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Abstract—Real-time data-driven systems often utilize discrete
valued time series data and their functionality is highly dependent
on the accuracy of such data. In order to improve the perfor-
mance of these systems, an important pre-processing step is the
denoising of data before performing any action (e.g. forecasting
or control activities). Existing algorithms have primarily focused
on the offline denoising problem, which requires the entire data
to be collected before the denoising process. In this paper, the
problem of online discrete denoising is considered. The online
denoising problem is motivated by real-time applications, where
the data must be utilizable soon after it is collected. Three online
denoising algorithms are proposed which can strike a tradeoff
between delay and accuracy of denoising. It is also shown that
the proposed online algorithms asymptotically converge to a class
of optimal offline block denoisers.

Index Terms—Online Denoising, Discrete Denoising

I. INTRODUCTION

With emerging data-driven applications, such as data-driven
system design, control systems, and data mining, noise re-
moval from data sources is becoming increasingly important
[1], [2], [3]. In such applications, we typically encounter
data in the form of discrete valued time series, which could
either be generated automatically at the output of sensors, or
reported manually (such as in collection of disease counts
reported by health care personnel [1]). However, such data
is often noisy in nature, where the noise could be an artifact
of incorrect measurements, faulty sensors, or imperfect data
collection mechanisms. In time-sensitive applications, (such
as forecasting or control activities), immediate usability of
such noisy data is of critical importance. This leads to the
problem of online denoising, in which data must be denoised
immediately after being collected.

Prior work in denoising literature (such as [4], [5], [6], [7])
has primarily focused on the problem of offline denoising,
which assumes the availability of the entire data. Weissman
et al. in [4] proposed the discrete universal denoiser (DUDE)
algorithm for offline denoising of xn from its noisy version
zn, with the assumption of an i.i.d noise generating mechanism
(modeled through a noisy memoryless channel p(z|x)). DUDE
assumes the statistical knowledge of the noisy mechanism,
i.e., p(z|x), but makes no assumptions on the distribution
of the underlying data xn. It is shown in [4], that this
algorithm converges asymptotically to the optimum Bayes
offline denoiser.

Several other offline denoising algorithms have been subse-
quently developed that are inspired by DUDE, such as [5],
[7], and [8]. In [5], original DUDE algorithm is extended

for denoising of grayscale images. To this end, an extension
for the case of large alphabets is presented. [8] proposes
another version of this algorithm named as S-DUDE, which
attempts to address the non-stationarity of data. To handle
correlation in the noise generating mechanism, an extension
for the case of noisy channels with memory is presented in [9]
and [10]. Furthermore, [11] addresses the issue of knowledge
uncertainty in the statistics of the noise generating mechanism.
While the above extensions are indeed valuable, they are
primarily targeted at making the denoising mechanisms more
robust and do not address the timeliness aspect of denoising,
which is of importance in many applications, when data must
be denoised on the fly.

In this paper, we focus on online discrete denoising problem
to address the issue of data correction in time-sensitive appli-
cations. For this purpose, we precisely formulate the online
denoising problem and propose three algorithms for online
universal denoising. These algorithms can strike a tradeoff
between time-sensitivity and denoising accuracy.
• Repetable Online Denoising (ROD) algorithm, which upon
the collection of a new data point, denoises the entire past
and current data points. This algorithm sacrifices delay for
accuracy and is suitable for scenarios in which the past data
could also be useful.
• One-time Online Denoising (OOD) algorithm, which only
denoises the currently observed data point. This algorithm
sacrifices accuracy for delay and is suitable for time-sensitive
applications, where the data must be used immediately for
real-time forecasting or real-time control commands.
• Hybrid Online Denoising (HOD) algorithm, which combines
the timeliness of OOD with the accuracy of ROD. In this
algorithm, denoising starts by initially applying the ROD
algorithm. After a specific period of time, when data statistics
become sufficiently reliable, denoising is substituted with
OOD to speed up the denoising process.

