
NActSeer: Predicting User Actions in Social Network
using Graph Augmented Neural Network

Mohammad Raihanul Islam
Virginia Tech, USA
raihan8@cs.vt.edu

Sathappan Muthiah
Virginia Tech, USA
sathap1@cs.vt.edu

Naren Ramakrishnan
Virginia Tech, USA
naren@cs.vt.edu

ABSTRACT
Nowadays social network platforms like Twitter, Facebook, Weibo
have created a new landscape to communicate with our friends
and the world at large. In this landscape our social activities, pur-
chase decisions, check-ins etc. become available immediately to
our friends/followers and thus encouraging them to involve in the
same activity. This gives rise to the question, given a user and her
friends’ previous actions, can we predict what is she going to do
next? This problem can serve as a good indicator enabling policy
research, targeted advertising, assortment planning etc. To capture
such sequential mechanism two broad classes of methods have been
proposed in the past. First one is the Markov Chain (MC), which
assumes user’s next action can be predicted based on her most
recently taken actions while the second type of approach i.e. Recur-
rent Neural Network (RNN) tries to model both long and short term
preferences of a user. However, none of the two classes of models
contain any integrated mechanism to capture the preferences of
neighbor’s actions. To fill this gap, we propose a social network
augmented neural network model named NActSeer which takes the
neighbors’ actions into account in addition to the user’s history. To
achieve this NActSeer maintains a dynamic user embedding based
on the activities within a time window. It then learns a feature
representation for each user which is augmented by her neighbors.
Empirical studies on four real-world datasets show that NActSeer
is able to outperform several classical and state-of-the-art models
proposed for similar problems and achieves up to 71% performance
boost.

CCS CONCEPTS
• Information systems → Data mining; • Human-centered
computing → Social network analysis; Social media; • Com-
puting methodologies → Neural networks.

KEYWORDS
Social Network, User Activity Prediction, Representation Learning
ACM Reference Format:
Mohammad Raihanul Islam, Sathappan Muthiah, and Naren Ramakrishnan.
2019. NActSeer: Predicting User Actions in Social Network using Graph
Augmented Neural Network. In The 28th ACM International Conference on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3358032

Lipstick on
a Pig#superbowl

Lipstick on
a Pig

NActSeer

#superbowl

Figure 1: A example of our NActSeer model functionality
wherein the sequence of actions by a user e.g. reading a book,
watching a movie, checking into a location or sharing spe-
cificmemes (hashtag) on socialmedia is taken as input along
with the users’ network connections. NActSeer then makes
use of these information to predict the actions likely to be
performed next by the user (best viewed in color).

Information and Knowledge Management (CIKM ’19), November 3–7, 2019,
Beijing, China. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3357384.3358032

1 INTRODUCTION
With the proliferation of social network platforms such as Face-
book, Twitter, Weibo, Instagram into our daily life, millions of
people can now connect with their friends and keep track of the
person they are interested in. One of the common features of social
network platforms is to provide different mechanisms for interact-
ing with a user’s content such as like, comment, share (retweet)
etc. These mechanisms help inform our friends about our new ac-
tivities and also help discover their activities which can have a
significant influence on our future actions. This constant sharing of
information about one’s activity in social media encourages some
sort of “bandwagon” effect. Here activities/actions refer to any type
of involvement in a social network site such as checking in a new
location, publishing a new meme, or commenting on a social media
post etc. An example of such phenomena is shown in Fig. 1, wherein
users pick up actions from their friends. Modeling and predicting
user activity in social media is important as it has a wide array of
applications e.g. in targeted advertising [26], policy making [36]
etc. Moreover it has a far reaching effect on different aspects of
the society e.g. in politics [4], scientific discovery [9], commercial
advertising [20].
Modeling user behavior in social network has been a long studied
problem in the literature [1, 8, 24, 28, 39]. For instance, Cheng et
al. [8] used a combination of structural, temporal and textual fea-
tures to predict the final cascade growth. Li et al. [24] introduced
an end-to-end model to estimate cascade size using a Recurrent
Neural Network (RNN). Arguably majority of these works are fo-
cused on finding the macroscopic pattern in social network and

Session: Long - Social Network CIKM ’19, November 3–7, 2019, Beijing, China

1793

https://doi.org/10.1145/3357384.3358032
https://doi.org/10.1145/3357384.3358032
https://doi.org/10.1145/3357384.3358032

not designed towards more granular level prediction. Very recently
several works have been proposed to predict user behavior on per-
sonal level [33, 41] by leveraging representation learning, wherein
the problem is cast as a binary classification problem. However,
such a formulation does not take the sequential nature into account
therefore evidently loses the information on dependency between
the actions. This motivates us to push this problem into a sequential
domain. Specifically, given a set of users’ action history and the
connectivity links between them our objective is to predict their
next actions.
Given a sequence of items or entities predicting the next entity
is a long studied problem in many domains e.g. text mining [37],
time-series prediction [7], traffic forecasting [25] etc. Generally
there are two broad classes of methods to model such problems.
First one is the markov chain model which exploits only the most
recent entities to predict the next entity. Secondly in the recent past,
deep learning models like RNN have been utilized to perform this
type of task. RNN can capture both short and long term transitions
between entities within a sequence at the cost of having more
parameters. Yet, the problem is more complicated in our context as
users continuously adopt their friends’ actions. However, RNN and
its variants are not geared towards that.
Present Work: Inspired by the success of representation learning
we present a deep learning architecture in this paper. We fruitfully
integrate the concept of feature representation for node in graph
and sequential prediction into a unified architecture to design our
proposed model NActSeer . For this purpose we introduce an addi-
tional gate to aggregate the recent actions of a user’s neighbors
and fuse it with his/her action representation. We integrate two
components to achieve this. First we generate a representation for
each user for each time span in our observation window. This rep-
resentation summarizes user’s actions and can be treated as user’s
feature vector for that time span. Then we predict the user’s next
action from her current state and her neighbors’ embedding.
Our contributions are as follows:
(1) Fine-grained Problem Formulation: We extend the binary
classification problem of user activity prediction in social network
into a sequential domain. The underlying problem is to predict
a user’s next action given all the user’s previous actions and the
connectivity between them.
(2) Novel Deep Architecture: Given this problem formulation
we propose a deep learning model called NActSeer . Our model
can aggregate the previous actions of a user’s neighbors and can
use this summarized representation to reinforce the prediction
of next action. In this work we build upon the Long short-term
memory (LSTM), however, this can be generalized to similar RNN
variants. NActSeer facilitates a hitherto uncombined components of
RNN, log-bilinear model, graph convolution, node representation
etc. A general comparison of features between NActSeer and other
methods proposed for similar problems in shown in Table 1.
(3) Rigorous Empirical Evaluation: We conduct a thorough em-
pirical evaluation of NActSeer with several state-of-the-art methods
in different experimental settings to illustrate the effectiveness
of NActSeer . NActSeer achieves up to 71% performance boost over
the state-of-the-art. Our analysis also shows NActSeer is able to cap-
ture a better action-action correlation that is helpful in predicting

Table 1: Comparison of various features between NActSeer
and state-of-the-artmethods proposed for similar problems.

