either an absolute
physical network diagram of the sensor network or a logical connectivity diagram so
that the invariant learning can leverage this prior information as domain knowledge
and further contribute to interpretability.
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6. CONCLUSIONS AND FUTURE WORK
We have presented a system for anomaly detection and state estimation for wireless
and wired sensor networks. We have tested our models on multiple datasets (both
real-world and synthetic) and demonstrated the improvement in performance in com-
parison to the baseline method. Our application successfully combines model based
(Kalman filter) and data-driven (auto-regression and latent factor based methods) ap-
proaches to learn a better state representation of the system under surveillance. This
higher accuracy in state estimation is achieved through learning stronger relation-
ships between various components in the networks while also being sensitive to poten-
tial violations in these relationships resulting in anomalies. The sparse network struc-
ture of invariant relationships learnt through the network-structure aware invariant
learning procedures makes for a scalable system wherein the state of the system is
easily interpretable by human experts tasked with overseeing system maintenance.
The real-time dashboard and the alerting system aid further in this regard. The field
of invariant discovery is vast as there are many varieties of latent, direct, indirect, sim-
ple and complex relationships amongst components in cyber-physical systems. Power
systems are rife with non-linearities, like voltage phase-angles. Incorporating these
components into the invariant learning is a logical next step to improve the state es-
timation capabilities of the system. Further, each component in a power system inter-
acts with other components in compliance with certain well known laws of physics and
electricity; thus, augmenting the anomaly detection procedure to be cognizant of these
relationships would be a useful direction of future work.
7. ACKNOWLEDGEMENT
This research has been supported in part by US National Science Foundation grant
DGE-1545362 and the Institute for Critical Technology and Applied Science, Virginia
Tech. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

REFERENCES

Sean Borman. 2004. The expectation maximization algorithm: a short tutorial. Un-
published paper. [Online]. Available: http://bit.ly/2hAed7x (2004).

Sanjay Chawla, Yu Zheng, and Jiafeng Hu. 2012. Inferring the root cause in road
traffic anomalies. In ICDM (2012).

Haifeng Chen, Haibin Cheng, Guofei Jiang, and Kenji Yoshihira. 2008. Exploiting
local and global invariants for the management of large scale information systems.
In ICDM (2008).

Haifeng Chen, Guofei Jiang, Kenji Yoshihira, and Akhilesh Saxena. 2010. Invariants
based failure diagnosis in distributed computing systems. In IEEE Symposium on
Reliable Distributed Systems.

Zhe Chen. 2003. Bayesian filtering: From Kalman filters to particle filters, and beyond.
Statistics 182, 1 (2003).

S Chowdhury and P Crossley. 2009. Microgrids and active distribution networks.
Inigo Cobelo, Ahmed Shafiu, Nick Jenkins, and Goran Strbac. 2007. State estimation

of networks with distributed generation. European Transactions on Electrical Power
17, 1 (2007).

Joost De Winter and Dimitra Dodou. 2016. Common factor analysis versus principal
component analysis: a comparison of loadings by means of simulations. Communi-
cations in Statistics-Simulation and Computation 10 (2016).

Yong Ge, Guofei Jiang, and Yuan Ge. 2013. Efficient invariant search for distributed
information systems. In ICDM (2013).

Harry H. Harman. 1976. Modern Factor Analysis (3 ed.).

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:20 Muralidhar et al.

Ying Hu, Anthony Kuh, Aleksandar Kavcic, and Dora Nakafuji. 2011. Real-time state
estimation on micro-grids. In IEEE IJCNN (2011).

Guofei Jiang, Haifeng Chen, and Kenji Yoshihira. 2006. Discovering likely invari-
ants of distributed transaction systems for autonomic system management. In ICAC
(2006).
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