
July ❘ August 2006 IT Pro 191520-9202/06/$20.00 © 2006 IEEE P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Interacting with
Web Hierarchies

Saverio Perugini and Naren Ramakrishnan

From store catalogs and news services, to
community classifieds, hierarchies are
ubiquitous.They are at once a natural way
to organize, present, and navigate online

information and a major source of user frustra-
tion when they do not mirror the user’s concep-
tion of the information-seeking process. In an
effort to get the user to the desired information
more quickly, interface designers have developed
many variants of the traditional drill-down motif.

Web site interfaces are a particularly good fit for
hierarchies in the broadest sense of that idea—a
classification with multiple attributes, not neces-
sarily a tree structure. Several adaptive interface
designs are emerging that support flexible navi-
gation orders, exposing and exploring dependen-
cies, and procedural information-seeking tasks.
These designs offer a sneak peek into the variety
of ways organizations have improvised on the
vanilla hierarchy. In describing them, we provide
a context and vocabulary for thinking about hier-
archical Web sites and their design: How should
user tasks and a site’s content combine with design
to shape and facilitate interactions?

We have identified three features that interfaces
to information hierarchies should include—flex-
ible navigation orders, the ability to expose and
explore dependencies,and support for procedural
tasks—and offer some examples of these features.

FLEXIBLE NAVIGATION ORDERS
With flexible navigation orders, inputs can

arrive in any user-specified order. Consider a user
of an online car-shopping site, such as http://
autotrader.com:

“I am here to buy a car.The most important cri-
teria for me are price, safety rating, and color, in
that order.What’s available?”

In conducting such a search, the most helpful
hierarchy from the user’s view is one that
organizes attributes in the specified preference:
price at the top, safety rating next, and color
after that. Such a hierarchy dictates a total
order over automobile facets, since the system
must receive attribute values in a particular
order. The user would be hard-pressed to find
such a classification, however, since most auto-
mobile sites we surveyed organize their inven-
tory along more traditional facets such as make,
model, and year.

The next best choice, then, is an interface that
enumerates all possible navigation orders or one
that lets users generate their own totally ordered
hierarchy.

Enumerative interface designs
Enumerative interfaces support flexible navi-

gation orders by exposing all the individual
choices for unspecified facets at every level.
The Epicurious site (http://epicurious.com) is an
example, as shown in Figure 1.You can view enu-
merated interfaces as multiple totally ordered
hierarchies, one for each of the n! possible navi-
gation orders,where n is the number of facets that
the classification considers.To avoid overwhelm-
ing the user with all such orders, sites such as
Kelley Blue Book online (http://kbb.com) pres-
ent only a few facets at each level, yielding a par-
tially enumerated hyperlink structure.

Emerging designs for hierarchical
Web sites offer some insight into
flexible, adaptive, and responsive
dialogs that invite users to interact,
not click out in frustration.

20 IT Pro July ❘ August 2006

W E B S I T E D E S I G N

Other enumerative designs use pull-down
menus that hide enumerated choices behind
user interface components.An example is at
http://sonystyle.com,a site for users to browse
digital cameras and camcorders.Other inter-
faces, such as that for Apple’s iTunes,present
all facets and choices on a single page, typi-
cally in tabular form, and explicitly relay to
the user how the system prunes attribute val-
ues during an interaction.These interfaces are
enumerative, but support browsing within a
page rather than between pages.

Enumerative designs that present all facets
risk becoming cluttered if the product has too
many facets of classification.Automobiles,for
example, can have more than 20 individual
attributes,which can give rise to issues related
to limited screen real estate.

Generative
interface designs

In contrast to enumerative interfaces, gen-
erative interfaces support the construction of
a totally ordered hierarchy for subsequent
browsing.The site requests a navigation order
first and subsequently generates a totally
ordered hierarchy conforming to it. Figure 2
illustrates how such an interface might work
for the car shopping scenario given earlier.

An interface to support such a task might
let the user specify the navigational order of
the classification’s facets on the fly, thus
meshing drill-down browsing with order
specification. The user can specify the navi-
gational order up front, as in Figure 2, or
incrementally, depending on the task.
Generative interfaces react to the user’s
directives and organize subsequent pages to
reconcile what is left of the hierarchy with
what the user wants to do next.

Out-of-turn interface
Figure 3 shows an out-of-turn interface,

which is somewhere between enumerative
and generative designs. This interface sup-
ports an online car shopper with a different
information-seeking goal:

“I am here to buy a car. I’m interested only in
fuel-efficient cars—those that yield greater
than 40 miles per gallon (mpg)—and would
like to begin my search from there.”