Methods Sequential
Prediction

Compute
User

Embedding

Aggregate
Network

Information

Dynamic
User

Embedding

GCN [21] ✘ ✔ ✔ ✘

GraphSage [13] ✘ ✔ ✔ ✘

LSTM ✔ ✘ ✘ ✘

Caser [40] ✔ ✔ ✘ ✘

SASRec [19] ✔ ✘ ✘ ✘

NActSeer ✔ ✔ ✔ ✔

the actions of new users. We also found out having more neighbors
improves overall performance with a diminishing return.

2 PROBLEM FORMULATION
In this section, we introduce the necessary concepts and provide a
formal problem definition. Consider an undirected social network
G = (V, E) whereV is the set of users and E = V ×V represents
the connections between them. Suppose, in the network a user
v ∈ V can perform a fixed set of actions A. Actions represents any
activity performed by the user e.g. location check-ins, publishing
new memes or commenting on a particular photo etc. User can
repeat the same action many times e.g. commenting on the same
post or checking into the same place multiple times. An action
performed by a user v ∈ V can be represented as a tuple cvl =
⟨avl , s

v
l ⟩, where a

v
l ∈ A and svl represents the timestamp. l is index

of this action i.e. user v’s lth action. The timestamp represents the
actual time when user performs the action. Let us assume the entire
period of all the user history is L. Now for each user we can obtain
an action history pv for each v ∈ V . Now suppose all the users’
history is stored inH .
Problem Statement: Given a static social network G and all the
users’ history the goal ofNetwork Activity Prediction is to predict the
next action user v is going to perform. Formally given pv ,v ∈ V ,
where pv = {cv1 , c

v
2 , . . . c

v
l } our objective is to predict the next

action avl+1.

3 NACTSEER DESCRIPTION
Predicting the next action of a user can be modeled by a sequence
capturing method like Recurrent Neural Network (RNN). However
RNN or its variants e.g. Long short-term memory (LSTM) or Gated
Recurrent Unit (GRU) can only take the sequence of user’s previous
actions to predict her next probable action. There is no mechanism
to integrate her neighbors’ action history into these models. How-
ever, it is very much possible that a user can be influenced by her
friends or even friends of friends. As a result, we have the following
intuitions towards solving our Network Activity Prediction problem.
First, user’s next action can be determined by her own previous
actions. And secondly, neighbors’ recent actions can also play a key
role in the prediction. In order to take our assumptions into account,
our proposed NActSeer model considers both user’s previous action
and her neighbors to predict the next action. Now in describing
the mechanism of NActSeer we first describe how to generate a

Session: Long - Social Network CIKM ’19, November 3–7, 2019, Beijing, China

1794

Table 2: Important notations used in the paper

Notation Description

G The network between the users
V The set of users
A Set of all the actions a user can take
H The entire action history of all the users
pv The original action history for user v
qv The time span tagged user history for user v

X ∈ R|A|×Da The action embedding matrix
U ∈ R|V|×T×|Da | User embedding for all the time spans
Ut ∈ R|V|×|Da | User embedding for time span t
Uv,t ∈ R|Da | User v ’s embedding for time span t

Ũ ∈ R|V|×T×|Da | Network aggregated user embedding
for all time spans

Ũt ∈ R|V|×|Da | Aggregated user embedding for time span t
D Diagonal degree matrix
W Adjacency weight matrix

L The entire period of user history
T The number of time spans
P The number of diffusion steps
K User history size for each time span
Da , Dm action embedding size and state size

summary of the user’s actions. Then we outline how the neighbor’s
summary is aggregated with the user’s previous action. The set of
important notations we use is listed in Table 2.

3.1 Modeling User History
Representing Actions: Inspired from the recent success in repre-
sentation learning we represent each action by a fixed length vector.
Suppose the embedding of all the actions A are stored in a matrix
X ∈ R |A |×Da , where Da is the size of embedding for actions.
Discretizing the Timestamp of Actions: To integrate neigh-
bor’s previous actions into NActSeer we need a way to summarize
the actions for each user. To accomplish this for every action of a
user, we have to compute the summary of her neighbors’ recent ac-
tions. However, since social network usually contains huge number
of users with lots of activities this would impose a huge compu-
tational overhead. To resolve this we divide the entire period of
user actions into a fixed number of time spans. For example if the
entire time period (i.e. our observation window) (L) ranges over
multiple years then we can divide it by months or if it spans over
months then division by days can be a suitable choice. Suppose we
divide the entire time period L into T fixed time spans. Recall that
user’s entire history is pv = {cv1 , c

v
2 , . . . c

v
l }, where c

v
l = ⟨a

v
l , s

v
l ⟩.

Now if we divide the user action by time span then it becomes
qv = {⟨av1 , t

v
1 ⟩, ⟨a

v
2 , t

v
2 ⟩, . . . ⟨a

v
l , t

v
l ⟩}. Here t

v
l represents the dis-

crete time span in which svl falls i.e. tvl−1 < svl ≤ tvl , t
v
l ∈ N.

