Online Denoising of Discrete Noisy Data

Pejman Khadivi

Ravi Tandon

Naren Ramakrishnan

Discovery Analytics Center and Department of Computer Science
Virginia Tech, Blacksburg, Virginia 24060
E-mail: {pejman, tandonr, naren}@cs.vt.edu

Abstract—Real-time data-driven systems often utilize discrete
valued time series data and their functionality is highly dependent
on the accuracy of such data. In order to improve the perfor-
mance of these systems, an important pre-processing step is the
denoising of data before performing any action (e.g. forecasting
or control activities). Existing algorithms have primarily focused
on the offline denoising problem, which requires the entire data
to be collected before the denoising process. In this paper, the
problem of online discrete denoising is considered. The online
denoising problem is motivated by real-time applications, where
the data must be utilizable soon after it is collected. Three online
denoising algorithms are proposed which can strike a tradeoff
between delay and accuracy of denoising. It is also shown that
the proposed online algorithms asymptotically converge to a class
of optimal offline block denoisers.

Index Terms—Online Denoising, Discrete Denoising

I. INTRODUCTION

With emerging data-driven applications, such as data-driven
system design, control systems, and data mining, noise re-
moval from data sources is becoming increasingly important
[11, [2], [3]. In such applications, we typically encounter
data in the form of discrete valued time series, which could
either be generated automatically at the output of sensors, or
reported manually (such as in collection of disease counts
reported by health care personnel [1]). However, such data
is often noisy in nature, where the noise could be an artifact
of incorrect measurements, faulty sensors, or imperfect data
collection mechanisms. In time-sensitive applications, (such
as forecasting or control activities), immediate usability of
such noisy data is of critical importance. This leads to the
problem of online denoising, in which data must be denoised
immediately after being collected.

Prior work in denoising literature (such as [4], [S], [6], [7])
has primarily focused on the problem of offline denoising,
which assumes the availability of the entire data. Weissman
et al. in [4] proposed the discrete universal denoiser (DUDE)
algorithm for offline denoising of x™ from its noisy version
z", with the assumption of an i.i.d noise generating mechanism
(modeled through a noisy memoryless channel p(z|z)). DUDE
assumes the statistical knowledge of the noisy mechanism,
i.e., p(z|z), but makes no assumptions on the distribution
of the underlying data ™. It is shown in [4], that this
algorithm converges asymptotically to the optimum Bayes
offline denoiser.

Several other offline denoising algorithms have been subse-
quently developed that are inspired by DUDE, such as [5],
[7], and [8]. In [5], original DUDE algorithm is extended

for denoising of grayscale images. To this end, an extension
for the case of large alphabets is presented. [8] proposes
another version of this algorithm named as S-DUDE, which
attempts to address the non-stationarity of data. To handle
correlation in the noise generating mechanism, an extension
for the case of noisy channels with memory is presented in [9]
and [10]. Furthermore, [11] addresses the issue of knowledge
uncertainty in the statistics of the noise generating mechanism.
While the above extensions are indeed valuable, they are
primarily targeted at making the denoising mechanisms more
robust and do not address the timeliness aspect of denoising,
which is of importance in many applications, when data must
be denoised on the fly.

In this paper, we focus on online discrete denoising problem
to address the issue of data correction in time-sensitive appli-
cations. For this purpose, we precisely formulate the online
denoising problem and propose three algorithms for online
universal denoising. These algorithms can strike a tradeoff
between time-sensitivity and denoising accuracy.
® Repetable Online Denoising (ROD) algorithm, which upon
the collection of a new data point, denoises the entire past
and current data points. This algorithm sacrifices delay for
accuracy and is suitable for scenarios in which the past data
could also be useful.

e One-time Online Denoising (OOD) algorithm, which only
denoises the currently observed data point. This algorithm
sacrifices accuracy for delay and is suitable for time-sensitive
applications, where the data must be used immediately for
real-time forecasting or real-time control commands.

e Hybrid Online Denoising (HOD) algorithm, which combines
the timeliness of OOD with the accuracy of ROD. In this
algorithm, denoising starts by initially applying the ROD
algorithm. After a specific period of time, when data statistics
become sufficiently reliable, denoising is substituted with
OOD to speed up the denoising process.