Unlike interfaces based on facets, pull-
down menus, or a table, the out-of-turn

Figure 1. Using an enumerative interface
to browse recipes.

The screen enumerates all the individual choices for each facet
(main ingredient, cuisine, preparation method, season/occasion, and
so on) and the user selects bake, a preparation method (a).The next
screen (b) no longer offers a choice for preparation method. Such
enumerative interfaces support flexible navigation orders by expos-
ing all choices for unspecified facets at every level.

(a)

(b)

July ❘ August 2006 IT Pro 21

interface does not enumerate all the individual choices at
each level. In contrast to a generative interface, it does not
let the user browse in any order. Rather, it simply empow-
ers the user to supply out-of-turn values for facets other
than that on the current Web page if the current organi-
zation is not to the user’s liking.

The user can supply input out of turn by speaking to the
browser through a voice interface, as in Figure 3, or by
using a toolbar embedded in the browser. Because an out-
of-turn interface does not enumerate all remaining facets
at each level, users must have meta-inquiry capabilities so
that they can inquire about unspecified attributes.
However,out-of-turn interaction does not imply free-form
input, only the ability to communicate input that the inter-
face normally solicits later in the interaction.

Comparisons
As these examples imply, the nature of a hierarchy’s con-

tent affects which interface designs are most suitable for
interaction.Some content is inherently faceted—when pre-
sented in a hierarchy, each level corresponds to a classifi-
cation facet—be it main ingredient, cuisine, or preparation
method at Epicurious, or make, model, or year for the
Kelley Blue Book. On the other hand, large directories of
links to Web sites, such as Yahoo! and the Open Directory
Project (ODP,http://dmoz.org),present unfaceted content.
ODP’s top level, for example, presents Arts, Music, and
Sports hyperlinks, which each correspond to nothing more
specific than a topic.Because there is no concept of a facet,
purely navigational links typically provide flexible inter-
action with these structures.

Figure 2. Using a generative interface to support online car shopping.

The user specifies browsing by price, safety rating, and color, in that order (a). The site generates a totally ordered
classification, and the user progressively clicks on hyperlinks labeled “$20,000–$24,999” (b), “excellent” (c), and
“white” (d) to retrieve a list of cars with these features or additional classification facets, such as make and model.

(a)

(b)

(c)

(d)

22 IT Pro July ❘ August 2006

W E B S I T E D E S I G N

ODP offers three special link types:

shortcuts, links whose target is a page deeper in the
hierarchy;
back links to pages at levels higher than that of the cur-
rent page; and
multiclassification links, which bridge unconnected but
seemingly related topics.

These links let users circumvent the rigid nature of the
site’s static navigation structure.Except for the out-of-turn
interface, none of the interfaces described so far are suit-
able for interaction with an unfaceted hierarchy. To con-
struct an enumerative interface, the designer must
enumerate all possible facet orders (which of course
requires facets), and in using a generative interface, the
user must be able to specify an order of facets (again
requiring facets).

Some interfaces force the user to supply values for facets
in an order completely predetermined by the hierarchy.
Others, such as the out-of-turn interface or enumerative
interfaces, give the user carte blanche to communicate
inputs in any preferred order. Still other sites, such as
Project Vote-Smart (http:// vote-smart.org),provide a com-
bination, either enforcing order at the beginning of the
interaction and permitting flexibility at the end or vice
versa; or mixing and matching both to create novel inter-
action experiences.

Sometimes retaining at least partial control
over input order is desirable and even neces-
sary. Weather report sites, for example,
require a zip code before even beginning user
interaction.

EXPOSING AND EXPLORING
DEPENDENCIES

In any Web site, individual selections are
likely to have several dependencies,and the site
should expose and provide ways for its visitors
to explore them. At a basic level, progressive
drilling-down and retracing paths exposes such
relationships. After selecting a car model, for
example, the user might notice that the model
does not meet the desired mileage and thus
backtrack to try other selections. Obviously,
designers would like sites to expose depend-
encies without requiring these backtracking
interactions.