The proposed algorithms belong to the class of block
denoisers and are applicable for denoising the data streams
when characteristics of the noise generation mechanism are
known and the data points are from a finite alphabet. Uni-
versal denoising of an online sequence of symbols from a
finite alphabet, also known as universal filtering, has been
addressed before in [12]. In [12], authors study the association
between the filtering problem and the problem of prediction
of individual sequences and provide a general formulation
for the construction of filters. They also show that how their
general universal filtering solution may result in an online



version of DUDE. However, the filtering solution that has
been provided in [12] does not address the issue of tradeoff
between time-sensitivity and denoising accuracy which is the
focus of this paper. In this paper, we construct a universal
online denoiser based on DUDE that supports unbalanced
contexts. We provide three algorithms to address the tradeoff
between time-sensitivity and denoising accuracy and prove
that the proposed algorithms asymptotically converge to the
optimum block denoiser. We also present numerical results
which support the theoretical aspects of the paper.

II. PROBLEM FORMULATION

We consider an arbitrary discrete-valued n length sequence
xn = (x1, . . . , xn), which is sequentially observed through
a noisy mechanism. In particular, at time t, a noisy version
of xt, which is denoted by zt is observed, where xt, zt ∈
A = {α1, · · · , αM}. The noise generating mechanism is
assumed to be i.i.d. over time and described through the
transition matrix ΠM×M , where Π(a, b) is the probability of
observing b if a is the underlying true data. The ith column
of Π is illustrated by πi. We denote by zt = (z1, . . . , zt)
(resp., xt = (x1, . . . , xt)) as the noisy sub-sequence (resp.,
underlying data sub-sequence) available up and until time t.
To measure denoising accuracy, we define a loss function
through the matrix, ΛM×M , where Λ(a, b) is the loss incurred
by estimating a by b. The ith column of Λ is illustrated by
λi. Also, the maximum possible loss is defined as Λmax =
maxa,b Λ(a, b). The goal of online denoising is to sequentially
produce a denoised version x̂t using zt for each time t.

Definition 1 Online discrete denoising is the process of repro-
ducing a new sequence of symbols, x̂t, at each time t, based
on a received noisy sequence, zt, such that:

1) The total loss in x̂t is less than the total loss in zt, i.e.,∑t

i=1
Λ(xi, x̂i) ≤

∑t

i=1
Λ(xi, zi) (1)

2) Reproduced symbol, x̂t, is generated with an acceptable
amount of delay, i.e., δ << n, after receiving zt, where
n is the length of the entire sequence. Note that under
no delay constraint, this reduces to offline denoising.

We first review the concept of offline denoising and describe
DUDE as a universal block denoiser [4]. Let us assume
that we have received the entire noisy sequence zn and we
want to denoise the symbol at time t, i.e. zt. The optimum
Bayes denoiser is the one that minimizes the expected loss
of estimating xt. In other words, considering the posterior
distribution of the entire noiseless data, xn, we have

X̂opt (zn) [t] = arg min
x̂∈A

∑
α∈A

Λ(α, x̂) Pr(Xt = α|zn), (2)

where the summation is the expected loss of denoising zt to x̂,
knowing the posterior distribution of xt, i.e., Pr(Xt = α|zn).
In vector notation, (2) can be shown as follows

X̂opt (zn) [t] = arg min
x∈A

λTx̂PXt|zn = arg min
x∈A

λTx̂PXt,zn . (3)

where PXt|zn = [Pr(Xt = α1|zn) . . .Pr(Xt = αM |zn)]T .
In [4], it has been shown that this optimum denoiser can

also be formulated as follows:

X̂opt (zn) [t] = arg min
x̂∈A

[
PZt,zn\t

]T
Π−1 [λx̂ � πzt ] (4)

where, PZt,zn\t = [Pr(Zt = α1, Z
n\t = zn\t) . . .Pr(Zt =

αM , Z
n\t = zn\t)]T , and � is a pair-wise vector multiplica-

tion for vectors u and v defined as follows:

(u� v)[i] = uivi. (5)

Based on the formulation in (4), the DUDE algorithm [4]
develops an empirical estimation procedure for PZt,zn\t . In
particular, it considers a window of size 2k + 1, symmetri-
cally wrapped around time t, i.e. (zt−k, · · · , zt+k). Then, the
algorithm takes a pass through the whole sequence and counts
all the occurrences of zt−k, · · · , zt−1, β, zt+1, · · · , zt+k for all
the possible values of β. This counting process results in an
empirical distribution of symbols that are located at the center
of the window. The resulting empirical distribution, which
is shown to be an approximation of PZt,zn\t , is then used
for denoising of zt. In the next section, we propose online
universal denoising algorithms for the case of known channel
and discrete finite alphabets. We will prove later that the online
algorithms converge to the optimum denoiser.

