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ABSTRACT
We present an approach to reconstructing chemical reac-
tion networks from time series measurements of the concen-
trations of the molecules involved. Our solution strategy
combines techniques from numerical sensitivity analysis and
probabilistic graphical models. By modeling a chemical re-
action system as a Markov network (undirected graphical
model), we show how systematically probing for sensitivi-
ties between molecular species can identify the topology of
the network. Given the topology, our approach next uses de-
tailed sensitivity profiles to characterize properties of reac-
tions such as reversibility, enzyme-catalysis, and the precise
stoichiometries of the reactants and products. We demon-
strate applications to reconstructing key biological systems
including the yeast cell cycle. In addition to network recon-
struction, our algorithm finds applications in model reduc-
tion and model comprehension. We argue that our recon-
struction algorithm can serve as an important primitive for
data mining in systems biology applications.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining; I.2.6
[Artificial Intelligence]: Learning - Induction

General Terms: Algorithms, Measurement, Experimenta-
tion.

Keywords: Systems biology, graphical models, Markov net-
works, ordinary differential equations, network reconstruc-
tion.

1. INTRODUCTION
Algorithms in computational biology and bioinformatics

are helping rapidly yield new insights into biological and
biochemical processes. While much of today’s excitement
is focused on analyzing data from high-throughput screens
(e.g., microarrays, RNAi assays), significant research is also
being conducted in constructing and simulating mathemat-
ical models of key biological processes, such as the cell cy-
cle [5], circadian rhythms, and entire signaling pathways [2].
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These models capture not only qualitative properties of the
underlying process but also quantitative traits as revealed
by mutant experiments [16]. As shown in Fig. 1, such math-
ematical modeling typically begins with a chemical reaction
network (CRN), which is then converted to a set of simul-
taneous ordinary differential equations (ODEs), which are
then numerically simulated to yield time series profiles of
the participating molecular species. These profiles are then
matched with real data and the model is adjusted to account
for discrepancies. More sophisticated methods involving bi-
furcation plots and phase portraits shed further insight into
the qualitative dynamics of the underlying system.

In this paper, we study the inverse problem, i.e., analyz-
ing time series profiles of the molecular species to recon-
struct the CRN (see Fig. 1, dotted lines). This finds uses
in not just systems biology, as studied here, but also in any
domain where chemical reaction systems form the origins
of the underlying numerical model (ODE), such as petro-
chemical plant engineering, environmental engineering, food
processing, and manufacturing.

Reconstructing CRNs is relevant not just for system iden-
tification but also for model reduction. For instance, it is
well acknowledged that models of key biological processes
are notoriously complex and difficult to comprehend for hu-
mans [2]. A key task therefore is to reduce the reaction sys-
tem to a smaller system, involving fewer reactions and/or
molecules, but yet retain the essential dynamical properties
of the system. Given a complex mathematical model of,
say, a biochemical process, we can simulate the model to
generate data and reconstruct a (potentially) smaller model
by mining the generated dataset. Such a model → data →
model transformation is currently a hot topic in computa-
tional systems biology [14].

Pertinent data for mining CRNs can hence be gathered
from either experimental observations or computational sim-
ulation. The former is the subject of works such as [15] and
requires ‘wet-lab’ machinery as described in [1]. In this pa-
per, we focus on data from computational simulations of
mathematical models for three reasons: the ease of gener-
ating data on demand from the given CRN in a controlled
fashion, the capability to systematically perturb the CRN
and observe the modified dynamics, and the desire to verify
our algorithms on some ‘ground truth.’ Table 1 summarizes
the input-output description of the network reconstruction
problem studied here as well as the methods available to ob-
serve, interrupt, or otherwise modify the behavior of the sys-
tem. This setting of the CRN mining problem is pertinent
in computational modeling and systems biology contexts.



Figure 1: CRN mining is the inverse problem of reverse-engineering a set of chemical reactions that can
reproduce the dynamics observed in a given time series dataset.

Our primary contributions in this paper are four fold.
First, we introduce CRN mining as a new KDD problem
and cast CRN mining as the task of mining an undirected
graphical model followed by annotating edges and groups of
edges with chemical reaction type information. In essence,
we capture the dynamics of the network by modeling each
species as a random variable and by looking for indepen-
dence relations between them.

A key issue in mining graphical models among a given set
of random variables is to decide whether to detect dependen-
cies or (conditional) independencies. If we choose to detect
dependencies, we must take care to distinguish between di-
rect and indirect dependencies. To avoid this issue, classical
algorithms (e.g., see [3]) are hence almost exclusively based
on detecting independencies, either by explicitly identifying
such constraints and summarizing them into a network, or
by defining the score of a network based on such relation-
ships and searching in the space of networks. Our second
contribution is to show how the novel setting of CRN mining
permits us to mine dependencies and yet avoid detecting in-
direct dependencies, a feature not achievable in traditional
(discrete) graphical model mining contexts. Further, our
algorithm for CRN mining involves a O(n2) computation
(where n is the number of species) in contrast to algorithms
that have exponential running time complexity in the worst
case for mining graphical models.