In Figure 3,when the user says,“40-44 mpg,”
the site removes choices that do not meet the
gas mileage specification.Such hyperlink prun-
ing on the current page provides immediate
visual feedback about dependencies.An inter-
face with this capability obeys or exploits the
dependencies implicit in the hierarchy and pro-

vides facilities to help expose them to users.Web functional
dependencies can range from the simple “every Civic is a
Honda”tautologies to less salient but more interesting rela-
tionships such as “all cars with a safety rating of 3.5 or higher
achieve less than 20 mpg on average” or “the Honda Civic
hybrid doesn’t come in red.”

Web functional dependencies can come from either
domain knowledge or a data-driven analysis of the hier-
archy. For example, if none of the site paths that contain
the hyperlinks “Honda” and “Civic hybrid” also contain
the hyperlink “red,” then the “the Honda Civic hybrid
doesn’t come in red” dependency holds.Techniques from
association-rule mining are relevant in this context.
Designers can summarize functional dependencies using
Æ to denote implies and a ¬ to denote negation.Thus, for
the car shopping scenario,“Honda Æ ¬ Toyota,”“Civic Æ
Honda,” “safety rating > 3.5 Æ mpg < 20,” and “Honda,
Civic hybrid Æ ¬ red.”

Reactive menu designs
Some commercial Web sites now explicitly recognize that

dependencies are ubiquitous in hierarchies and provide facil-
ities to exploit them.Kelley Blue Book has a search for make
by model name, which invokes Web functional dependen-
cies of the form “model Æ make,”thus leading the user to the
desired automobile make.The reduction of available options
as the user interacts with enumerative designs, such as pull-
down menus, is another simple method of exposing depend-

Figure 3. Using an out-of-turn interface
in a voice-enabled browser.

The user decides not to pursue
any of the presented hyperlinks
and instead says, “40-44 mpg”
out of turn (a). Processing the
out-of-turn input results in a
reduced set of choices, since
some makers do not fit the gas
mileage specification (b).

(a)

(b)

July ❘ August 2006 IT Pro 23

encies. This approach extends the dependency exposure
implicit in out-of-turn interaction’s hyperlink pruning. The
Sony Advisor reactive menu in Figure 4 (http://sonystyle.

com) updates a set of products—digital cameras and cam-
corders,for example—as users add and remove options,such
as picture resolution.The automatic addition and deletion of

Figure 4. Exposing and exploring dependencies
in the Sony Advisor reactive menu.

The user sees 14 digital cam-
eras and checks the box speci-
fying cameras with a resolution
greater than 9 megapixels
(MP) (a). Only one camera
meets the criterion—the
DSC–R1 model (b). Through
this interaction, the site reveals
the “MP > 9 Æ DSC–R1”
dependency to the user, as well
as several others, such as “MP
> 9 Æ ¬ DSC–T9.”

(a)

(b)

24 IT Pro July ❘ August 2006

W E B S I T E D E S I G N

products from the current set (right side of screen) based on
the status of the check boxes for each facet (left side of
screen) exposes the dependencies underlying the products
Sony offers, and lets shoppers naturally explore the inter-
play of the features in the available models.A wine retail site,
http://wine.com,has a similar interface for exploring depend-
encies while browsing wines.

Real-time query expansion
Dependency exploration is also possible through query

expansion. For example, when the user says,“safety rating
greater than 3.5”in response to the site’s solicitation for car
make, the site can expand this query to “safety rating
greater than 3.5, mpg less than 20” if all cars with a safety
rating greater than 3.5 also yield less than 20 mpg. When
conducted in real time, such automatic query expansion
provides immediate user feedback. Consider another car
shopping scenario:

“I am interested in buying a car that runs on
diesel fuel, but I’ve heard that diesel engines are
usually available only for cars with a manual
transmission. I want an automatic transmission.
Are any diesel cars equipped with an automatic
transmission?”

A real-time query expansion interface can
easily support such a scenario by letting the user
know that the “diesel Æ manual” dependency
holds. Figure 5 illustrates how this might occur.

Real-time query expansion is user-inde-
pendent; the expansion is the same for all users
and depends only on terms occurring together
on the paths through the hierarchy. Prior
queries have no bearing on the expansion.The
site adds terms to the query only when the com-
posite query yields the same result as the unex-
panded query.

Web site interfaces are emerging that use a
similar style of real-time query expansion for
information exploration and discovery, includ-
ing Google Suggests (http://www.google.com/
webhp?complete=1&hl=en) and Stanford’s
auto-complete Search on TAP.