Representing Users by Their Actions: After tagging each user’s
action with a discrete time span we can compute the user embed-
ding for each time span using the action embedding matrix X. We
propose in our case user embedding should be computed for each
time span as user preferences are continuously changing. Now sup-
pose the user embedding matrix is U ∈ R |V |×T×|Da | . To compute

the user embedding Uv,t for v ∈ V at time span t we use the
actions she takes on time span t . However, within a time span a
user can take a lot of actions, this is especially true for active users.
Therefore we consider K most recent actions for a time span t i.e.
⟨cvt,nt−K+1, c

v
t,nt−K+2 . . . c

v
t,nt ⟩, where nt is the number of actions

within the time span t . On the other hand, if the user performs less
than K actions in a time span we can pad it with actions from the
previous time span. HereK is a parameter to be set manually. Given
this sequence of actions we can employ any sequence model to
compute the user embedding. However, a complex model would re-
quire more computational power. Therefore we use the log-bilinear
model (LBL) [22, 29] to accomplish this. LBL is a feed forward neu-
ral network model with one hidden layer. Now given the K most
recent actions of a user v at time span t the user embedding Uv,t
can be computed using the following equation:

Uv,t =
K∑
k=1

Yke
v
t,k (1)

where Y ∈ RK×|Da |× |Da | is a trainable parameter of the model and
evt,k is the embedding of kth action in time span t for user v . In
this way given the entire user history H of all the users we can
compute the user embedding for every time span. For a given time
span t , Uv,t summarizes user v’s activity during t .
Leveraging action embedding to compute the user embedding has
several benefits. Since the embedding of a user will be used in
predicting her neighbors next action, computing user embedding
this way is more beneficial as it directly comes from the action
embedding matrix X. Static user features (e.g profile information)
are less valuable here as they are hardly correlated with user’s
next action preference. Moreover this type of information may
not be always available. However, if static feature for each user is
also available they can also be incorporated here by concatenation.
Lastly, in using such mechanism no retraining is required to obtain
embedding for a new user.

3.2 Aggregating Neighbor’s Preferences
After computing the user embedding for each time span we can now
aggregate it with the neighbor’s action preference. Recently several
Convolutional Neural Network (CNN) models have been proposed
which aggregate neighbor’s feature to generate representation for
each node [5, 21, 25]. We can leverage similar architectures to
compute an aggregated representation of the neighbor’s recent
actions. Suppose A(G) captures the network structure of graph G.
Now given all users’ embedding Ut ∈ R |V |×Da on a time span t ,
the network aggregated user representation Ũt ∈ R |V |×Da for the
P th order neighborhood can be computed as follows:

ŨP
t = NetAдд(Ut)

=

[P−1∑
i=0
[A(G)]i Ut

]
(2)

Ũt = [Ũ1
t ; . . . ; Ũ

P
t]Wn + bw

Here,Wn ∈ R
P×Da×Da and bw ∈ RDa are the model parameters.

Specifically
∑P−1
p=0 [A(G)]

p Ut results in a matrix of user embedding
for the P th diffusion step. We repeat this process for each diffusion

Session: Long - Social Network CIKM ’19, November 3–7, 2019, Beijing, China

1795

Items

Ti
m

e

U
se

rs

User History

User Network

User Embedding Matrix

vUser Timeline

Graph Augmented Recurrent Network

S
o
ft
m
a
x

P
re

d
ic

te
d

 N
e
x
t

A
c
ti

o
n

Figure 2: The overall architecture ofNActSeer. First the timestamp of the entire action history of all the users is discretized into
time spans. Then we apply log-bilinear model to obtain user embedding for each time span. The individual user action history
along with the user embedding is then fed to the LSTM part of the NActSeer model, where user embedding is aggregated given
the social network G (shown in dashed line). At the end of the sequence the hidden state of the LSTM is passed through a
softmax layer for next action prediction. We illustrate several possible actions a user can take in Fig. 1.

step to obtain P such user embeddings (i.e. each represents pth
order neighborhood where 0 ≤ p < P). Then we concatenate
them and pass it to a fully-connected network to obtain Ũt . This
way we can aggregate not just immediate neighbors but higher-
order neighborhoods as well. Now for the choice of A(G) we use
normalized graph Laplacian matrix. Given D the diagonal degree
matrix and W the adjacency weight matrix of G the normalized
graph Laplacian matrix is

A(G) = D−
1
2 (D −W)D−

1
2

3.3 Complete Architecture of NActSeer
The input to NActSeer is the time span tagged user action history
qv = {⟨av1 , t

v
1 ⟩, ⟨a

v
2 , t

v
2 ⟩, . . . ⟨a

v
l , t

v
l ⟩}. This is passed to the embed-

ding layer to convert it to a fixed length vector input.
Embedding Layer:Given qv = {cv1 , c

v
2 , . . . c

v
l }, where c

v
l = ⟨a

v
l , t

v
l ⟩

we represent each action avl ∈ A in the sequence as a vector. Recall
that embedding of all the actions are stored in a matrixX. To extract
the embedding aq of a specific action we can use the corresponding
one-hot vector q of size |A|. Now given qv we can obtain the action
embedding sequence xv = {xv1 ,xv2 , . . . xvl } where xi ∈ R

Da . Ad-
ditionally we can gather the corresponding user embedding for each
tvi ,∀i ∈ l . As a result, we obtain the embedding sequence for a user,
rv = {Ut1 ,Ut2 , . . .Utl } using Eqn. 1. It is to be noted that for each
single userv the corresponding embedding sequence consists of the
embedding of all other users i.e. R |V |×Da at each corresponding
time span (as it is required for NetAдд in Eqn 2). To avoid confusion
between Ut and Uv,t (which only refers to a single user’s embed-
ding i.e. RDa) we use the notation Utvl when discussing about
the user sequence rv . So from here on rv = {Utv1 ,Utv2 , . . .Utvl },
where Utvl ∈ R

|V |×Da . Finally, both the user sequence and the ac-
tion sequence are concatenated and given as input to the NActSeer
model.
Layer Normalization: We adopt the layer normalization [2] tech-
nique to normalize the inputs across features i.e. zero mean and
unit variance to help improve stability and accelerate the training
process. Suppose the input vector is x then layer normalization is
defined as

LayerNorm(x) = α ⊙
x − µ
√
σ 2 + ϵ

+ β

Here µ and the σ are the mean and variance of x and α and β are
learned parameters (i.e. scaling factors and bias). We apply the layer
normalization on the concatenated input sequences.
NActSeer Operation:NActSeer takes layer-normed action sequence
embedding xv and user embedding rv . The NActSeer equations are:

Ũ = NetAдд(Utvj) (3a)

x̃vj = xvj ⊕ Ũv,tvj (3b)

i j = σ (W i x̃vj +Q
ihj−1 + bi) (3c)

fj = σ (W f x̃vj +Q
ihj−1 + bf) (3d)

C̃j = tanh(W c x̃vj +Q
chj−1 + bc) (3e)

Cj = C̃j ⊙ i j + fj ⊙ Cj−1 (3f)
oj = σ (W o x̃vj +Q

ohj−1 + bo) (3g)
hj = oj ⊙ tanh(Cj) (3h)

HereW ∗ ∈ RDm×Da and Q∗ ∈ RDm×Dm are the parameters of
different gates within the RNN cell of NActSeer and ⊕ represents
element-wise addition.
Next Action Prediction: The score of an action to be taken next
can be computed by the following equation: waj+1 = Vahj + ba .
Here Va ∈ R |A |×Dm and ba ∈ R |A | . Now we can use a softmax
layer to compute the probability of each action a being adopted.

pãj+1 |hj =
exp(waj+1)∑

z∈A exp(wzj+1)
(4)

The final objective function the becomes

O = argmin
θ

(
−

∑
v∈V

l∑
j=1

[
log

(
pãj+1=aj+1 |hj

)])
(5)

where θ is the set of all the model parameters.