The proposed algorithms belong to the class of block
denoisers and are applicable for denoising the data streams
when characteristics of the noise generation mechanism are
known and the data points are from a finite alphabet. Uni-
versal denoising of an online sequence of symbols from a
finite alphabet, also known as universal filtering, has been
addressed before in [12]. In [12], authors study the association
between the filtering problem and the problem of prediction
of individual sequences and provide a general formulation
for the construction of filters. They also show that how their
general universal filtering solution may result in an online

version of DUDE. However, the filtering solution that has
been provided in [12] does not address the issue of tradeoff
between time-sensitivity and denoising accuracy which is the
focus of this paper. In this paper, we construct a universal
online denoiser based on DUDE that supports unbalanced
contexts. We provide three algorithms to address the tradeoff
between time-sensitivity and denoising accuracy and prove
that the proposed algorithms asymptotically converge to the
optimum block denoiser. We also present numerical results
which support the theoretical aspects of the paper.

II. PROBLEM FORMULATION

We consider an arbitrary discrete-valued n length sequence
z™ = (x1,...,%,), which is sequentially observed through
a noisy mechanism. In particular, at time ¢, a noisy version
of xz;, which is denoted by z; is observed, where x;,2; €
A = {oq, -+ ,apn}. The noise generating mechanism is
assumed to be i.i.d. over time and described through the
transition matrix ITps s, where II(a, b) is the probability of
observing b if a is the underlying true data. The " column
of II is illustrated by m;. We denote by z! = (21,...,2)
(resp., ' = (x1,...,7;)) as the noisy sub-sequence (resp.,
underlying data sub-sequence) available up and until time £.
To measure denoising accuracy, we define a loss function
through the matrix, Az s, where A(a,d) is the loss incurred
by estimating a by b. The i column of A is illustrated by
;. Also, the maximum possible loss is defined as A, =
max, p Aa, b). The goal of online denoising is to sequentially
produce a denoised version 2 using 2! for each time t.

Definition 1 Online discrete denoising is the process of repro-
ducing a new sequence of symbols, &%, at each time t, based
on a received noisy sequence, z', such that:

1) The total loss in &t is less than the total loss in 2%, i.e.,

Y A d) <Y Awnz) ()

2) Reproduced symbol, i, is generated with an acceptable
amount of delay, i.e., 6 << n, after receiving z;, where
n is the length of the entire sequence. Note that under
no delay constraint, this reduces to offline denoising.

We first review the concept of offline denoising and describe
DUDE as a universal block denoiser [4]. Let us assume
that we have received the entire noisy sequence z"™ and we
want to denoise the symbol at time ¢, i.e. z;. The optimum
Bayes denoiser is the one that minimizes the expected loss
of estimating x;. In other words, considering the posterior
distribution of the entire noiseless data, ™, we have

-opt (.m _ : A _ n
X (2™ [t] arg;rgic%;/\(a,x)Pr(Xt alz"), (2

where the summation is the expected loss of denoising z; to Z,
knowing the posterior distribution of x4, i.e., Pr(X; = afz™).
In vector notation, (2) can be shown as follows

XPt (2") [t] = arg géiﬂ /\ngtw = arg géiﬂ MPx, .. (3

where Py, |.n = [Pr(X; = a1]z") ... Pr(X; = anlz™)]".
In [4], it has been shown that this optimum denoiser can
also be formulated as follows:

Xt (") [t] = in [Py, o]’
(2") [t] = arg min [Py, o]

O ' or, @
where, P, o« = [Pr(Z; = oy, 2"\ = 2"\ ... Pr(Z, =
anr, 2\ = 2"\H]Tand © is a pair-wise vector multiplica-
tion for vectors u and v defined as follows:

(u e Vv)[i] = uv;. (5)

Based on the formulation in (4), the DUDE algorithm [4]
develops an empirical estimation procedure for P, ,n\:. In
particular, it considers a window of size 2k + 1, symmetri-
cally wrapped around time ¢, i.e. (2¢—g, -, 2t+%). Then, the
algorithm takes a pass through the whole sequence and counts
all the occurrences of z;_p, -+, 2¢—1, 8, 2¢41, "+ , 2tk for all
the possible values of 5. This counting process results in an
empirical distribution of symbols that are located at the center
of the window. The resulting empirical distribution, which
is shown to be an approximation of Py, _n\:, is then used
for denoising of z;. In the next section, we propose online
universal denoising algorithms for the case of known channel
and discrete finite alphabets. We will prove later that the online
algorithms converge to the optimum denoiser.