III. ONLINE UNIVERSAL DENOISER

In this section we introduce the online universal denoiser.
We provide the general denoising rule and then discuss various
versions of the algorithm that may be considered as the online
version of DUDE [4]. The optimum Bayes denoiser, defined
by (4), can be appropriately modified for the online problem
such that each new noisy symbol, is corrected with a small
appropriate delay. Let us assume that we can tolerate the delay
of δ symbols and we have received symbols up to time t+ δ.
Then, the online version of (4) can be written as follows

X̂opt
(
zt+δ

)
[t] = arg min

x̂∈A

[
PZt,z(t+δ)\t

]T
Π−1 [λx̂ � πzt ] (6)

Based on (6), with each new received symbol, a new
symbol, which is δ steps back of the latest received one,
can be optimally denoised. However, it should be noted that
with any new received symbol, we have more information
about the whole sequence, which in turn, may improve the
accuracy of the denoising process. Due to the importance of
delay in online denoising, it is desirable to start denoising
of a newly received symbol as soon as possible. Therefore,
instead of the symmetric double-sided context of [4], we
use unbalanced context windows to estimate the conditional
distribution PZt,z(t+δ) . Hence, we define the following vector:

C(z(t+δ), bk, cδ)[β] =
∣∣{i : k + 1 ≤ i ≤ t, zi+δi−k = bkβcδ

}∣∣ (7)

with the assumption that δ ≤ k. In fact, C(z(t+δ), bk, cδ)[β]
is the number of times that we have observed β, wrapped
in the context of (bk · cδ) in sequence z(t+δ). Following the
terminology of [4], bk is the left context, cδ is the right context,
and (bk ·cδ) is the double-sided context. Obviously, when δ <



k, the double-sided context is unbalanced and when δ = 0, the
vector C is defined only based on the left-context. Using (7),
online denoising of symbol at time t is performed as follows

X̂k,δ(zt+δ)[t] = arg min
x̂∈A

CT (zt+δ, zt−1t−k, z
t+δ
t+1)Π−1 [λx̂ � πzt ].

(8)
Thus, the core aspect of the algorithm is related to counting

the number of times that an unbalanced context appears inside
the received sequence up and until time t + δ. However, as
t grows, and more data is collected, it is a time consuming
process to start counting the contexts from the beginning of
zt+δ . For real-time denoising applications, a more appropriate
implementation is to keep the counts up to time t + δ in
memory, and update the counts with a newly received symbol
(we denote this memory by C and the counts by C). It should
be noted that with an alphabet of size M and a double-
sided context of size k + δ, we need to save Mk+δ vectors,
each of size M . In other words, the total amount of memory
which is required to keep the current counts in the memory
is O

(
Mk+δ+1

)
. Therefore, there is a trade-off between the

time and memory that depends on the values of M , k, and
δ. Depending on the time-sensitivity of the desired denoising
process, we next present three online denoising algorithms.
A. One-time Online Denoiser

In time-sensitive applications, when there is a hard dead-
line to use the time series, deadline satisfaction is the most
important constraint of the system. Therefore, it may not be
possible to trade-off time-sensitivity with denoising accuracy.
In the first version of the online denoising algorithm, which
we name it as One-time Online Denoiser (OOD), the denoiser
does not re-process a previously denoised symbol, because
it has already been utilized. Hence, it is intuitive to expect
higher values of loss for smaller values of t. However, as time
grows, we will have more reliable information about the data
statistics (in the form of C), and hence, it is to be expected
that denoising via OOD improves with time. The pseudo-code
of OOD is illustrated in Algorithm 1. In this algorithm, C
represents the memory that keeps the updated counts of C for
all possible unbalanced contexts.