3.4 Expediting User Embedding Computation:
From Eqn. 3 we see that at each step of our recurrent network we
have to compute Eqn. 2. This imposes a huge computational burden
on the overall training process. So, we modify the computational

Session: Long - Social Network CIKM ’19, November 3–7, 2019, Beijing, China

1796

Algorithm 1: Computing User Embedding for a mini-batch
Input: a mini-batch of size B of time span tagged user activity qv for

v ∈ V
Output: Network aggregated user embedding matrix Ũt for the

mini-batch
1 for t ← 1 to T do
2 foreach v ∈ V do
3 Uv,t =

∑K
k=1 Ykc

v
t,k

4 for t ← 1 to T do
5 calculate Ũt from Eqn. 2
6 BatchU ser Embeddinд ← list()
7 for b ← 1 to B do
8 for j ← 1 to l do
9 extract user embedding Ũv,tvj from Ũt given time span tvj

10 add Ũv,tvj to BatchU ser Embeddinд

11 return BatchU ser Embeddinд ∈ RB×l×Da

Table 3: Statistics of the datasets used in the experiments.

Datasets # of
actions

of
users

of
edges

avg. # of
actions / user

avg. # of users /
action

Flickr 7568 12173 506283 30.081 27.0163
Flixster 12246 17532 114345 29.105 32.679
Gowalla 14897 18712 189206 29.031 29.691
Digg 3553 20002 47466 20.795 24.009

flow to pre-compute Ũ. For a single mini-batch we compute the
user embedding matrix U only one time then compute Eqn. 2 for
every time span t to obtain Ũ. We then extract the network aggre-
gated user embedding for corresponding time span as and when
necessary. A pseudocode is shown in Algorithm 1. The output of
Algorithm 1 is a matrix of network aggregated user embedding
BatchUserEmbeddinд ∈ RB×l×Da for a mini-batch of size B and
sequence length l . Now in the NActSeer cell we do not need to com-
pute Eqn. 3(a). We can just add the embedding (i.e. Eqn. 3(b)) and
then execute Eqn. 3(c–h). This removes the burden of computing
Eqn. 2 too many times and expedite training process. The code
for NActSeer is public available1.

4 EXPERIMENTAL FINDINGS
4.1 Experimental Setup
Datasets: We evaluate our model on four real-world datasets from
different domains. Some statistical information regarding the datasets
is shown in Table 3. The description of the datasets are:
• Flickr [6] is a photo sharing website where a user can mark
a photo as favorite and also make friends with other users. We
consider the act of marking a photo as an action. Here the task is
to predict which photo a user will mark next as her favorite.
• Flixster [18] is a movie rating website where users can become
friends with each other. Here giving rating to a movie is considered
as an action. Our goal here is to predict which movie a user will
rate next.

1https://github.com/raihan2108/NActSeer

• Gowalla [27] is a location sharing website where users can share
their current location. Users can also make friends with other users.
Each location checked-in by a user is considered to be an action in
our study. The objective here is to predict a user’s next location.
• Digg [16] is a popular news aggregator. Here users can vote the
news they like, which is treated as an action. Users can also form
friendship here which constitute the social network. We predict the
news post a user will vote for.
Competing Methods:We compare our model with state-of-the-
art methods proposed for related problems. In order to have a
thorough evaluation, we compare it against methods that can model
sequential input and also methods that can make use of network
structure.
• BayesianPersonalizedRanking (BPR) [34] is a popularmethod
in recommender system.We use a binary vector of size |A|, wherein
actions performed by a user in the past take the value of 1.
• LSTM is a widely popular RNN model for sequence modeling.
For this model we use the user’s previous action sequence to predict
the next action.
• GCN [21] is a CNN based model to learn feature representation
for nodes in graph. For input feature representation for users we
use similar input as used for BPR.
• GraphSage [13] is one of the state-of-the-art models for generat-
ing node embedding in large networks. It uses sampling technique
and various types of aggregators to learn features from a node’s
local neighborhood. Specifically we use the mean aggregator which
shows the best result for this problem. Here we use the same feature
representation as GCN for input.
• Caser [40] is a recently proposed CNN-based method for sequen-
tial recommendation. It captures the sequential nature of actions
by applying convolutional operations on the embedding matrix of
the most recently accessed items.
• SASRec [19] is a state-of-the-art model for sequential recom-
mendation. It uses positional embedding and multi-head attention
mechanism to detect the most relevant items.
For GCN, GraphSage, SASRec and Caser we use the codes published
by the original authors. We also tried Decision Tree and SVM clas-
sifier using the actions as features. However they show very poor
results (e.g. lower than 2% percentage value), so we skip them.
Parameter Settings: Unless otherwise specified we set the state
size of the model Dm = 64, user/action embedding size Da = 64,
context size K = 1, dropout prob. ∆ = 0.3. We run 100 iterations of
each model and report the best result. We set the value of T to 12
empirically.
Evaluation Metric: Given a users action history, acquiring the
next action can be treated as a retrieval task since an arbitrarily large
number of actions can be selected. Therefore an intuitive way for
evaluation is to apply ranking metrics used in information retrieval.
For this to work we rank all the actions by their probabilities and
consider the relevant action to be the actual actions taken by the
users. We use two widely popular ranking methods:
• map@κ: This represents the Mean Average Precision used in
information retrieval.
• hits@κ: The rate of top κ ranked actions containing the actual
next action taken by the user.
In the following sections we report and discuss about the perfor-
mance of NActSeer under different experimental settings.