Our third contribution is the notion of ‘sensitivity tables’
as pattern matching constraints to identify reaction types,
such as whether it is a reversible or irreversible reaction, en-
zyme catalyzed or not, and the precise ratios between the
molecules of reactants and products. We hasten to add that
we cannot unambiguously distinguish between all possible
chemical reaction types and we precisely state the distinc-
tions that we are (un)able to make.

Finally, we demonstrate the application of CRN mining
to reconstructing many important biochemical networks in
systems biology applications, including prokaryotic gene ex-
pression regulation and the CDC-Cyclin2 interaction form-
ing the core of the budding yeast cell cycle.

2. RELATED RESEARCH
CRNs have been well studied in bioinformatics applica-

tions. Most of the dynamic behavior of cells can be reduced
to the underlying (bio)chemistry of how molecules such as
genes, proteins, and RNA interact, catalyze reactions, and
contribute to the proper functioning of cells. Hence studying
a biological system by casting it as a CRN is typically the

Table 1: Setting of the CRN mining problem.

Given
Number of species
Identities of species
Time series profiles of molecular concentrations

To find
Reaction network
Properties of individual reactions

Perturbation capabilities

Can buffer given species (either singly or in subsets)
Can knock-out given species (either singly or in subsets)

first step in mathematical modeling. For our purposes here,
we focus on research that attempts to reconstruct CRNs.

The 1997 paper by Arkin, Shen, and Ross in Science [1]
is credited with creating interest in CRN mining; it also
presented an all-pairs correlation method for reconstructing
the underlying network, with applications to the glycoly-
sis metabolic process. However, the method described in [1]
cannot distinguish between direct and indirect dependencies
and can thus result in spurious edges. In addition, it assumes
that all species are eventually connected and hence cannot
recognize disconnected components, such as the simultane-
ous set of chemical reactions: {A←→ B, C ←→ D}.

There have been many papers that were motivated by
the Arkin, Shen, and Ross work described above. For in-
stance, Wiggins and Nemenman [19] present a method to
analyze time series to infer process pathway, which can be
construed as representing calling invocations of one pathway
by another. However, their method is aimed at producing a
general network of relationships from genomic data and not
at reconstructing chemical reaction networks. A more the-
oretical approach is taken in [13] but its strong guarantees
of the soundness of network reconstruction are obtained by
restricting the focus to discrete dynamical systems, which
capture the functional behavior of regulatory networks but
not CRNs. More recently, Karnaukhov et al. [9] focus on
the reaction identification problem by assuming a general
parameterized form for the kinetics of the reaction and fit-
ting rate constants by least squares fitting. This work builds
on earlier work by the same authors [8]. CRN mining as
studied here subsumes reaction identification as a sub-goal.

Thus, our formulation of CRN mining is novel for its at-
tempt to model both the dependence structure of chemical
species and the properties of individual reactions.



3. SOME CHEMISTRY FOR DATA MINERS
Before we present our algorithm for reconstructing chem-

ical reaction networks, we review some basic chemistry and
established practices in the mathematical modeling of chem-
ical reactions. This is the subject of many excellent books,
such as [11] which especially focus on modeling for bioin-
formatics applications. For the data mining audience, we
present an abridged version of this literature involving only
topics necessary to understand the ensuing algorithm.

3.1 Modeling a Single Reaction
The simplest example of a chemical reaction is the irre-

versible isomerization reaction

A
k1−→ B. (1)

where k1 denotes the rate at which species A is converted
into B. If the concentrations of the species A and B are
represented by xA and xB, the dynamics of (1) can be for-
mulated by a set of ordinary differential equations (ODEs)



dxA

dt
= −k1xA,

dxB

dt
= k1xA.

(2)

A typical trajectory of xA and xB in this simple system is
shown in Figure 2 (a).

The reaction (1) is a special case of the reversible isomer-
ization reactions

A
k1←→
k2

B. (3)

The corresponding ODEs are:


dxA

dt
= −k1xA + k2xB ,

dxB

dt
= k1xA − k2xB.

(4)

A typical trajectory for this system is shown in Figure 2 (b).
Both reactions (1) and (3) are linear. The simplest non-

linear example is the bimolecular reaction

A + B
k1−→C. (5)

The corresponding ODEs are given below.
8

<

:

dxA

dt
= −k1xAxB ,

dxB

dt
= −k1xAxB ,

dxC

dt
= k1xAxB.