The OOD algorithm starts by retrieving the previous counts
for the context vector (zt−1t−k · z

t+δ
t+1) around the new observed

symbol zt. We denote this count vector by C and increment
one of its elements, i.e., C[zt] by 1. Using the updated count
vector C, OOD denoises the tth symbol and returns x̂t. Finally,
dictionary of all counts (C) is updated by new count vector C.

B. Repeatable Online Denoiser

In some applications, when we are not facing with hard
deadlines, it is possible to trade-off the denoising accuracy
with time-sensitivity. In the second version of denoising al-
gorithms, which we name it as Repeatable Online Denoising
(ROD), the denoiser is able to go back and reprocess the whole
sequence. Comparing with OOD, ROD is a slower denoising
algorithm, while it has higher accuracy and converges faster to
the optimum denoiser. With a new received symbol, when we
move from t+ δ to t+ δ+ 1, the ROD algorithm reconsiders

Algorithm 1 One-time Online Denoising (OOD) Algorithm

1: function OOD(t,zt+δt−k,C,k,δ,Π,Λ)
2: C(zt−1t−k, z

t+δ
t+1)← C[zt−1t−kz

t+δ
t+1 ]

. (retrieve context counts around zt)
3: C(zt−1t−k, z

t+δ
t+1)[zt]← C(zt−1t−k, z

t+δ
t+1)[zt] + 1

. (update context count)
4: x̂t = arg minx̂∈ACTΠ−1 [λx̂ � πzt ]

. (denoise)
5: Update C[zt−1t−kz

t+δ
t+1 ] By C

. (update context dictionary)
6: return x̂t

Algorithm 2 Repeatable Online Denoising (ROD) Algorithm
1: function ROD(t,zt+δ ,x̂t+δ ,C,k,δ,Π,Λ)
2: C← C[zt−1t−kz

t+δ
t+1 ]

3: C[zt]← C[zt] + 1
4: for i = k + 1 to t do
5: if zi−1i−k = zt−1t−k and zi+δi+1 = zt+δt+1 then
6: x̂i = arg minx̂∈ACTΠ−1 [λx̂ � πzi ]
7: Update C[zt−1t−kz

t+δ
t+1 ] By C

8: return x̂1, x̂2, . . . , x̂t

Algorithm 3 Hybrid Online Denoising (HOD) Algorithm

1: function HOD(t,zt+δt−k,C,k,δ,Π,Λ,η)
2: if t ≤ η then
3: return ROD(t,zt+δ ,x̂t+δ ,C,k,δ,Π,Λ)
4: return OOD(t,zt+δt−k,C,k,δ,Π,Λ)

all the similar contexts in the past and using (8), denoises
the corresponding symbols again. The pseudo-code of ROD is
illustrated in Algorithm 2.

C. Hybrid Online Denoiser

To overcome the loss in accuracy of OOD and complex-
ity/delay of ROD, a third solution is to use a hybrid algo-
rithm. In this algorithm, which we name it as Hybrid Online
Denoising (HOD), ROD algorithm is used for denoising the
symbols for the first η symbols, where η is large enough that
lets the unbalanced context counts in C to be stabilized. After
receiving the first η symbols, OOD is subsequently used for
denoising. Pseudo-code of HOD is presented in Algorithm 3.

IV. PROPERTIES OF PROPOSED ONLINE DENOISERS

In this section, we address the convergence properties of the
proposed methods. Consider denoising zt+δ to the noiseless
xt+δ using an online denoiser and for this purpose we use an
unbalanced block denoiser to denoise zt to xt. If we use a
denoising function, such as ft(·), that makes decision based
on the unbalanced context zt+δt−k around the received symbol zt,
then the instantaneous loss occured by denoising the tth symbol
is Λ

(
xt, x̂ft

(
zt+δt−k

))
. The total and normalized average loss

incurred by denoising function ft(·) are defined next.