Session: Long - Social Network CIKM ’19, November 3–7, 2019, Beijing, China

1797

https://github.com/raihan2108/NActSeer

4.2 How Effective Is NActSeer in Predicting the
Next User Action?

We show the performance of different methods in Fig. 3. We make
the following observations:
(1) NActSeer outperforms all the methods by a very good margin.
Performance gain ranges from around 5–71% in terms of hits@20
across different datasets. On the other hand for map@20 it is around
5–34%. For lower values ofκ sometimes the gain is even higher. This
demonstrates that NActSeer fruitfully combines the user’s previous
action and her neighbors’ actions to predict effectively.
(2) Although methods like GCN and GraphSage uses neighborhood
information they cannot exploit the sequential nature. As a result
they do not perform well.
(3) Though LSTM, SASRec and Caser can model the sequential
nature of the input they all suffer from the network aggregation
problem. Therefore their performance also hurts.
(4) We also notice that the non-neural method like BPR is not able to
perform quite well in this setting as it optimizes a very low number
of parameters compared to neural models. This demonstrates that
neural models are capable of capturing the action transition better
than the non-neural methods in this case.
(5) We observe that performance improves as κ increases. This is
expected since the target actions is more likely to be included if
more candidate actions are considered. Moreover, map@κ scores
are relatively lower as they also consider the position of the true
action among the candidate actions.

4.3 How Effective Is NActSeer in Predicting the
Actions of New Users?

To evaluate how does NActSeer perform in predicting the actions
of new users we train all the models on the action history of 70%
of users. Then we predict the actions of 20% of users (10% is used
for validation). During training we only use the induced subgraph
of users of the training set while in testing we use the entire graph.
The comparison is shown in Fig. 4. Here our observations are as
follows:
(1) NActSeer outperforms other methods with a gain of 17–33% for
hits@20 and 23–68% for map@20. NActSeer is able to make use
of the neighbors’ action to predict future actions for new users.
Moreover, since NActSeer represents a user by the actions she takes,
even the new user embedding is computed by the action embedding
(X) learned during the training. Hence NActSeer does not have to
learn the nuances of a new user allowing the model to improve its
prediction capability.
(2) SASRec is able to perform better in this experiment than Caser
because it does not have a separate user embedding matrix as Caser.
We believe since Caser cannot learn the user embedding for new
users its performance suffers. We note this observation is in line
with the results obtained in Kang et al. [19].
(3) GCN and GraphSage exhibits similar problems as before, though
they use a feature vector based on previous actions, they are unable
to learn the relationships between actions due to the non-sequential
mechanism. As a result they do not perform well.
(4) Finally similar as before BPR cannot perform as well as other
methods in this experiment as it lacks both the sequential and
network aggregation mechanisms.

Table 4: Comparison of NActSeer and other baselines
when NActSeer is trained only on the training graph. Best
result is shown in boldface while second best is shown in
underlined italics. We can see the event when NActSeer is
trained only on the training graph it can outperform other
baselines very well.

Datasets Methods hits@5 hits@10 hits@20

Flickr

BPR 2.365 5.061 9.686
LSTM 8.311 10.211 11.941
GCN 12.551 13.831 16.927
GraphSage 13.676 15.672 16.719
Caser 13.228 13.968 14.661
SASRec 12.178 14.255 15.497
NActSeer (Train graph only) 16.356 18.684 20.811

Gowalla

BPR 27.844 30.708 35.763
LSTM 38.355 43.328 47.078
GCN 39.722 45.857 51.078
GraphSage 41.355 46.328 48.911
Caser 41.646 45.821 48.651
SASRec 43.572 45.962 51.175
NActSeer (Train graph only) 51.389 51.950 55.262

4.4 How Useful Is the Expedited User
Embedding Computation?

Recall that in Algorithm 1 we show a faster way of computing the
user embedding for a mini-batch. Now we evaluate how does it ex-
pedite the training process. The comparison between the execution
time of normal and expedited computation is shown in Fig. 5(a).
We observe that the expedited computation method achieves up to
8.5% speed-up for each training iteration.

4.5 How Fruitful Is the Action Embedding for
Users With No Connection?

Generally when a new user joins the social network he/she does not
have any connections/neighbors. The lack of connectivity impose a
challenge as themodel only have to rely on action-action correlation
to predict user action. As a result, action embedding matrix X plays
a crucial role here as the model only have to rely on this to make
prediction for new users.
To evaluate how effective is the learned action embedding we use
the experimental setting described in Section 4.3 (i.e. predicting the
actions of new users). Only difference is during testing instead of
using the entire graph, which includes the connectivity from all
the users we use the training graph (i.e. the induced subgraph from
the users whose data is used for training). By using the training
graph we make sure that new users have no neighbors thereby
forcing the models to only leverage the learned action embedding
i.e. action-action correlation for prediction. The result is shown in
Table 4. We observe that this modified version of NActSeer is still
able to outperform other models by a very good margin. This shows
that the learned action embedding matrix of NActSeer is encoding
richer vocabulary of features that is helpful to predict the actions
of new users who does not have any connections with the existing
users.

Session: Long - Social Network CIKM ’19, November 3–7, 2019, Beijing, China

1798

hits@5 hits@10 hits@20
0

20

40

60

80

100

hi
ts

 (%
)

(a) Flixster

hits@5 hits@10 hits@20
0

20

40

60

80

100

hi
ts

 (%
)

(b) Gowalla

hits@5 hits@10 hits@20
0

20

40

60

80

100

hi
ts

 (%
)

(c) Digg

hits@5 hits@10 hits@20
0

20

40

60

80

100

hi
ts

 (%
)

(d) Flickr

map@5 map@10 map@20
0

10

20

30

40

50

60

70

80

m
ap

 (%
)

(e) Flixster

map@5 map@10 map@20
0

10

20

30

40

50

60

m
ap

 (%
)

BPR
LSTM
GCN
GraphSage
Caser
SASRec
NActSeer

(f) Gowalla

map@5 map@10 map@20
0

10

20

30

40

50

60

m
ap

 (%
)

(g) Digg

map@5 map@10 map@20
0

5

10

15

20

25

30

35

40

m
ap

 (%
)

(h) Flickr

Figure 3: Comparison of NActSeer with some state-of-the-art and classical methods proposed for related problems. Top and
bottom row show the HITS andMAP scores respectively.We can seeNActSeer outperforms all other methods in terms of HITS
and MAP score.

hits@5 hits@10 hits@20
0

20

40

60

80

100

hi
ts

 (%
)

(a) Flixster

hits@5 hits@10 hits@20
0

10

20

30

40

50

60

70

hi
ts

 (%
)