(6)

A typical trajectory of equation (6) is shown in Figure 2 (c).
The kinetics in reactions (1), (3) and (5) are simple mass

action kinetic laws. But equations can be more complicated.
Consider the enzyme-substrate reactions

E + S
k1←→

k
−1

ES
k2−→E + P. (7)

Here E represents enzyme species, whose total concentra-
tion E0 = xE + xES remains as a constant in this chemical
process. The corresponding ODEs are

8
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>
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:

dxS

dt
= −k1xExS + k−1xES,

dxE

dt
= −k1xExS + (k−1 + k2)xES,

dxES

dt
= k1xExS − (k−1 + k2)xES,

dxP

dt
= k2xES.

(8)

When k1 and k−1 are much larger than k2, we can assume
the first two reactions in (7) reach partial equilibrium. This
partial equilibrium assumption can be formulated by

k1xExS = k−1xES. (9)

When k2 is in a similar magnitude of k−1, the equilibrium
assumption (9) does not hold any more. But a steady state
assumption can be made. It assumes that the concentration
of ES remains a steady state after a transient period, which
is formulated as

k1xExS = (k−1 + k2)xES. (10)

It turns out that (9) is a special case of (10). Let kM =
k2+k

−1

k1
. With the assumption that E0 is much smaller than

xS, we can derive

dxP

dt
=

k2E0

kM + xS

xS. (11)

Let k = k2E0

kM +xS
. The equation (11) is called the Michaelis-

Menten equation. It reduces the enzyme-substrate reaction
(7) into a simple reaction

S
E
−→P. (12)

denoting that substrate S is catalyzed by enzyme E to form
product P . But (12) is fundamentally different from the
simple reaction (1) because it follows the nonlinear enzyme
kinetics (11). A typical trajectory of the reaction (12) is
shown in Figure 2 (d).

3.2 Modeling Sets of Reactions
A chemical reaction network (CRN) is composed of many

reactions. Suppose N species are involved in M reaction
channels in a CRN. Let the concentration of these species
be denoted by xi, i = 1, · · · , N and the reaction channels be
denoted by Rj , j = 1, · · · , M . The dynamics of the system
can be formulated as

dx

dt
= f(x), (13)

where fi(x) =
PM

j=1 νijrj(x). Here ν is called the stoichio-
metric matrix. νij is the unit change of xi caused by the
reaction channel Rj and rj(x) is the reaction rate function
for the reaction channel Rj . For example, in the simple re-
action (1), there are two species and one reaction channel.
ν = [−1, 1] and r1(x) = k1xA. In the bimolecular reac-
tion (5), ν = [−1, −1, 1] and r1(x) = k1xAxB. In the
reduced enzyme-substrate reaction (12), ν = [−1, 1] and
r1(x) = k2E0

kM +xS
.

But often the state space in (13) can be reduced by ap-
plying conservation laws and partial equilibrium or steady
state assumptions. Examples of the partial equilibrium as-
sumption and steady state assumption are given in (9) and
(10) for the enzyme-substrate reaction (7). Conservation
laws can be applied for all examples shown above. For ex-
ample, for reaction systems (1) and (3), the sum of xA and
xB remains as a constant. That can be formulated as

xA + xB = C0. (14)

With this conservation law, we only need to formulate the
dynamics of one variable. The other can be directly cal-
culated from (14). Thus the dimension of the state space
in both equations (2) and (4) can be reduced by 1. In the
bimolecular reaction (5), there are two conservation laws



xA + xC = C0,

xB + xC = C1.
(15)

With the two constraints, the dimension of the state space
in equation (6) can be reduced to 1.



(a) A
k1−→ B (b) A

k1←→
k2

B (c) A + B
k1−→C (d) S

E
−→P

Figure 2: Dynamics of reactions 1, 3, 5, and 12, respectively. Parameters used in the above plots: (a) k1 = 1,
xA(0) = 100 and xB(0) = 0. (b) k1 = 3, k2 = 1, xA(0) = 100 and xB(0) = 0. (c) k1 = 0.001, xA(0) = 100, xB(0) = 200
and xC(0) = 0. (d) k1 = 1, k−1 = 10, k2 = 1, xS(0) = 100 and xP (0) = 0.

For a complex CRN, the ODEs and the algebraic con-
straints can be put together. Then we obtain a set of differential-
algebraic equations (DAEs)

x
′ = f(x, y), (16)

0 = g(x, y), (17)

where (16) is the differential part and (17) is the algebraic
part.