ITII. ONLINE UNIVERSAL DENOISER

In this section we introduce the online universal denoiser.
We provide the general denoising rule and then discuss various
versions of the algorithm that may be considered as the online
version of DUDE [4]. The optimum Bayes denoiser, defined
by (4), can be appropriately modified for the online problem
such that each new noisy symbol, is corrected with a small
appropriate delay. Let us assume that we can tolerate the delay
of § symbols and we have received symbols up to time ¢ + §.
Then, the online version of (4) can be written as follows

XoPt (219) [t] = arg min [Py, o] T N om,] (6)
n ,

Based on (6), with each new received symbol, a new
symbol, which is § steps back of the latest received one,
can be optimally denoised. However, it should be noted that
with any new received symbol, we have more information
about the whole sequence, which in turn, may improve the
accuracy of the denoising process. Due to the importance of
delay in online denoising, it is desirable to start denoising
of a newly received symbol as soon as possible. Therefore,
instead of the symmetric double-sided context of [4], we
use unbalanced context windows to estimate the conditional
distribution P, _+s). Hence, we define the following vector:
CEIT bE) [Bl=[{i:k+1<i<tzt ="} ()
with the assumption that § < k. In fact, C(z(*+%) b*, ¢%)[f]
is the number of times that we have observed (3, wrapped
in the context of (b* - ¢?) in sequence z(**%). Following the
terminology of [4], b” is the left context, ¢? is the right context,
and (b* - %) is the double-sided context. Obviously, when § <

k, the double-sided context is unbalanced and when ¢ = 0, the
vector C is defined only based on the left-context. Using (7),
online denoising of symbol at time ¢ is performed as follows

Xk"s(zt+5)[t] = arg gg;ll CT(ZH‘S, zf:i, zfif)l_fl Az © 72,

®)
Thus, the core aspect of the algorithm is related to counting
the number of times that an unbalanced context appears inside
the received sequence up and until time ¢ 4+ §. However, as
t grows, and more data is collected, it is a time consuming
process to start counting the contexts from the beginning of
2!+9 . For real-time denoising applications, a more appropriate
implementation is to keep the counts up to time ¢ + J in
memory, and update the counts with a newly received symbol
(we denote this memory by C and the counts by C). It should
be noted that with an alphabet of size M and a double-
sided context of size k + d, we need to save M* 9 vectors,
each of size M. In other words, the total amount of memory
which is required to keep the current counts in the memory
is O (M]”5“). Therefore, there is a trade-off between the
time and memory that depends on the values of M, k, and
0. Depending on the time-sensitivity of the desired denoising
process, we next present three online denoising algorithms.

A. One-time Online Denoiser

In time-sensitive applications, when there is a hard dead-
line to use the time series, deadline satisfaction is the most
important constraint of the system. Therefore, it may not be
possible to trade-off time-sensitivity with denoising accuracy.
In the first version of the online denoising algorithm, which
we name it as One-time Online Denoiser (OOD), the denoiser
does not re-process a previously denoised symbol, because
it has already been utilized. Hence, it is intuitive to expect
higher values of loss for smaller values of . However, as time
grows, we will have more reliable information about the data
statistics (in the form of C), and hence, it is to be expected
that denoising via OOD improves with time. The pseudo-code
of OOD is illustrated in Algorithm 1. In this algorithm, C
represents the memory that keeps the updated counts of C for
all possible unbalanced contexts.

The OOD algorithm starts by retrieving the previous counts
for the context vector (z/~} - z/1?) around the new observed
symbol z;. We denote this count vector by C and increment
one of its elements, i.e., C[z] by 1. Using the updated count
vector C, OOD denoises the tth symbol and returns Z;. Finally,
dictionary of all counts (C) is updated by new count vector C.

B. Repeatable Online Denoiser

In some applications, when we are not facing with hard
deadlines, it is possible to trade-off the denoising accuracy
with time-sensitivity. In the second version of denoising al-
gorithms, which we name it as Repeatable Online Denoising
(ROD), the denoiser is able to go back and reprocess the whole
sequence. Comparing with OOD, ROD is a slower denoising
algorithm, while it has higher accuracy and converges faster to
the optimum denoiser. With a new received symbol, when we
move from ¢t + 9§ to t+ 0 + 1, the ROD algorithm reconsiders

Algorithm 1 One-time Online Denoising (OOD) Algorithm
1: function OOD(t,2/ 9 C,k,6,IT,A)