(b) Gowalla

hits@5 hits@10 hits@20
0

20

40

60

80

100

hi
ts

 (%
)

(c) Digg

hits@5 hits@10 hits@20
0

5

10

15

20

25

hi
ts

 (%
)

(d) Flickr

map@5 map@10 map@20
0

20

40

60

80

100

m
ap

 (%
)

(e) Flixster

map@5 map@10 map@20
0

10

20

30

40

50

60

m
ap

 (%
)

BPR
LSTM
GCN
GraphSage
Caser
SASRec
NActSeer

(f) Gowalla

map@5 map@10 map@20
0

20

40

60

80

100

m
ap

 (%
)

(g) Digg

map@5 map@10 map@20
0

5

10

15

20

m
ap

 (%
)

(h) Flickr

Figure 4: Comparison ofNActSeer with the competingmethods in case of predicting the actions of new users. We can seeNAct-
Seer outperforms other methods in both HITS and MAP scores. NActSeer outshines other models because 1) new user embed-
ding can immediately be calculated from their actions and 2) receiving rich signal from user’s neighbors.

4.6 Ablation Study
As our model contains components such as layer normalization
and dropout, we evaluate how our model performs without them.
For this we remove the components one at a time and finally both
and then compare the results with our default version of NActSeer .

The result is shown in Table 5 for Gowalla and Flickr dataset. We
see that removing layer normalization degrades the overall per-
formance a bit (almost 3% loss in case of map@20 for Gowalla).
Removing the dropout layer also decreases performance (∼8% re-
duction). As expected removing both components results in even

Session: Long - Social Network CIKM ’19, November 3–7, 2019, Beijing, China

1799

more decreased performance (∼ 30% reduction). But even then our
model outperforms all competing methods. It is also to be noted that
models like SASRec also uses these components but can not per-
form as well as NActSeer . As a result, we can conclude that NActSeer
provides superior performance even without layer normalization
and dropout.

4.7 Does the Number of Friends Have Any
Effect on Performance?

To see whether the number of friends has an effect on overall
performance we plot the number of correct predictions i.e. the
number of users for whom a correct prediction has been made vs
number of neighbors. We normalize the correct prediction count
by dividing the total number of users that has the corresponding
number of neighbors. The result is shown in Fig 5 (b) and (c). We can
see that havingmore neighbors improves the overall performance of
the users. This shows NActSeer successfully leverage the neighbors
activity to achieve better performance. However, this trend has a
diminishing return in the end.

Flixster Digg Flickr
0

20

40

60

80

100

Ex
ec

ut
io

n
tim

es
 (s

ec
on

ds
)

Expedited
Normal

(a) Execution Time

0 20 40 60 80 100 120 140
of friends

0.5

0.6

0.7

0.8

0.9

ra
tio

 o
f c

or
re

ct
 p

re
di

ci
to

ns

hits@5
hits@10
hits@20

(b) Flickr

0 20 40 60 80 100 120 140
of friends

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ra
tio

 o
f c

or
re

ct
 p

re
di

ci
to

ns

(c) Gowalla

Figure 5: (a) Comparison of execution time between expe-
dited and normal user embedding computation for differ-
ent datasets. We can see that expedited user embedding
computation significantly lowers the training time. (b) and
(c) Normalized count of correct predictions vs number of
neighbors/friends.We observe an increasing trend of perfor-
mance as the number of friends increases showing that in-
cluding neighbors actions improves performance. However,
the trend has an diminishing return.

4.8 Parameter Sensitivity
Here we show the sensitivity of NActSeer to its two most influential
parameters: the size of user’s history K and the of size diffusion
step P . For this we only change the values of a parameter keeping
other to default value. We observe that higher values of K leads to
lower performance (Fig. 6(a–b)). This means only the most recently
taken action is sufficient for the prediction. This phenomena has
also been observed in Kang et al. [19] for recommender system.
Next we vary the value of P and show the result in Fig. 6(c–d).
We notice that increasing P exhibits stable performance initially
however, it has a diminishing return in the end. Additionally it also
requires more computational time and power. As a result we set the
default setting of both parameters to 1 for the best performance.

4.9 Case Studies
Observing the Effect of Neighbors: Here we present two case
studies in two different datasets where neighbor’s previous actions

Table 5: Ablation study for Flickr and Gowalla dataset. Re-
moving layer normalization and dropout reduces the perfor-
mance.

Datasets Model Variants HITS MAP

5 10 20 5 10 20

Flickr

Default 65.84 71.08 83.69 35.42 36.2 37.14

(-) Dropout 48.69 49.87 51.09 15.25 28.39 31.96

(-) Norm. 41.55 48.23 53.89 21.11 25.32 30.88

(-) Both 25.37 39.86 61.56 9.76 11.77 13.23

Gowalla

Default 74.88 78.56 87.43 49.47 50.01 50.66

(-) Dropout 46.99 57.57 71.75 41.54 42.01 46.58

(-) Norm. 55.15 63.29 69.33 43.07 48.25 48.98

(-) Both 45.53 53.98 62.32 32.89 34.34 35.29

1 2 3 4
user histroy size K

55

60

65

70

75

80

85

hi
ts

 (%
)

(a) Flickr

1 2 3 4
user histroy size K

65

70

75

80

85

90

hi
ts

 (%
)

(b) Gowalla

1 2 3
diffusion step size P

55

60

65

70

75

80

85

hi
ts

 (%
)

(c) Flickr

1 2 3
diffusion step size P

65

70

75

80

85

90

hi
ts

 (%
)

hits@5
hits@10
hits@20

(d) Gowalla

Figure 6: Parameter sensitivity study. We show hits@5,
hits@10 and hits@20 for different values of K (a and b) and
P (c and d) in case of Flickr and Gowalla dataset.

affect the current user’s behavior. In Fig. 7 (a) we show one user and
her neighbor’s recently rated movies with the movie genre shown
in parenthesis for Flixster dataset. We observe that the friends of
the ‘User’ usually watch/rate movies of comedy/drama genre while
she prefers action/thriller genre. However, influenced by her friends
she chooses her next movie “His Girl Friday”, which was recently
watched by her friends. NActSeer is able to correctly predict this
instance as it incorporates the neighbor actions. We show a similar
case study for Gowalla dataset. We observe that two friends of the
‘User’ frequently visit a bowling alley however, the ‘User’ never
visited this one. Influenced by her friends she checks-in into the
place. This case is also correctly detected by NActSeer . In both