3.3 Sensitivity Analysis
Sensitivity analysis is widely used in optimization, param-

eter estimation, uncertainty and stability analysis. (Here we
demonstrate its applications to data mining and network re-
construction.) For a CRN represented by a set of DAEs, the
system often contains uncertainty due to unknown kinetic
rates, environment fluctuations, and other unknown possible
reaction pathways. They can be represented as parameters
in DAEs. We can rewrite the equation (16-17) as

x
′ = f(x, y, p), (18)

0 = g(x, y, p), (19)

with initial conditions x0 = x0(p) and y0 = y0(p). Sensi-
tivity reflects the change rates of the state variables x and
y with respect to the change in the parameter p, which are
calculated by dx

dp
and dy

dp
.

The sensitivity functions dx
dp

(t) and dy

dp
(t) can be obtained

from the numerical time series data or estimated by finite
difference methods during the process of solving the original
DAEs and derived sensitivity equations. Software such as
DASPK (in Fortran) [4] and CVODES (which comprises the
CVODE [6], KINSOL, and IDE software components in C)
have in-built capabilities to perform sensitivity analysis of
DAEs.

4. USING SYSTEMATIC PROBING TO IDEN-
TIFY CRNS

Referring back to the experimental context in Table 1,
we present an approach to reconstructing chemical reaction
networks by systematically perturbing the network to iden-
tify relationships between the given species. (Although such
perturbations are well studied in biochemistry, leading to
the notion of minimal cut sets in biochemical networks [10],
they have primarily been used for engineering flux patterns,
not for CRN mining.) As Table 1 shows, there are two main
classes of perturbations available: buffering and knock-out
experiments.

4.1 Buffering experiments
Buffering involves providing enough supply (intake) of

some species, thus forcing it to stay constant. In the cor-
responding DAEs, this is equivalent to replace the corre-
sponding differential equation by a simple algebraic equa-
tion. Note that buffering will break the corresponding con-
servation constraints.

For example, consider a simple chain reaction system

A
k1−→ B

k2−→ C. (20)

The corresponding equations are
8

<

:

dxA

dt
= −k1xA,

dxC

dt
= k2xB ,

xA + xB + xC = C0.

(21)

If we perturb the initial value of A (let xA(0) = p), we can

calculate the corresponding change resulted in C (by dxC

dp
).

We then know A and C are connected in the system. If
B is buffered, xB stays as a constant. Then the equations
become

8

<

:

dxA

dt
= −k1xA,

dxC

dt
= k2xB,

xB = B0.

(22)

We conduct the sensitivity analysis again and we will get
dxC

dp
= 0! This shows that after B is buffered, A and C be-

come disconnected. We can then conclude about the struc-
ture of this network: A affects C through B.

4.2 Knock-out experiments
A second type of perturbation that is common in biol-

ogy is the knock-out, i.e., to remove a molecule completely
by rendering it inactive or unable to participate in the re-
action. Engineered biological systems by knocking out key
molecules are referred to as mutants. In the corresponding
DAE, knock-outs correspond to a special form of buffering,
namely replacing the respective species variables to zero.

However, knock-outs, while useful at understanding loss-
of-function, are not very revealing for reconstructing CRNs.
For instance, compare the chain reaction:

A−→B−→C

with the enzyme catalyzed reaction:

A
B
−→C



By buffering B, we can distinguish between the two cases by
detecting whether dxC

dp
= 0 (first case) or whether dxC

dp
> 0

(second case). Here p is the initial value of A as before.
However, if we knock out B from the respective equations,
both of them result in dxC

dp
= 0! For this reason, in this

paper, we exclusively focus on buffering as a means to probe
CRNs.

4.3 CRNs and Graphical Models
The above observations hint at the relationship between

CRNs and undirected graphical models [12]. We first setup
the correspondence between a given CRN and a correspond-
ing graphical model. For ease of presentation, in the follow-
ing lemmas and results, we assume only bimolecular reac-
tions (i.e., each reaction connects only two species) although
our algorithmic implementation and experimental results in-
volve both bimolecular and trimolecular reactions.

Definition 1. Given a CRN N (a set of molecular species
and a set of chemical reactions between them) we define
the undirected graph G(N ) corresponding to N as the graph
whose nodes corresponds to the species in N and whose edges
connect nodes that participate in a common reaction.

Note that different CRNs might induce the same undi-
rected graphical model. For instance, the reaction sets A←→
B ←→ C and A −→ B −→ C induce the same graph even
though the former involves reversible reactions and the lat-
ter involves irreversible reactions. Nevertheless, the follow-
ing results (stated without proof due to space limitations)
demonstrate that mining graphical models is an useful first
step to reconstructing CRNs.