. t—1 _t+6 t—1_t+6
2: C(z g, 211) < ClzZpz 1]
> (retrieve context counts around z;)
. t—1 _t+6 t—1 _t+6
3: Cl2_y» 241 [2e) < Clz, g, 241 2] + 1
> (update context count)
4: & = argminge 4 CTIT ! Az © 7,,]

> (denoise)
5: Update C[ztt:,ﬁztti‘f] By C
> (update context dictionary)
6: return I;

Algorithm 2 Repeatable Online Denoising (ROD) Algorithm

function ROD(¢,z!10, 219 C k,8,I1,A)
C « Clz{"y211)]
fori=k+1totdo

1:
2
3
4
5: if 2i=) = 2"} and 2/} = 2/T7 then
6
7
8

#; = argminge 4 CTII! Az © 72,]
Update C[ztt:iztfif] By C

return 1, Zs,..., T

Algorithm 3 Hybrid Online Denoising (HOD) Algorithm

1: function HOD(t,2! 0 C,k,0,11,A,7)

2 if ¢ <n then

3 return ROD(¢,2!19 #'19 C k.6, I1,A)
4 return OOD(t,2! 0 C,k,8,I1,A)

all the similar contexts in the past and using (8), denoises
the corresponding symbols again. The pseudo-code of ROD is
illustrated in Algorithm 2.

C. Hybrid Online Denoiser

To overcome the loss in accuracy of OOD and complex-
ity/delay of ROD, a third solution is to use a hybrid algo-
rithm. In this algorithm, which we name it as Hybrid Online
Denoising (HOD), ROD algorithm is used for denoising the
symbols for the first 7 symbols, where 7 is large enough that
lets the unbalanced context counts in C to be stabilized. After
receiving the first » symbols, OOD is subsequently used for
denoising. Pseudo-code of HOD is presented in Algorithm 3.

IV. PROPERTIES OF PROPOSED ONLINE DENOISERS

In this section, we address the convergence properties of the
proposed methods. Consider denoising 2‘*? to the noiseless
2t using an online denoiser and for this purpose we use an
unbalanced block denoiser to denoise z; to x;. If we use a
denoising function, such as f;(-), that makes decision based
on the unbalanced context sz,‘z around the received symbol z;,
then the instantaneous loss occured by denoising the " symbol
is A (l't, Ty, (sz,‘z)) The total and normalized average loss
incurred by denoising function f;(-) are defined next.

Definition 2 Total cumulative loss (uptil time t) incurred by
denoising function fi(-) used to denoise z* (when the noiseless
sequence is ') is Ly, and is defined as

t
L= Y Alwwar (2070)). ©)
t=k+1
Definition 3 Relative Average Loss (RAL) incurred by denois-
ing function fi(-) is Ly, and is defined as follows

d ‘C fi
L=) e
It is clear from the above definition that the relative average
loss (RAL) for any denoising algorithm satisfies th <1, for
all t. The behavior and performance of the online denoiser
depends on the particular choice of the denoising function
ft. For instance, the denoising function fy/ (zf,/ i’,‘z) works only
based on the available data up to time ¢’ + 4. It should be

mentioned that in OOD, at time ¢/, ft/(zf,/f,‘z) is only used

to denoise zp while in ROD, ft/(zf,/f,‘i) is also used to re-
denoise all the previously denoised symbols from ¢t = k + 1
to t =t’ — 1. It is readily seen that ROD is actually an online
version of an unbalanced offline block denoiser that behaves
similar to DUDE [4]. In fact, when we want to denoise the
symbol at time ¢ and data up to ¢+ is available, ROD denoises
the whole data z'*°. Subsequently, when we receive a new
symbol, 2,541, ROD denoises the whole data z**to*!, This
is similar to using an offline block denoiser repeatedly and
hence, similar to [4], it can be shown that ROD asymptotically
converge to the optimum Bayes denoiser.

We next focus on the properties of the OOD algorithm.
In OOD algorithm, at each time step, we only denoise one
symbol. In other words, when we receive z;45, OOD denoises
z¢. The following lemma shows that the asymptotic behavior
of OOD is close to unbalance offline block denoiser that uses
(8) when all the data, z" is available.

Lemma 1 Let

(10)

[leg SR 0<p
o(p) = 1 1.

2p(1—p) 2 =P

Also, define the following vectors at time t:

COPF = O, 2{7L 4D), CPOP = O, i 41d)
Then, for all z" € A™ we have

Py CtOFF B C?OD

n t+46

1
<3
<1

_ te?

