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Abstract
Retrieval-Augmented Generation (RAG) aims to augment the capa-
bilities of Large Language Models (LLMs) by retrieving and incorpo-
rating external documents or chunks prior to generation. However,
even improved retriever relevance can bring erroneous or con-
textually distracting information, undermining the effectiveness
of RAG in downstream tasks. We introduce a compact, efficient,
and pluggable module designed to refine retrieved chunks before
using them for generation. The module aims to extract and reorga-
nize the most relevant and supportive information into a concise,
query-specific, format. Through a three-stage training paradigm—
comprising supervised fine-tuning, contrastive multi-task learning,
and reinforcement learning-based alignment—it prioritizes critical
knowledge and aligns it with the generator’s preferences. This ap-
proach enables LLMs to produce outputs that are more accurate,
reliable, and contextually appropriate.
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1 Introduction
Large language models (LLMs) have demonstrated remarkable ver-
satility across a wide spectrum of natural language processing
(NLP) tasks, subsuming pipelines that were originally tailormade
for each task. Despite being trained on massive text corpora, LLMs
still face memory-related challenges such as out-of-date and out-of-
domain knowledge, and they occasionally hallucinate non-factual
or non-sensical content [64, 114]. To enhance the accuracy and reli-
ability of LLM-generated outputs, retrieval-augmented generation
(RAG) has emerged as a promising solution for knowledge-intensive
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tasks [26, 50, 115] (e.g. open-domain question and answering). RAG
systems typically follow a “retrieve-then-generate" paradigm [77],
where a retriever identifies relevant information from an external
corpus and uses this information to augment context in constituting
the input to a generative model (i.e., generator), thus yielding an
improved answer.

Despite its promise, a vanilla RAG system usually comes with
shortcomings that can hinder its effectiveness. One major issue is
semantic dissonance between the user query, the retriever, and the
generator. This occurs when the retrieved documents, while seman-
tically or contextually related to the topic, fail to directly address the
query, leading to suboptimal answers [18, 94]. Another challenge
pertains to the presence of noise, i.e. misleading, redundant, distract-
ing, or even erroneous information within the retrieved documents.
Such noise can misguide the generator, resulting in inaccurate or
incoherent answers [78, 81]. For complex tasks that necessitate
reasoning across multiple documents, the generator often strug-
gles to correlate dependencies and relationships between them [8],
leading to reasoning errors. For example, as illustrated in Figure
1, the correct answer while present in the retrieved chunks is not
captured by the vanilla RAG process. Additionally, RAG systems are
prone to the “lost-in-the-middle”[58] dilemma, where LLMs exhibit
a tendency to prioritize information presented at the beginning and
end of an input sequence, while paying less attention to the middle.
Finally, the lack of joint optimization between the retriever and
the generator exacerbates issues such as knowledge inconsistencies
[85] or knowledge conflicts [97], which prevent the generator from
producing accurate and contextually appropriate responses as the
retrieved knowledge fails to adequately support the generation.

Figure 1: An example comparing vanilla RAG versus RAG with Oreo
highlights the impact of redundant and scattered information within the
retrieved document chunks. In the vanilla RAG setup, even though the
retrieved chunks contain contextually relevant information to the query,
the presence of distractions and redundancy misleads the downstream LLM,
causing it to misinterpret temporal dependencies and generate an incorrect
answer. In contrast, Oreo effectively captures the essential evidence and
reconstructs the context, leading to accurate and correct responses.

https://orcid.org/0000-0003-4393-9977
https://orcid.org/0000-0002-1821-9743
https://doi.org/10.1145/3731120.3744590
https://doi.org/10.1145/3731120.3744590
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3731120.3744590


ICTIR ’25, July 18, 2025, Padua, Italy Sha Li and Naren Ramakrishnan

To address these challenges, many solutions have been proposed
in prior research. Techniques such as query decomposition [13, 44],
query rewriting [13, 60, 83, 87], and query expansion [48] aim to
improve retriever performance by refining or enriching the input
queries. Some studies have integrated rerankers [65, 104, 106] into
retrieval systems, which reorder and prioritize the most relevant
documents to ensure that the most pertinent information is pro-
vided to the generator. These works attempt to optimize the context
on the passage level and largely ensure relevancewith the query, but
they still face challenges in maintaining comprehensive attention
to the nuanced, finer-grained details of query-specific information.