Lemma 4.1. Given a network N and its undirected graph
G(N ), node n1 is conditionally independent of node n2 given
a set of nodes nX in G(N ) iff the following applies: after
buffering nX in N , the sensitivity of n1 to n2 (and vice
versa) is zero.

A direct application of Lemma 4.1 would require us to
search through an exponential set of possible conditioning
contexts. Instead, as stated earlier, we will seek to identify
dependencies.

Lemma 4.2. Given a network N and its undirected graph
G(N ), an edge exists between node n1 and node n2 in G(N )
iff the following applies: the sensitivity of n1 to n2 (or vice
versa) after buffering all other molecules in N is non-zero.

Unlike Lemma 4.1, Lemma 4.2 requires only a search
through O(n2) conditioning contexts. Then why don’t tradi-
tional Markov network learning algorithms utilize a similar
approach? This is because to verify each of the O(n2) condi-
tional dependencies, the conditioning set involve n− 2 vari-
ables and, even if each variable takes on only two values, we
will have to investigate 2n−2 settings for conditioning con-
texts. Besides the exponential complexity, projecting to n−2
variables typically will retain very few tuples, typically not
sufficient to estimate dependence. Other works such as [3]
acknowledge these issues and, in fact, incorporate the size of
the conditioning context in their analysis of algorithm com-
plexity. However, in CRN mining, these limitations do not
apply since there is a proportional, rather than exponential,
cost to a buffering experiment w.r.t. the size of the con-
ditioning context (i.e., the number of buffered molecules).
Furthermore, the limitations of sample data sizes do not ob-
viously arise in a buffering experiment.

5. ALGORITHMS FOR CHEMICAL REAC-
TION NETWORK RECONSTRUCTION

Our approach to CRN reconstruction begins by first re-
constructing the underlying graphical model (Algorithm 1:
InferGraphicalModel) followed by cataloging the individual
edges or groups of edges into reactions (Algorithm 2: Find-
Reactions). These are detailed next.

Algorithm 1 InferGraphicalModel

Input: V, ODEv

Output: S

for all i, j ∈ V (i < j) do
(S(i, j), S(j, i))← BufferedSim(i, j, V − {i, j}, ODEV )

end for

Algorithm 2 FindReactions

Input: V, S

Output: Bi, T ri

for all i, j ∈ V (i < j) do
if |S(i, j)| ≥ stol or |S(j, i)| ≥ stol then

E ← E ∪ {i, j}
end if

end for
Initialize all elements of CV to be 0
SI ← sign(S, stol)
for all ek, em ∈ E (k < m) do

if ek and em share a vertex b s.t. ek = {a, b} and
em = {b, c} and Tri.find({a, b, c}) = false then

reactions← LookupTriReaction({a, b, c}, SI)
if reactions is not empty then

Tri.add({a, b, c}, reactions)
set CV ({a, b}), CV ({b, c}), CV ({c, a}) to be 1

end if
end if

end for
for all e = {h, i} ∈ E do

if CV ({h, i}) = 0 then
reactions← LookupBiReaction({h, i}, SI)
if reactions is not empty then

Bi.add({h, i}, reactions)
end if

end if
end for

5.1 Reconstructing Network Topology
InferGraphicalModel takes as input V , the set of all chem-

ical species whose dynamics are given by the system of ODEs
in ODEV . As stated earlier, it conducts a O(n2) buffered
simulation to identify sensitivities between all pairs of molecules
(in both directions). Here, S(i, j) denotes the sensitivity
of j to the initial concentration of i. InferGraphicalModel
produces as output the sensitivity matrix S whose non-zero
entries encode the graphical model.

The next algorithm, FindReactions, takes as input the set
of chemical species as before and the just computed sensi-
tivity matrix S. It produces as output the list of detected
bimolecular reactions in Bi and trimolecular reactions in
Tri. First, it thresholds the sensitivity matrix S into SI .
The array CV is used to hold a CoVer for the molecular
species and their dependencies, i.e., to see if a dependency



detected in InferGraphicalModel has been ‘explained’ by a
chemical reaction. Initially no dependencies are explained,
hence CV , indexed by the dependencies, is initialized to
zero. Algorithm FindReactions then proceeds to look for
trimolecular reactions that fit the sensitivity profiles com-
puted in SI (using Table 3, explained in the next section)
and if a suitable reaction is found, the array CV is updated
suitably. Only after all trimolecular combinations are ex-
hausted does it proceed to look for bimolecular reactions.
At this point, it is important to mention that the algorithm
LookupTriReaction (not detailed here) searches through all
permutations of the given triple of molecules in establishing
a correspondence to sensitivity profiles.