The complete set of dependencies that a clas-
sification satisfies changes as the user interacts
with it. Suppose the user clicks on the Lexus
hyperlink in response to a solicitation for car
make. This interaction eliminates the “Lexus
Æ ¬ BMW” dependency and can cause the
“coupe Æ sunroof”dependency to emerge.The
“coupe Æ sunroof” dependency indicates that
all Lexus coupes have a sunroof and is not
likely to exist before the user selects Lexus
unless all coupes from all car makes have a sun-
roof, which is unlikely. By revealing the all-or-

nothing dependencies underlying the values of the
classification’s facets, real-time query expansion can help
users understand the constraints implicit in a domain.

Comparisons
Clearly, there are multiple levels of dependency explo-

ration. Drilling-down a hierarchy through out-of-turn
interaction typically prunes the available choices for all
facets. However, since this design presents only one facet
per page, the user can observe how input affects the set of
choices only for the current facet.

Manipulating reactive menus also prunes the choices
for all facets. However, in contrast to an out-of-turn inter-
face, this interface has an enumerative design, which lets
the user observe the pruning in all facets. Adding real-
time query expansion to an out-of-turn interface helps
reveal dependencies involving facets beyond the current
page.

Figure 5. Using a real-time query
expansion interface in online car shopping.

The user types “diese” when the site is soliciting the desired
car make and model (a). As soon as the user enters the “l” and
thereby completes the specification of “diesel,” the site auto-
matically expands the query in real-time to “diesel manual”
(b). This reveals the “cars with diesel engines come only with a
manual transmission” dependency and hence the user can
immediately see that no vehicles with an automatic transmis-
sion and diesel engine are available from this site.

(a)

(b)

July ❘ August 2006 IT Pro 25

PROCEDURAL TASK SUPPORT
The interactions we have described

so far entail drilling down a classifi-
cation and thereby reducing the hier-
archy’s size and number of remaining
items. Such interactions are inher-
ently destructive and involve only one
line of inquiry, or control flow. In con-
trast, strategies that are constructive
or procedural in nature require cas-
cading information across multiple
subgoals. Consider another car shop-
ping scenario:

“I’m interested in a Lexus. I want one
whose fuel efficiency is comparable to
the Toyota Camry.”

This scenario involves two subgoals.
First, the user must find the fuel effi-
ciency of the Toyota Camry and then
use that information to find a partic-
ular Lexus. With a faceted or table-
based interface, the user would need
to manually remember the informa-
tion retrieved in the first subgoal, start
over with the fully populated instance
of the table, and supply the retrieved
information to satisfy the second sub-
goal. The more subgoals, the more
complex the process. Interfaces that
support procedural tasks provide
some way for the user to aggregate
retrieved information naturally into
a new line of inquiry without having
to remember any intermediate results
or start over.

One way for the user to cascade
information from one subgoal onto
another is through a user-initiated con-
tinuation—an approach that takes its
name and motif from the concept of a
continuation in programming lan-
guages.A continuation indicates a promise to do something
and summarizes the work remaining at a particular point in
the execution of a program. To cascade one information-
finding goal’s output to the input of another, the site essen-
tially replaces the current pruned hierarchy (the current
continuation) with a fresh copy of the original hierarchy,
pruned according to the information retrieved in the previ-
ous subgoal. This process provides the user with a smooth
transition between subgoals.

Figure 6 on the next page illustrates how a user might
approach the latest car shopping scenario (interested in a
Lexus;wants one with fuel efficiency comparable to that of

the Toyota Camry) using a table-based continuation inter-
face design. Figures 6a and 6b illustrate one line of inquiry,
yielding a result that the interface then helps the user to
cascade (in Figure 6c) into another line of inquiry (Figures
6d and 6e).This interaction reveals that the Lexus with fuel
efficiency comparable to the Toyota Camry is the ES 330
model.

As this example illustrates, the continuation facility lets
the user abandon a given line of conversation (after obtain-
ing the required information) and enter into another line
of inquiry carrying the required information to the next
subgoal.

➤ The Web page for the Out-of-turn Interaction Project (http://oot.cps.
udayton.edu) contains links to software demos of the user interfaces
described in the main text.

➤ “Mining Association Rules Between Sets of Items in Large
Databases,” R. Agrawal, T. Imielinski, and A.N. Swami, Proc. ACM
Int’l Conf. Management of Data (SIGMOD 93), ACM Press, 1993,
pp. 207-216.

➤ “Strategy Hubs: Next-Generation Domain Portals with Search
Procedures,” S. K. Bhavnani and colleagues, Proc. ACM Conf.
Human Factors in Computing Systems (CHI 03), ACM Press, 2003,
pp. 393-400.