Further advancements have been made in noise and redundancy
exclusion. For example, filters based on lexical and information-
theoretic approaches have been developed to identify and preserve
useful content while directly eliminating less relevant information
[38, 53, 88]. Summarization techniques [96] have been developed to
synthesize and condense query-focused information from retrieved
documents, leveraging extraction or abstraction methods. Compres-
sion techniques [12, 14, 15, 37, 38, 67, 103] extend this functionality
by generating summary vectors that encode essential information
for downstream tasks. While these methods improve efficiency,
they do not align the retriever and generator in a manner that
guarantees effective collaboration, which often result in knowledge
gaps and consequently incorrect or suboptimal generation. From a
training perspective, concurrent [30, 36, 55, 108] or asynchronous
[79, 111] training of retrievers and generators is a widely adopted
strategy to improve their interaction and collaboration [9, 30]. Al-
though such techniques foster synergistic improvements, they can
be computationally expensive and often require large amounts of
annotated data to achieve optimal results.

In this work we introduce Oreo , a cOntext REcOnstructor de-
signed to enhance the performance of RAG systems on knowledge-
intensive tasks by optimizing the quality of context and mitigating
knowledge inconsistencies. Oreo is implemented in a plug-and-play
manner, functioning as an intermediary module between the re-
triever and the generator. It receives document chunks from the
retriever and produces refined context tailored for the generator.
Instead of merely extracting critical tokens from the chunks, Oreo
reorganizes them and generates condensed query-aware summaries.
Additionally, Oreo synergizes the reconstructed context with the
generator’s behavior of knowledge acquisition, ultimately leading
to more accurate and contextually relevant answers.

Our work addresses the ICTIR 2025 theme of “LLMs + IR,
what could possibly go wrong?" The prevailing assumption in
many LLM+IR systems is that improving retriever relevance is al-
ways beneficial for downstream generation. However, our findings
challenge this intuition: we do not always obtain better answers,
especially when noisy, redundant, or poorly aligned content dis-
tracts the generator. Oreo exposes this tension and directly inter-
venes—reorganizing retrieved chunks into a cleaner, query-specific
format that more faithfully serves generation. While many in the
LLM ecosystem have embraced prompt optimization and instruc-
tion tuning to improve generation, relatively little attention has
been paid to what happens in the in-between space between re-
trieval and generation (other than re-ranking). Our work brings
this neglected middle into focus and thus core concerns that lie at
the heart of the ICTIR 2025 theme.

Our key contributions are:
(1) We propose enhancing the RAG by introducing a “retrieve-

reconstruct-then-generate" paradigm, offering a novel per-
spective on refining retrieved content for improved integra-
tion of external knowledge in RAG. Oreo overcomes the
lack of contextual integration among fragmented chunks in
vanilla RAG by extracting subtle relations from scattered
facts, and transforming redundant context into a concise
context.

(2) Oreo is a plug-and-play module, inherently modular, gener-
alizable, flexible and robust, powered by a three-stage train-
ing scheme comprising supervised fine-tuning, contrastive
multi-task learning and reinforcement learning. This enables
seamless integration with arbitrary retrievers, generators,
and off-the-shelf RAG systems.

(3) We demonstrate Oreo ’s efficiency, effectiveness and robust-
ness for both single-hop QA tasks (PopQA [62], NaturalQues-
tion (NQ) [45], TriviaQA (TQA) [40]), and multi-hop QA
tasks (HopotQA [102], 2WikiMultiHopQA [31]). On average,
Oreo contributes 5.115% downstream performance while
reducing the input token length for generator by 12.87x.