5.2 Reconstructing Reaction Properties
It remains to be detailed how LookupTriReaction and

LookupBiReaction work. The advantage to these algorithms
is that they use sensitivities between pairs of molecules which
can actually be computed alongside the reconstruction algo-
rithm. Tables 2 and 3 contain the relevant information for
disambiguating reaction types. The same information is also
summarized graphically in Fig. 3. Rather than go through
each entry sequentially, we explain below how the sensitivity
table patterns can be used to make important distinctions.

Sensitivity changes with time. Let sA,B(t) be the time
series of sensitivity of B to the initial concentration of A.
We first discretize this time series into ‘+’, ‘-’, and 0 values.
The sign of the sensitivity profile, s(A, B), is then defined
as the sign of sA,B(ti) where ti is the time point at which
|sA,B(ti)| is maximum. We index into Tables 2 and 3 using
these signs and identify reaction types. Recall that Table 2
is meant to be used for identifying reactions between pairs of
molecules after Table 3 has been used to identify reactions
between triples. Also, Table 3 is richer in detail than Table 2
since it gives the signs of sensitivities of six basic trimolecular

reactions: A
B
−→ C, A ←→ B + C, A −→ B + C, A

A
−→

B + C, A
B
−→ B + C, and A + B −→ C, and under three

different buffering conditions.
We should point out that not all distinctions can be made

unambiguously. For instance, in Table 21, there are five pos-
sible reactions but only three distinct sensitivity patterns.
Hence some rows lead to multiple hypotheses. A direction of
future work is to develop a constraint engine that can reason
about such multiple hypotheses, across adjacent sensitivity
profiles, to achieve greater discrimination of detection.

5.2.1 Reversible versus Irreversible
Distinguishing between reversible and irreversible reac-

tions is straightforward, e.g., Table 2 can be readily used
to distinguish between A −→ B and A ←→ B by assessing
the sign of s(B,A).

5.2.2 Multiple reactants
This situation requires us to distinguish between the tri-

molecular reaction A + B −→ C and the combined set of
two bimolecular reactions {A −→ C, B −→ C}. s(A,B)
and s(B,A) are zero for the two bimolecular reactions but

1A note about the asterisk in this table: due to the process
of enzyme-substrate complex formation, the entry s(B,A) is
negative for the initial reaction and later changes its sign to
a plus as shown in Table 2. If we assume that the (initial)
concentration of B is much smaller than the concentration
of A, then this entry can be treated as a ‘+’.

s(A,B) and s(B, A) are negative in the trimolecular reac-
tion, thus enabling the distinction.

5.2.3 Multiple products
This situation is the converse of the previous case. Note

that A −→ B + C and the combined set of two bimolecular
reactions {A −→ B, A −→ C} have the same signs of sen-
sitivities according to Tables 2 and 3. Thus, A −→ B + C

and {A −→ B, A −→ C} cannot be distinguished in our
approach.

5.2.4 Stoichiometry
Stoichiometry refers to the relative ratios of molecules that

participate in a reaction. Thus, the only distinction between
the reactions: A←→ B and 2A ←→ B is one of stoichiom-
etry. Using only the signs of the sensitivity entries, these
reactions cannot be disambiguated. On the other hand, if
information about the magnitude of the sensitivity is avail-

able, e.g., if we know that
sA,A(t)

sB,A(t)
≈ c and

sA,B(t)

sB,B(t)
≈ c,

then we can conclude the existence of reaction cA←→ B in
steady state.

5.2.5 Enzyme catalysis
An enzyme-substrate reaction can be modeled with either

mass action kinetics or Michaelis-Menten kinetics. When
the enzyme-substrate reaction is modeled with mass action

kinetics, the sensitivity profiles are identical for A
B
−→ C

and A+B −→ C (see row 3 of Table 3). On the other hand,
if the enzyme-substrate reaction is modeled with Michaelis-
Menten kinetics, then these reactions can be disambiguated
(see row 4 of Table 3).

5.2.6 Auto-catalysis
Auto-catalysis is the situation where a molecule catalyzes

a reaction that it itself participates in. It is easier to detect
if the catalyst is the product, rather than the reactant. For

instance, as can be seen in Table 2, A −→ B and A
A
−→

B have the same sensitivity profile, whereas A −→ B and

A
B
−→ B can be distinguished. Similarly, in Table 3, A −→

B + C and A
A
−→ B + C have the same sensitivity profile

(see row 2) and thus cannot be distinguished.

5.2.7 Detecting Groups of Reactions
The last two rows of Table 3 are especially designed to

detect common groups of reactions. The ‘+’ sign for s(C,A)
in both these rows helps detect the existence of a loop back
from molecule C to A which is not the case, for instance, in
rows 3 and 4 of Table 3. Within the last two rows, further
disambiguation about rate laws can be made using the sign
of s(A, B).