Session: Long - Social Network CIKM ’19, November 3–7, 2019, Beijing, China

1800

Hall
ow

ee
n

(T/H
)

Stal
ing

rad

(A
/W

)
Unforgiven

(A/W
)

Batt
lef

iel
d

Eart
h (

A)

The
 R

elu
cta

nt

Deb
uta

nte

(C
/R

)

Lo
ve

 in
 th

e

Afte
rno

on

(C
/D

) M
am

ma

Mia
(C

/R
)

Born
 in

Eas
t L

.A. (C
)

Rea
ch

 th
e

Roc
k (

C/D
)

His
Girl

Frid
ay

 (C
/D

)

His
Girl

Frid
ay

 (C
/D

)

The
 Empe

ror

Walt
z (

C/R
)

His Girl
Friday(C/D)

Friend 1

Friend 2

User

(a) Flixster

Bowling

Bowling Lounge

Bowling

City
Park

City
Park

Bar Lounge

Shopping

McDonald's

Friend 1

Friend 2

User

(b) Gowalla

Figure 7: How does incorporating neighbor’s actions benefitsNActSeer in (a) Flixster and (b) Gowalla. In (a) we show one recent
user who enjoys watching action/thriller movies while her two neighbors usually watch comedy/drama movies. We show the
movie genre in parenthesis (A, C, D, R, T, W represents action, comedy, drama, romantic, thriller and war respectively). Influ-
enced by the neighbors’ behavior she picks her next movie to watch as “His Girl Friday”, which was previously watched by her
friends. NActSeer is able to leverage information from the neighbors (shown in dashed line) and make the correct prediction.
Similarly in (b) user deviates from her usual check-in behavior and visits a bowling alley where her friend’s frequently visit,
which is correctly predicted by NActSeer. We only show the category of the place for privacy reasons.

cases we anonymize the name and place for privacy and only show
the category of the location. Note that in both cases, the correctly
predicted action achieved the top ranking (i.e. hits@1).
To summarize from these examples it can be seen that NActSeer
is successful in capturing the propagation of action preferences
between friends. This helps the model to identify break in trends
of a user behavior and effectively make the correct prediction.
Friend Recommendation: One of the usabilities of user embed-
ding is that it can be used for friend recommendation. To illustrate
this we draw a case study from Flixster dataset. For a correctly
classified next action (movie rating) we obtain the users (shown
in red) who have rated the same movie in recent times. We plot
the 2D embedding space of such users and their immediate neigh-
bors (i.e. first order) in Fig. 8. We observe that although the users
(shown in red) are not immediate neighbors to one another (shown
in blue) they are relatively closer than their first order neighbors.
Due to their similar nature they can be recommended to one an-
other. Therefore we can exploit the user embedding as a metric for
friend recommendation.

5 RELATEDWORK
In this section we discuss concepts related to user action prediction.
Sequential Recommendation: Sequential recommender systems
seek to model item-item transitions to capture the sequential pat-
terns between consecutive items [3, 19, 40]. FPMC [35] is a first-
order markov chain model with a matrix factorization term along
with an item-item transition matrix. Higher order chain can also
be incorporated to capture a deeper user history, however it is
often not necessary as discussed in [14]. Recently deep learning
based-models are also used to capture the sequential nature of user
preferences [3, 15, 19, 40]. For instance, GRU4Rec [15] uses GRU for
session based recommendation whereas Caser [40], a CNN based

0 0.25 .50 .75 1
0

.20

.40

.60

.80

1
Users of interest
First order neighbors

Figure 8: 2D user embedding of several non-neighboring
users who rated the same movie in the same time span
and their neighbors for Flixster dataset. We observe that
despite having no edge between them they position them-
selves quite close to each other. However, their immediate
neighbors (i.e first order) are quite far from them. As a result
they can be recommended to one another as friends. We use
TSNE for dimension reduction and remaining user embed-
dings are not shown to avoid clutter.

model, treats the embedding matrix of previous items as an image
and applies convolutional operation to capture the sequence. Finally
SASRec [19] uses self-attention mechanism to predict the next item
from user’s history. Although the above mentioned model tries to
predict the next item given user’s history, none of them take into
account the connection among the users’ as ours.
User Behavior Analysis: Existing works generally analyze the
user behavior in the form of cascade analysis. One of the research
interests in this topic is to predict the final size of the cascade [8, 24,

Session: Long - Social Network CIKM ’19, November 3–7, 2019, Beijing, China

1801

44]. These methods uses a wide range of handcrafted features [8,
43] or deep learning methods [17, 24] for the prediction. Another
line of works develop diffusion models and methods to maximize
influence in a social network [20, 28]. Apart from these, inferring
the social ties between users from information cascade has also
been analyzed [11, 42] along with studying the impact of external
influence in information propagation [30].
Representation Learning in Graphs: The representation learn-
ing in graphs can be categorized in two ways. The first line of work
tries to generate representation for the nodes in the network. Sev-
eral node embedding methods have been proposed in [12, 32, 38].
Recently CNN has been generalized to represent graph structure
to compute feature for nodes [5, 10, 21]. This type of model is first
introduced in [5], which is improved in [10] using fast localized con-
volution filters. The second line of work tries to represent the entire
graph or a portion of it as a fixed length vector [23, 31]. GAM [23]
exploits attention mechanism along with reinforcement learning
to compute representation for the entire graph, on the other hand
Patchy-San [31] uses a CNN architecture. Although these models
work on graph structure, none of the models deal with predicting
future actions like ours.

6 CONCLUSION
In this paper we present an intriguing problem of user action predic-
tion. To solve this problem we develop a network augmented RNN
model NActSeer which can take user’s neighborhood into account
to predict the user’s next action. We compare our model against
several state-of-the-art methods on several real world datasets of
various domains. NActSeer clearly outperforms all the other mod-
els. The Network Activity Prediction problem opens several new
directions for research in social network mining. One important
extension can be to extend the problem definition so that action can
have attributes. Another interesting concept is to extend the NAct-
Seer model so that it can handle additional input signals pertinent
to action. Finally predicting how user’s activities lead to a change
in the overall state of the network can be an interesting research
direction.
Acknowledgements: This work is supported in part by the Na-
tional Science Foundation via grants DGE-1545362, IIS-1633363.