Definition 2 Total cumulative loss (uptil time t) incurred by
denoising function ft(·) used to denoise zt (when the noiseless
sequence is xt) is Lft and is defined as

Lft =

t∑
t′=k+1

Λ
(
xt′ , x̂ft

(
zt
′+δ
t′−k

))
. (9)

Definition 3 Relative Average Loss (RAL) incurred by denois-
ing function ft(·) is Lft and is defined as follows

Lft =
Lft

(t− k)Λmax
. (10)

It is clear from the above definition that the relative average
loss (RAL) for any denoising algorithm satisfies Lft ≤ 1, for
all t. The behavior and performance of the online denoiser
depends on the particular choice of the denoising function
ft. For instance, the denoising function ft′(zt

′+δ
t′−k) works only

based on the available data up to time t′ + δ. It should be
mentioned that in OOD, at time t′, ft′(zt

′+δ
t′−k) is only used

to denoise zt′ while in ROD, ft′(zt
′+δ
t′−k) is also used to re-

denoise all the previously denoised symbols from t = k + 1
to t = t′− 1. It is readily seen that ROD is actually an online
version of an unbalanced offline block denoiser that behaves
similar to DUDE [4]. In fact, when we want to denoise the
symbol at time t and data up to t+δ is available, ROD denoises
the whole data zt+δ . Subsequently, when we receive a new
symbol, zt+δ+1, ROD denoises the whole data zt+δ+1. This
is similar to using an offline block denoiser repeatedly and
hence, similar to [4], it can be shown that ROD asymptotically
converge to the optimum Bayes denoiser.

We next focus on the properties of the OOD algorithm.
In OOD algorithm, at each time step, we only denoise one
symbol. In other words, when we receive zt+δ , OOD denoises
zt. The following lemma shows that the asymptotic behavior
of OOD is close to unbalance offline block denoiser that uses
(8) when all the data, zn is available.
Lemma 1 Let

ϕ(p) =

{
1

1−2p log 1−p
p 0 ≤ p < 1

2
1

2p(1−p)
1
2 ≤ p ≤ 1

Also, define the following vectors at time t:

COFF
t = C(zn, zt−1t−k, z

t+δ
t+1), COOD

t = C(zt+δ, zt−1t−k, z
t+δ
t+1)

Then, for all zn ∈ An we have

Pr

(∥∥∥∥COFF
t

n
− COOD

t

t+ δ

∥∥∥∥
1

≥ ε
)
≤ (2M − 2)e

− tε24 min
A⊆A

ϕ(P (A))

(11)

where P (A) =
∑
α∈A

COFFt [α]
n .

Proof : It is shown in [4] (Proposition 1) that for a probability
distribution vector P with length of M and its empirical
estimation P̂, that has been estimated using t observations,
we have

Pr
(∥∥∥P− P̂

∥∥∥
1
≥ ε
)
≤ (2M − 2)e−

tε2

4 minA⊆A ϕ(P (A))

The proof of the Lemma follows directly by substituting P by
COFF
t /n and P̂ by COOD

t /(t+ δ).
The above lemma (i.e., (11)) shows that the empirical pmf

(obtained by the counts in the observed vector zt+δ for a
context) of OOD converges in probability to the empirical pmf
of the unbalanced offline block denoiser. Similar to (8), let us
define the offline unbalanced denoiser (denoted by OFF) as:

X̂k,δ(zn)[t] = arg min
x̂∈A

CT (zt+δ, zt−1t−k, z
t+δ
t+1)Π−1 [λx̂ � πzt ].

(12)
Lemma 1 shows that when we estimate the empirical distribu-
tion of zt wrapped in the context of (zt−1t−k · z

t+δ
t+1) using OOD,

this distribution asymptotically converges to the empirical
distribution of zt wrapped in the context of (zt−1t−k ·z

t+δ
t+1) using

the offline block denoiser. Now we show that convergence
property of Lemma 1 results in the convergence of the final
estimation of x̂OODt to x̂OFFt where x̂OFFt is the result of
denoising by the offline block denoiser. It is easy to observe
that denoising rules of (8) and (12) for OOD and offline
denoisers can be written as follows:

x̂OOD[t] = arg min
x̂∈A

(
COOD
t

t+ δ

)T
Π−1 [λx̂ � πzt ], (13)

and

x̂OFF [t] = arg min
x̂∈A

(
COFF
t

n

)T
Π−1 [λx̂ � πzt ]. (14)