5.2.8 More Complex Dynamics
By capturing more of the dynamics, these tables can be

put to further use in reaction identification. For instance,

consider the task of distinguishing A
B
−→ C from A+B −→

C (using rows 3 and 6 of Table 3). When A is buffered,

s(A,C) and s(B,C) grow boundlessly in A
B
−→ C. Whereas,

in A + B −→ C, s(A, C) is limited by B. Hence, s(A, C)
stops increasing after reaching steady state.



Table 3: The ‘All but 2’ sensitivity table used to identify chemical reactions involving 3 molecules.

Reaction(s) A buffered B buffered C buffered
s(B,C) s(C,B) s(A,C) s(C,A) s(A,B) s(B,A)

A←→ B + C - - + + + +

A −→ B + C or A
A
−→ B + C 0 0 + 0 + 0

A
B
−→ C or A + B −→ C + 0 + 0 - -

A
B
−→ C (Michaelis-Menten) + 0 + 0 0 -

A
B
−→ B + C + 0 + 0 + -

A
B
−→ C or A + B −→ C with C −→ A + 0 + + - -

A
B
−→ C with C −→ A (Michaelis-Menten) + 0 + + 0 -

Table 2: The Bimolecular sensitivity table used to
identify chemical reactions involving 2 molecules.

Reaction s(A,B) s(B,A)

A −→ B or A
A
−→ B + 0

A←→ B or 2A←→ B + +

A
B
−→ B +∗ -

Figure 3: A graphical notation (not meant to be
a probabilistic graphical model) of the information
from Tables 2 and 3. A solid arrow from node X

to node Y exists if sensitivity of Y to initial value
of X is positive. A dashed arrow from node X to
node Y exists if sensitivity of Y to initial value of X

is negative. No arrow denotes a sensitivity of zero.

6. LIMITATIONS AND
POSSIBLE SOLUTIONS

Thus far, we have made two critical assumptions that are
necessary to the success of our reconstruction algorithm:

1. Between a given pair or triple of molecules, there is at
most one reaction.

2. The rate laws governing the reactions fall into the cat-
egories of either the mass-action formulation (equa-
tions 2) or Michaelis-Menten kinetics (equation 11).

These assumptions are not difficult to surmount but their
removal is beyond the scope of this paper. Consider for in-
stance the network in Fig. 4 governing how cells in frog egg

Figure 4: CRN governing cell-cycle transitions in
frog egg extracts.

extracts divide. The core of this network involves a clique
of four nodes (molecules) with six overlapping reactions be-
tween them! To recognize such a circuit, where dynamics be-
tween a given set of molecules are best explained by multiple
reactions, we must be able to decompose observed sensitivity
profiles into additive combinations of smaller components,
each of which corresponds to a basic reaction. The second
problem is applicable in situations where reaction rates do
not fall into the two basic types studied here. For instance,
rate laws can be highly non-linear and involve more than
one enzyme to catalyze a given reaction. Further, very fast
rate constants can cause drastic changes in concentrations,
too quick to be detectable by analyzing data.

Both these problems can be alleviated by numerical mod-
eling of sensitivity profiles rather than the discrete approach
of sensitivity tables as studied here. For instance, numerical
optimization can be used to find fits to parameterized reac-
tion laws and by repeatedly modeling the residual, we can
detect multiple reactions spanning a given set of molecules.
The last two rows of our ‘All but 2’ sensitivity table (Ta-
ble 3) provide a limited capability in this regard and which
we have used in the studies described below.

Finally, we mention that, in real applications, data col-
lected from wet-lab experiments always contain some errors.
We have to be aware that these errors are usually much
larger than the numerical errors in the case studies described
below. However, one advantage of our algorithm is its ro-
bustness. We do not require an accurate measurement of the
sensitivity, just the signs of the sensitivities (relative to our
threshold of 10−8 which can be tuned based on reliability of
the measurements).

7. EXPERIMENTAL RESULTS
Our experimental results are focused on reconstructing

key CRNs underlying important biological processes (see Ta-



Table 4: Summary of CRNs reconstructed and evaluation statistics.

ODE/sensitivity CRN mining
Model # species # reactions Recall Precision solution time (10−3s) time (10−3s)
CDC-Cyclin2 interaction loop (Fig. 5) 6 6 0.83 0.83 42.3 0.27
Arkin’s computational circuit (Fig. 6) 7 6 1 1 167 0.51
Prokaryotic gene expression model 9 8 0.875 0.875 97.6 0.56
Frog egg extracts (Fig. 4) 8 8 0.75 0.857 58 0.38
Generic yeast cell cycle model (Fig. 7) 16 21 0.857 0.88 637 2.31

Figure 5: The CDC-Cyclin2 interaction loop form-
ing the core of the budding yeast cell cycle. Cour-
tesy John Tyson.