REFERENCES
[1] Aris Anagnostopoulos, Ravi Kumar, and Mohammad Mahdian. 2008. Influence

and correlation in social networks. In KDD. 7–15.
[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).
[3] Alex Beutel et al. 2018. Latent Cross: Making Use of Context in Recurrent

Recommender Systems. InWSDM. 46–54.
[4] Robert M Bond et al. 2012. A 61-million-person experiment in social influence

and political mobilization. Nature 489, 7415 (2012), 295.
[5] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

Networks and Locally Connected Networks on Graphs. In NIPS.
[6] Meeyoung Cha, Alan Mislove, and Krishna Gummadi. 2009. A Measurement-

driven Analysis of Information Propagation in the Flickr Social Network. In
WWW. 721–730.

[7] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan
Liu. 2018. Recurrent neural networks for multivariate time series with missing
values. Scientific reports 8, 1 (2018), 6085.

[8] Justin Cheng, Lada Adamic, P. Dow, Jon Kleinberg, and Jure Leskovec. 2014. Can
Cascades Be Predicted?. InWWW. 925–936.

[9] Manlio De Domenico, Antonio Lima, Paul Mougel, and Mirco Musolesi. 2013.
The anatomy of a scientific rumor. Scientific reports 3 (2013), 2980.

[10] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In NIPS.
3844–3852.

[11] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. 2012. Inferring
networks of diffusion and influence. TKDD 5, 4 (2012), 1–37.

[12] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In KDD. 855–864.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeuroIPS. 1024–1034.

[14] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based
recommendation. In RecSys. 161–169.

[15] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based recommendations with recurrent neural networks. In ICLR.

[16] Tad Hogg and Kristina Lerman. 2012. Social dynamics of digg. EPJ Data Science
1, 1 (2012), 5.

[17] Mohammad Raihanul Islam, Sathappan Muthiah, Bijaya Adhikari, B. Aditya
Prakash, and Naren Ramakrishnan. 2018. DeepDiffuse: Predicting
the’Who’and’When’in Cascades. In ICDM. 1055–1060.

[18] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with
trust propagation for recommendation in social networks. In RecSys. 135–142.

[19] Wang-Cheng Kang and Julian McAuley. 2018. Self-Attentive Sequential Recom-
mendation. In ICDM. 197–206.

[20] D. Kempe, J. Kleinberg, and É. Tardos. 2003. Maximizing the Spread of Influence
Through a Social Network. In KDD. 137–146.

[21] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[22] Ryan Kiros, Richard Zemel, and Ruslan Salakhutdinov. 2014. A multiplicative
model for learning distributed text-based attribute representations. In NIPS. 2348–
2356.

[23] John Boaz Lee, Ryan Rossi, and Xiangnan Kong. 2018. Graph classification using
structural attention. In KDD. 1666–1674.

[24] Cheng Li, Jiaqi Ma, Xiaoxiao Guo, and Qiaozhu Mei. 2017. DeepCas: An End-to-
end Predictor of Information Cascades. InWWW. 577–586.

[25] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting. In ICLR.

[26] Yuchen Li, Dongxiang Zhang, and Kian-Lee Tan. 2015. Real-time targeted influ-
ence maximization for online advertisements. VLDB 8, 10 (2015), 1070–1081.

[27] Yong Liu, Wei Wei, Aixin Sun, and Chunyan Miao. 2014. Exploiting geographical
neighborhood characteristics for location recommendation. In CIKM. 739–748.

[28] Yasuko Matsubara, Yasushi Sakurai, B. Aditya Prakash, Lei Li, and Christos
Faloutsos. 2012. Rise and fall patterns of information diffusion: model and
implications. In KDD. 6–14.

[29] Andriy Mnih and Geoffrey Hinton. 2007. Three new graphical models for statis-
tical language modelling. In ICML. 641–648.

[30] Seth Myers, Chenguang Zhu, and Jure Leskovec. 2012. Information Diffusion
and External Influence in Networks. In KDD. 33–41.

[31] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In ICML. 2014–2023.

[32] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In KDD. 701–710.

[33] Jiezhong Qiu, Jian Tang, HaoMa, Yuxiao Dong, KuansanWang, and Jie Tang. 2018.
DeepInf: Social Influence Prediction with Deep Learning. In KDD. 2110–2119.

[34] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI. 452–
461.

[35] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalized markov chains for next-basket recommendation. InWWW.
811–820.

[36] Pawel Sobkowicz, Michael Kaschesky, and Guillaume Bouchard. 2012. Opinion
mining in social media: Modeling, simulating, and forecasting political opinions
in the web. Government Information Quarterly 29, 4 (2012), 470–479.

[37] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In NIPS. 3104–3112.

[38] Jian Tang et al. 2015. Line: Large-scale information network embedding. In
WWW. 1067–1077.

[39] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. 2009. Social influence analysis in
large-scale networks. In KDD. 807–816.

[40] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation
via convolutional sequence embedding. InWSDM. 565–573.

[41] Daheng Wang, Meng Jiang, Qingkai Zeng, Zachary Eberhart, and Nitesh V.
Chawla. 2018. Multi-Type Itemset Embedding for Learning Behavior Success. In
KDD. 2397–2406.

[42] Senzhang Wang, Xia Hu, Philip S Yu, and Zhoujun Li. 2014. MMRate: inferring
multi-aspect diffusion networks with multi-pattern cascades. In KDD. 1246–1255.

[43] Lilian Weng, Filippo Menczer, and Yong-Yeol Ahn. 2014. Predicting Successful
Memes Using Network and Community Structure. In ICWSM. 535–544.

[44] Linyun Yu et al. 2015. From Micro to Macro: Uncovering and Predicting Informa-
tion Cascading Process with Behavioral Dynamics. In ICDM. 559–568.

Session: Long - Social Network CIKM ’19, November 3–7, 2019, Beijing, China

1802

	Abstract
	1 Introduction
	2 Problem Formulation
	3 NActSeer Description
	3.1 Modeling User History
	3.2 Aggregating Neighbor's Preferences
	3.3 Complete Architecture of NActSeer
	3.4 Expediting User Embedding Computation:

	4 Experimental Findings
	4.1 Experimental Setup
	4.2 How Effective Is NActSeer in Predicting the Next User Action?
	4.3 How Effective Is NActSeer in Predicting the Actions of New Users?
	4.4 How Useful Is the Expedited User Embedding Computation?
	4.5 How Fruitful Is the Action Embedding for Users With No Connection?
	4.6 Ablation Study
	4.7 Does the Number of Friends Have Any Effect on Performance?
	4.8 Parameter Sensitivity
	4.9 Case Studies

	5 Related Work
	6 Conclusion
	References