➤ “Generating Mixed-Initiative Hypertexts: A Reactive Approach,” B.
De Carolis, Proc. 4th Int’l Conf. Intelligent User Interfaces (IUI 99),
ACM Press, 1999, pp. 71-78.

➤ Essentials of Programming Languages, 2nd ed., D.P. Friedman, M.
Wand, and C.T. Haynes, MIT Press, 2001.

➤ “Next Generation Web Search: Setting Our Sites,” M.A. Hearst,
IEEE Data Engineering Bulletin, Sept. 2000, pp. 38-48.

➤ “Finding the Flow in Web Site Search,” M.A. Hearst and colleagues,
Comm. ACM, Sept. 2002, pp. 42-49.

➤ “Keeping Found Things Found on the Web,” W. Jones, H. Bruce, and
S. Dumais, Proc. 10th ACM Int’l Conf. Information and Knowledge
Management (CIKM 01), ACM Press, 2001, pp. 119-126.

➤ “Staging Transformations for Multimodal Web Interaction
Management,” M. Narayan and colleagues, Proc. 13th ACM
Int’l World Wide Web Conf. (WWW 04), ACM Press, 2004, pp.
212-223.

➤ “Building Rich Web Applications with Ajax,” L.D. Paulson,
Computer, Nov. 2005, pp. 14-17.

➤ “Personalizing Web Sites with Mixed-Initiative Interaction,” S.
Perugini and N. Ramakrishnan, IT Professional, Mar.-Apr. 2003, pp.
9-15.

➤ “User Interface Continuations,” D. Quan and colleagues, Proc. 16th
Ann. ACM Symp. User Interface Software and Technology (UIST
03), ACM Press, 2003, pp. 145-148.

Resources

26 IT Pro July ❘ August 2006

W E B S I T E D E S I G N

Figure 6. Car shopping through a table-based continuation interface.

The user, who is interested in a Lexus that has fuel effi-
ciency comparable to that of a Toyota Camry, clicks on
Camry in the list labeled Model (a).The site prunes sev-
eral choices from each list and reveals an mpg of 30 to
34 (b).To supply this retrieved information in a new line
of inquiry to a fully populated instance of the table, the
user checks the MPG box and clicks on the Continue
button (c). This yields a table instance with only the
makes, models, and years of automobiles that get 30 to
34 mpg, and the user clicks on Lexus to find the model
with the desired fuel efficiency (d).The site reveals that
the Lexus ES 330 model meets the user’s fuel efficiency
requirement (e).

(a)

(b)

(c)

(d)

(e)

July ❘ August 2006 IT Pro 27

Procedural information-seeking and information aggre-
gation are suitable for a variety of tasks, especially infor-
mation refinding—the process of pursuing information
you found once and would like to find again.

Designers can add the continuation feature to a variety of
interface designs with the exception of the generative inter-
faces.A generative interface creates a hierarchy tailored to
the user’s needs,not one that directly solves an information-
seeking task,procedural or otherwise.It is possible,however,
to add the continuation feature to the hierarchy that results
from interacting with a generative interface.

Procedural tasks are common in solving complex
constraint satisfaction problems. For example, consider a
tourist planning a trip to Europe who
must not only develop a carefully
staged schedule of events (the train
arrives in London at 3:00 pm,rental car
will be available at 3:30 pm, and hotel
check-in is at 4:00 pm), but also satisfy
constraints in the process (the Louvre
is closed on Sundays). The ability to
automatically cascade output from one
information-seeking process into
another will be an important ingredi-
ent in supporting such activities.

CHARACTERIZING THE DESIGN SPACE
As Figure 7 on the next page shows, the three features we

have presented form three dimensions along which inter-
face designs lie. Combinations of the three features form
the cube’s eight corners; however, only six corners contain
examples.There are no examples at the intersection of

• rigid navigation orders, unexposed dependencies, and
supported procedural tasks or

• rigid navigation orders, exposed dependencies, and sup-
ported procedural tasks

because these are not a good fit for interacting with Web
hierarchy.