Figure 6: A CRN designed to serve as a computa-
tional element (i.e., as a logic gate).

ble 4). Here we depict the number of species and reactions
for each system but hasten to add that the complexity of a
CRN cannot be judged merely on these factors alone. For
instance, the rather innocuous looking system from Fig. 1,
referred to as the ‘oregonator’, forms the model for many
reaction-diffusion systems and can exhibit very complex dy-
namics including sustained oscillations. It is hence the range
of qualitative behaviors that can be exhibited by the system
that constitutes its complexity.

For each CRN studied here, we formulated the corre-
sponding ODE as described in Section 3, and generated data
corresponding to each ODE using the CVODE software [6].
All rate law equations were modeled using either mass ac-
tion kinetics or Michaelis Menten kinetics. For each pair
of molecules, the buffering algorithm buffers all but these
two molecules, and the sensitivity profiles between these

Figure 7: Generic CRN of the budding yeast cell
cycle. Regulatory modules are given by the shaded
rectangles. The different symbols denote different
classes of proteins, e.g., the ‘PacMan’ denotes active
forms of regulated proteins. Courtesy John Tyson.

molecules are computed. A tolerance of 10−8 was used
to discretize the computed sensitivities. This information
drives the reconstruction of topology and reaction character-
istics. The results are evaluated using metrics of recall (num-
ber of correctly reconstructed reactions as a fraction of true
reactions) and precision (number of correctly reconstructed
reactions as a function of all reconstructed reactions). In
assessing correctness, to allow partial matches, we evaluate
reversible reactions in both directions (i.e., if the algorithm
reconstructs the reaction in only one direction, we count it
as one out of two reactions inferred correctly).

The CRNs considered here span a variety of model sys-
tems in biology. The CDC-Cyclin2 interaction loop (Fig. 5 [17])
is the core signaling pathway driving progression through the
cell cycle. It is embedded inside the larger yeast cell cycle
model described in Fig. 7 [7]. A less complex model drives
cell cycle transitions in frog egg extracts, as described ear-
lier in Fig. 4. Two other models considered here are a CRN
underlying gene expression regulation in prokaryotes, which
are primitive organisms such as bacteria that do not con-
tain membrane-bound organelles (not shown due to space
considerations) and a CRN meant to serve as a generic logic
gate (Fig. 6).

As Table 4 reveals, our algorithm achieves consistently
high values of recall and precision across these CRNs. The
three reasons it fails to find correct reactions or infers spu-
rious reactions are: the inherent inability to distinguish be-
tween certain types of reactions (as discussed earlier), rapid
reaction rates that mistakenly cause the algorithm to infer



lack of connectivity between some species, and the restric-
tion to at most one reaction between a given pair or triple
of molecules. Even with these caveats, it is clear that the
algorithm can be used as a primitive to identify key circuits
underlying a collection of molecules.

Table 4 also tabulates the time taken to reconstruct each
CRN along with the time taken to solve the ODE as well
as the associated buffering/sensitivity analysis experiments.
Observe that the latter is a function of not just the size of the
CRN but also the stiffness of the underlying ODE. (A stiff
equation requires that the ODE integrator use an extremely
small stepsize due to components varying at different time
scales or because of underlying numerical instability.)

8. DISCUSSION
We have presented a novel application of data mining

methodology to chemical reaction system identification with
a marriage of numerical methods and graphical models. Our
work is the first to address CRN mining using KDD con-
cepts and methodology. The O(n2) buffering experiments
required for our algorithm is not a severe constraint and
special purpose combinatorial equipment can be utilized in
larger systems. The supplementary website http://bioinfor
matics.cs.vt.edu/CRNMining provides sufficient details to
reproduce the experiments described here.

Our future work focuses on three directions. First, we
would like to employ an Apriori like approach to searching
for groups of reactions in a given sensitivity matrix, so that if
a given reaction can be ruled out from being present, so can
all its supersets. However, this requires careful understand-
ing of the areas where monotonicity constraints over the
dynamics of CRNs apply. Second, we desire to connect our
work better to theories of system identification, especially
as a way to control the complexity of network reconstruc-
tion. Our work has focused exclusively on the time domain
and more powerful analysis tools that work in the frequency
domain can be brought to bear here. Finally, we wish to
use our data mining algorithm as a aid to network compre-
hension, i.e., to summarize a complex CRN in terms of its
information processing capabilities. For instance, groups of
chemical reactions can be viewed as forming switches, am-
plifiers, or signal transducers [18]. By directly recognizing
such circuit motifs, we can aid in reconstructing not just the
structure of CRNs but their functional aspects as well.
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