>e) <(@2M —2)
1

Inin, ©(P(A))

1D
where P(A) =3 c4 CY o],

n

Proof: 1t is shown in [4] (Proposition 1) that for a probability
distribution vector P with length of M and its empirical
estimation f’, that has been estimated using ¢ observations,
we have

Pr (HP - f>H > 6) < (2M _)= minaca w(P(4))
1

The proof of the Lemma follows directly by substituting P by
COFF /1y and P by COOP /(¢ + §).

The above lemma (i.e., (11)) shows that the empirical pmf
(obtained by the counts in the observed vector z'*® for a
context) of OOD converges in probability to the empirical pmf
of the unbalanced offline block denoiser. Similar to (8), let us

define the offline unbalanced denoiser (denoted by OFF) as:
XFI(2M)[t] = arg géiﬁ CT (10 2171, zfif)ﬂ_l Az © 72,
(12)
Lemma 1 shows that when we estimate the empirical distribu-
tion of z; wrapped in the context of (2!~} - zzif) using OOD,
this distribution asymptotically converges to the empirical
distribution of z, wrapped in the context of (z/~} - 2/1?) using
the offline block denoiser. Now we show that convergence
property of Lemma 1 results in the convergence of the final
estimation of 2997 to #PFF where 297 is the result of
denoising by the offline block denoiser. It is easy to observe
that denoising rules of (8) and (12) for OOD and offline

denoisers can be written as follows:

(CtOOD

AOODt
0 t+0

= arg min
TEA

T
)H‘l[A@G)wzt], (13)

and

OFF\T
#9FF[t] = arg min (L > O ':or,] 14
teA n

Then, we can write the OOD denoiser output at time ¢ as

jjOOD[t]
. CcOOD QOFF QOFF T B
— e lEA (tt—i- 0 tn B tn) T e o]

oFF\T
= arg min (£) 0o, +

zeEA n
T
COOD COFF 7
15 | T Reom]
—_——

—0 in probability

However, we proved in Lemma 1 that CY9P /(t+4-§) asymptot-
ically converges to CP¥'F /n. Hence, as t grows and more data
is collected, it is expected that 29©P[t] converges to £OFF[t].
We have showed that OOD asymptotically converges to the
offline block denoiser with unbalanced context.

Using an approach similar to [4], it can be shown that the
offline block denoiser with unbalanced context that denoises
based on (12) asymptotically converges to the optimum Bayes
denoiser.

Proposition 1 The offline unbalanced block denoiser that
denoises based on (12) asymptotically converges to the Bayes
optimal denoiser as defined in (4).

V. NUMERICAL RESULTS

To investigate the performance of the proposed algorithms,
we performed various experiments. In this paper, we present

No Correction

02 M_

No Correction
— DUDE Algorithm

Unbalanced DUDE | 4
—— OOD Algorithm
—— ROD Algorithm
HOD Algorithm

0.15

0.1

005"\,\ I N —
DUDE

0

Relative Average Loss

0 200 400 600 800 1000
Time

Fig. 1. Relative average loss of BSC example.

some numerical results for the case of binary alphabet, i.e.,
A = {0,1}, and the noisy mechanism is modeled through a
binary symmetric channel (BSC) with crossover probability .
We run the denoising algorithm for 100 randomly generated
texts and report the average RAL over all cases. Each of the
random texts contained binary data of length n = 1000. Before
generating the i random text, we first generate a pattern dic-
tionary which contains 12 patterns, Pf ={Pi1, -, Pi12},
where P; ;, for j = 1 to 10 are randomly generated patterns
with length 10 bits, generated using uniform distribution of Os
and 1s. Also, P; 11 and P; 12 are O and 1, respectively. The
i™ text is the random sequence of patterns in P;°, where each
pattern is selected with equal probability. We assumed that
the crossover probability of the BSC is ;1 = 0.2 and the loss
matrix is A(0,0) = A(1,1) = 0, and A(0,1) = A(1,0) = 1.
Furthermore, we assumed that k is 3 and we show results for
0=0and 6 =3.