The figure also reveals interesting relationships. For
example, exposing dependencies requires flexible naviga-
tion orders, but the reverse is not so.The use of enumera-
tion and the capability to supply input out-of-turn are
mutually exclusive. If the current Web page enumerates
all possible choices for all possible unspecified facets, the
user has no need to interact out of turn. Likewise, the use
of enumeration and generation are mutually exclusive.
Exposing and exploring dependencies comes free through
the pruning of choices for facets in both enumerative and
out-of-turn designs, but an enumerative design reveals
more dependencies at once, since it presents all choices for
all (unspecified) facets on one page. Thus, augmenting an
out of turn interface with real-time query expansion can
make more dependencies salient on a single page. Finally,

adding the continuation facility to all but generative inter-
faces provides support for procedural tasks.

IMPLEMENTATION ISSUES
Choosing the best implementation technology is an

important part of developing interfaces to information hier-
archies.The main issue is how to distinguish the sophistica-
tion built into the interface from the back-end computations
(databases, dynamic Web page generation, and so on).

If the user’s interaction with the site is intended to com-
municate inputs and receive Web pages in return, imple-
menters must assess how the site represents and captures
inputs, transforms pages, and determines who is responsi-

ble for maintaining the state of the
interaction. If there is no need to sup-
port out-of-turn input, for example,
designs can use hyperlinks or pull-
down menus at the browser level,
possibly augmenting static pages with
JavaScript code. Implementing such a
design requires no costly lookup,map-
ping, or transformation operations.
Out-of-turn input, on the other hand,
requires some facility to map the user’s
unresponsive inputs to hyperlink labels
(tags) and, more important, to trans-

form the site to accommodate out-of-turn input.
XUL (XML User Interface Language, http://xulplanet.

com) supports the construction of cross-platform browser
toolbar plug-ins, to capture and communicate out-of-turn
input, for use with the Mozilla Firefox Web browser.SALT
(Speech Application Language Tags) and X+V (XHTML+
Voice) provide suitable support for voice interaction.
XSLT (Extensible Stylesheet Language Transformations)
is helpful for Web site transformation.

New Web technologies such as Ajax (Asynchronous
JavaScript and XML) support more effective communica-
tion between front- and back-end components.Ajax is par-
ticularly helpful in handling any asynchronous user
communication,a requirement for rich and responsive Web
interaction. For this reason,Ajax is ideal for implementing
real-time query expansion and other within-page designs,
such as those in table-based interfaces. Ajax facilities are
crucial to the draggable maps in Google Maps (http://maps.
google.com), for example. Ajax is also suitable for devel-
oping the mapping module while minimizing browser-
server communication.In addition, toolkits such as the PLT
Scheme servlet API (http://www.plt-scheme.org), which is
based on first-class closures and continuations, provide a
sound approach for realizing stateful Web interactions,
especially those required for the continuation feature.

NEXT-GENERATION OPTIONS
New designs will undoubtedly emerge as the user inter-

face design community better understands users’ goals.

Choosing the best
implementation
technology is an

important part of
developing interfaces

to information
hierarchies.

28 IT Pro July ❘ August 2006

Supporting what-if analysis, for example, requires addi-
tional operations such as union and intersection over inter-
mediate results,which might be stored in a scratchpad akin
to the online shopping cart.Another practical interaction
feature is one that would let the user preview a page before
clicking on the link or button that retrieves it. This “I just
want to see what’s behind the current page” capability is
important in scenarios where users are unsure if clicking
the submit button, for example, will place a charge on their
credit card. Such novel features will provide the next gen-
eration of interface options to support compelling inter-
actions with Web hierarchies. ■

Saverio Perugini is an assistant professor of computer sci-
ence at the University of Dayton. Contact him at saverio@
udayton.edu.

Naren Ramakrishnan is an associate professor of com-
puter science and faculty fellow at Virginia Tech. Contact
him at naren@cs.vt.edu.

For further information on this or any other computing
topic, visit our Digital Library at http://www.computer.
org/publications/dlib.

W E B S I T E D E S I G N

Sony’s Advisor

Vanilla hierarchy Out-of-turn
interface

Generative
interface

Out-of-turn
interface +
real-time query
expansion +
continuation

Out-of-turn interface + continuation

Enumerative
interface +
continuation

Epicurious.com

Apple iTunes

kbb.com

RigidUnexposed

Wine.com

Procedural tasks

Dependencies

Exposed
Out-of-turn
interface +
real-time query
expansion

Navigation
orders

Flexible

Unsupported

Supported

Figure 7. Characterizing the design space of interfaces
to hierarchical Web sites.

Three key features—flexible navigation orders, exposing and exploring dependencies, and procedural task sup-
port—form the cube’s three dimensions.At all but two corners, are examples of interfaces, some of which are exist-
ing Web sites.