Then, we can write the OOD denoiser output at time t as

x̂OOD[t]

= arg min
x̂∈A

(
COOD
t

t+ δ
+

COFF
t

n
− COFF

t

n

)T
Π−1 [λx̂ � πzt ]

= arg min
x̂∈A

(
COFF
t

n

)T
Π−1 [λx̂ � πzt ] +COOD

t

t+ δ
− COFF

t

n︸ ︷︷ ︸
→0 in probability


T

Π−1 [λx̂ � πzt ] .

However, we proved in Lemma 1 that COOD
t /(t+δ) asymptot-

ically converges to COFF
t /n. Hence, as t grows and more data

is collected, it is expected that x̂OOD[t] converges to x̂OFF [t].
We have showed that OOD asymptotically converges to the
offline block denoiser with unbalanced context.

Using an approach similar to [4], it can be shown that the
offline block denoiser with unbalanced context that denoises
based on (12) asymptotically converges to the optimum Bayes
denoiser.

Proposition 1 The offline unbalanced block denoiser that
denoises based on (12) asymptotically converges to the Bayes
optimal denoiser as defined in (4).

V. NUMERICAL RESULTS

To investigate the performance of the proposed algorithms,
we performed various experiments. In this paper, we present
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some numerical results for the case of binary alphabet, i.e.,
A = {0, 1}, and the noisy mechanism is modeled through a
binary symmetric channel (BSC) with crossover probability µ.
We run the denoising algorithm for 100 randomly generated
texts and report the average RAL over all cases. Each of the
random texts contained binary data of length n = 1000. Before
generating the ith random text, we first generate a pattern dic-
tionary which contains 12 patterns, PSi = {Pi,1, · · · ,Pi,12},
where Pi,j , for j = 1 to 10 are randomly generated patterns
with length 10 bits, generated using uniform distribution of 0s
and 1s. Also, Pi,11 and Pi,12 are 0 and 1, respectively. The
ith text is the random sequence of patterns in PSi , where each
pattern is selected with equal probability. We assumed that
the crossover probability of the BSC is µ = 0.2 and the loss
matrix is Λ(0, 0) = Λ(1, 1) = 0, and Λ(0, 1) = Λ(1, 0) = 1.
Furthermore, we assumed that k is 3 and we show results for
δ = 0 and δ = 3.

The RAL of various approaches for δ = 0 are compared in
Figure 1. In this figure, the proposed OOD, ROD, and HOD
algorithms are compared with DUDE and Unbalanced DUDE,
where by unbalanced, we mean that left context of size k
and right context of size δ. Relative average loss of the noisy
uncorrected sequence is also illustrated in this figure. It can be
observed in Fig. 1 that as we proved in the previous section,
online algorithms converge to the offline algorithm. It is also
observable that ROD (red curve) shows lower RAL than OOD
and HOD which shows that ROD convergence is faster than
other ones. However, the faster convergence of ROD comes
at a higher computational cost since ROD re-denoises all the
past symbols upon receiving a new noisy symbol.

The effect of δ on the RAL of the proposed algorithms
is shown in Fig. 2. It should be noted that when k is 3,
δ = 3 means that online denoisers use balanced double-
sided contexts as is used in DUDE [4]. From Fig. 2 it is
obvious that for this specific test case, the average performance
of online denoisers is better when δ is 0 which shows that
balanced denoisers are not necessarily better than unbalanced
denoisers. Results of Fig. 2 confirms that ROD results in better
RAL compared to the other online denoisers.

VI. CONCLUSIONS
In this paper, we studied the problem of online discrete

denoising which is applicable in various real-time data driven
applications. We presented three algorithms for different sit-
uations to strike the trade-off between the time-sensitivity
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and denoising accuracy. We proved that the proposed algo-
rithms asymptotically converge to the optimum offline block
denoisers. Furthermore, we provided numerical results for the
case of binary data source and BSC channel, which support
the theoretical justifications. Future directions include the
extension of online algorithms to larger alphabet sizes.
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