2 Methodology
We begin with a quick primer on general RAG and formulate our
problem (§2.1), followed by an overview of the proposed method
(§2.2) and details of each step (§2.3, §2.4, §2.5 and §2.6).

2.1 Problem Formulation
A typical RAG system comprises of two primary components that
work in tandem: the retriever R identifies and retrieves top-k docu-
ment chunks D = {𝑑1, 𝑑2, ..., 𝑑𝑘 } from an external knowledge base
based on their relevance to a given query q; the generator G then
produces the final answer for q by conditioning on the combination
of D and query q, formally expressed as 𝑦 = G(D, 𝑞). However,
the performance of such a general pipeline is compromised by rea-
sons we indicated in §1. Therefore, we propose Oreo to reconstruct
context by extracting the most supportive evidence from D, and
producing a concise, query-aware context C that aligns with the
knowledge acquisition mechanics and preference of G. An ideal
C should be produced after Oreo identifies essential entities and
facts from D, establishes their relations, and retains only the nec-
essary information for G to effectively answer q. This process goes
beyond plain information extraction, as it involves organizing and
synthesizing content into a coherent and query-specific context.
Therefore, we formulate the context reconstruction task as (itself)
a text generation problem.

2.2 Method Overview
Our method extends the standard RAG paradigm from “retrieve-
then-generate” to “retrieve-reconstruct-then-generate”. Specifically,
we train a text generation modelM𝜃 , parameterized by 𝜃 to map
the retrieved documents D into a refined context c that enables
the downstream generator G to produce more accurate answers for
an input query: 𝑐 = 𝑓M𝜃

(D, 𝑞). The training of M𝜃 involves three
stages: (1) M𝜃 is trained to learn the transformation from original
documents to refined context using annotated datasets (§2.4). (2)
Self-generated samples are incorporated to enhance the model’s
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ability to recognize and correct its own errors, thereby improving
robustness and generalization (§2.5). (3) The reconstructed context
is aligned with the generator’s knowledge acquisition process by
incorporating feedback from G(§2.6). However, obtaining an anno-
tated dataset with refined context for SFT is challenging. Drawing
inspiration from prior work [7], we replace human annotation with
advanced LLMs to generate high-quality synthetic oracle training
data (§2.3). An overview of the framework is depicted in Figure 2.

Figure 2: The framework of Oreo . (top) outlines the process of data collec-
tion and curation. (middle) demonstrates the three-stage training, which
comprises the supervised fine-tuning (SFT), contrastive multi-task learning
(CML) and reinforcement learning (RL) alignment. (bottom) illustrates the
application of Oreo vs. vanilla RAG.

2.3 Data Collection and Curation
Data collection. To train Oreo during the SFT stage, an anno-
tated dataset containing context with the most supportive evidence
from retrieved document chunks is crucial. Such context should
be query-specific, answer-aware, grounded in retrieved chunks,
and structured as a rationale chain capable of deriving the correct
answer. However, such datasets are not readily available, and man-
ually annotating evidence for each query is time-consuming and
labor-intensive. Fortunately, contemporary LLMs have exhibited
impressive instruction learning capabilities to extract useful infor-
mation [20] and generate high-quality reasoning steps [89] even
in few-shot settings [10]. In this work, we elicit such capability
from more advanced LLMs to our relatively smaller model Oreo ,
through generating a high-quality reasoning dataset using LLMs
and utilizing it as "gold context" to train Oreo . Specifically, given
a query and corresponding retrieved document chunks, we first
prompt Llama3-8B-Instruct [84] to extract key entities and events
fromD, and generate detailed rationales to answer the query. Since
we prioritize the information extraction capability of Oreo during
the SFT stage, to ensure reliability and minimize hallucinations, we

construct the gold training dataset solely from query-document
pairs where the ground-truth answer is explicitly present within
the retrieved chunks.