The RAL of various approaches for § = 0 are compared in
Figure 1. In this figure, the proposed OOD, ROD, and HOD
algorithms are compared with DUDE and Unbalanced DUDE,
where by unbalanced, we mean that left context of size k
and right context of size J. Relative average loss of the noisy
uncorrected sequence is also illustrated in this figure. It can be
observed in Fig. 1 that as we proved in the previous section,
online algorithms converge to the offline algorithm. It is also
observable that ROD (red curve) shows lower RAL than OOD
and HOD which shows that ROD convergence is faster than
other ones. However, the faster convergence of ROD comes
at a higher computational cost since ROD re-denoises all the
past symbols upon receiving a new noisy symbol.

The effect of 4 on the RAL of the proposed algorithms
is shown in Fig. 2. It should be noted that when £ is 3,
0 = 3 means that online denoisers use balanced double-
sided contexts as is used in DUDE [4]. From Fig. 2 it is
obvious that for this specific test case, the average performance
of online denoisers is better when ¢ is 0 which shows that
balanced denoisers are not necessarily better than unbalanced
denoisers. Results of Fig. 2 confirms that ROD results in better
RAL compared to the other online denoisers.

VI. CONCLUSIONS
In this paper, we studied the problem of online discrete
denoising which is applicable in various real-time data driven
applications. We presented three algorithms for different sit-
uations to strike the trade-off between the time-sensitivity

——00D,5=0
——ROD,5=0
——HOD, 5=0
00D, §=3
ROD,5=3
- HOD,5=3

014

008

Relative Average Loss

006

0.04

3 4 5 6 7
K

Fig. 2. Effect of (k,d) on ratio of errors in BSC example.

and denoising accuracy. We proved that the proposed algo-
rithms asymptotically converge to the optimum offline block
denoisers. Furthermore, we provided numerical results for the
case of binary data source and BSC channel, which support
the theoretical justifications. Future directions include the
extension of online algorithms to larger alphabet sizes.

ACKNOWLEDGMENT

Supported by the Intelligence Advanced Research Projects
Activity (IARPA) via Department of Interior National Busi-
ness Center (Dol/NBC) contract number D12PC000337, the
US Government is authorized to reproduce and distribute
reprints of this work for Governmental purposes notwithstand-
ing any copyright annotation thereon. Disclaimer: The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of IARPA, Dol/NBC, or the US Government.

REFERENCES

[1] P. Chakraborty, P. Khadivi et al., “Forecasting a moving target: Ensemble
models for ILI case count predictions,” in Proceedings of the SIAM
International Conference on Data Mining, 2014, pp. 262-270.

[2] S. Buadhachain and G. Provan, “A model-based control method for
decentralized calibration of wireless sensor networks,” in American
Control Conference, 2013, pp. 6571-6576.

[3] S. Sarkar, X. Jin, and A. Ray, “Data-driven fault detection in aircraft
engines with noisy sensor measurements,” Journal of Engineering for
Gas Turbines and Power, vol. 13, August 2011.

[4] T. Weissman et al., “Universal discrete denoising: Known channel,”
IEEE Transactions on Information Theory, vol. 51, no. 1, pp. 5-28,
2005.

[51 G. Motta, E. Ordentlich, and et al., “The idude framework for grayscale
image denoising,” IEEE Transactions on Image Processing, vol. 20,
no. 1, pp. 1-21, 2011.

[6] S. Pyatykh and J. Hesser, “Salt and pepper noise removal in binary
images using image block prior probabilities,” Journal of Visual Com-
munication and Image Representation, vol. 25, no. 5, p. 748754, 2014.

[71 A. Buades, B. Coll, and J. M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Modeling & Simulation, vol. 4,
no. 2, pp. 490-530, 2005.

[8] T. Moon and T. Weissman, “Discrete denoising with shifts,” IEEE Trans.
on Information Theory, vol. 55, no. 11, pp. 5284-5301, 2009.

[9]1 R. Zhang and T. Weissman, “Discrete denoising for channels with

memory,” Communications in Information and Systems, vol. 5, no. 2,

pp. 257-288, 2005.

C. D. Giurcaneanu and B. Yu, “Efficient algorithms for discrete universal

denoising for channels with memory,” in Proc. of the IEEE ISIT, 2005.

G. Gemelos, S. Sigurjonsson, and T. Weissman, “Algorithms for discrete

denoising under channel uncertainty,” [EEE Transactions on Signal

Processing, vol. 54, no. 6, p. 22632276, 2006.

T. Weissman et al., “Universal filtering via prediction,” IEEE Transac-

tions on Information Theory, vol. 53, no. 4, pp. 1253-1264, 2007.

[10]

[11]

[12]