Bootstrapping. For queries where the generated reasoning fails
to include the ground truth (despite it being present in the retrieved
chunks), we bootstrap Llama3 by providing the correct answer and
iteratively reprompting it to perform generation. Such an iterative
process allows Llama3 to reason backwards and learn to generate
rationale chains that support the correct answer. This bootstrapping
process is inspired by [90, 109]. The prompts and demonstrations
used for gold context generation and boostrapping are provided in
Appendix A.

Data curation. Accurate extraction of supporting evidence and
reasoning from query to answer is essential for training M𝜃 . To
eliminate hallucination and ensure the quality of learning, we con-
duct data curation by applying the following rules. 1. Ground Truth
Alignment.We retain query-context pairs where the generated con-
text from Llama3 contains ground truth answers. 2. Entity and Event
Consistency. We extract sets of entities and events from both the
original documents and the Llama3-generated context. Instances
are retained only if the entities and events extracted from the gen-
erated context (E𝑔𝑒𝑛) are a subset of those present in the original
documents (E𝑜𝑟𝑖 ). By following these steps, the refined context
generated by Llama-3 is treated as “gold context" for training M𝜃 .

2.4 Supervised Fine-tuning
With the curated dataset constructed in §2.3, we employ supervised
fine-tuning (SFT) to elicit the ability of extracting and reasoning
from LLM to Oreo . Specifically, given a curated training dataset
T = {𝑥𝑖 , 𝑐𝑖 }𝑁𝑖=1, where 𝑥𝑖 is the combination of query 𝑞𝑖 , the associ-
ated retrieved document chunks D𝑖 and task instructions. The goal
of SFT is to train a sequential modelM𝜃 to generate target context
conditioned on the 𝑥 , and preceding tokens 𝑐<𝑡 of the context. The
model minimizes the negative log-likelihood over the gold context,
as defined by the following loss function:

L𝑆𝐹𝑇 =E(𝑥,𝑐 )∼T [−𝑙𝑜𝑔 𝑝M𝜃
(𝑐 |𝑥)]

= −
𝐿∑︁
𝑡=1

𝑙𝑜𝑔 𝑝M𝜃
(𝑐𝑡 |𝑥, 𝑐<𝑡 )

(1)

where p represents probability distribution of generation by the
modelM𝜃 .

2.5 Contrastive Multitask Learning
The SFT in §2.4 serves as the initial step in equipping Oreo with the
capability to reconstruct context. By emulating the behavior of an
LLM, SFT enables Oreo to extract critical entities, events, and facts
from D, capture subtle relationships and organize them into coher-
ent reasoning paths. This process ensures that the reconstructed
context effectively supports the generation of accurate and com-
plete answers for queries. However, autoregressive models trained
solely on ground truth data often demonstrate suboptimal gener-
alization performance. To address this issue, our goal is broader:
we seek to empower Oreo to identify its own errors and integrate
sequence-level supervised signals, which are critical for enhancing
conditional text generation into training, thus improving its gener-
alization. To achieve this goal, we introduce contrastive learning as
a complementary step following SFT.
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Construct contrastive samples. Inspired by [3], in addition
to using in-batch instances, we gather contrastive samples from
Oreo ’s own predictions. Specifically, we obtain the model’s top-n
recent predictions via beam search, rank and label them as positive
and negative pairs (𝑐+, 𝑐−) in descending order of sequence-level
similarity with the gold context C, using the ROUGE metric to
measure the similarity.

Margin-based pairwise loss. To guide the learning process, we
employ a pairwise margin-based loss that encourages Oreo to bring
positive candidates closer semantically to the retrieved document
chunks D while distancing negative ones. This ensures that the
positive candidates generated by Oreo capture the essential and
grounded information from D with the guidance of gold context,
while discarding irrelevant information. The pairwise loss function
is combined with the negative log-likelihood loss from SFT, forming
a multi-task learning process. The final loss function is expressed
as:

L𝐶𝐿 =
∑︁

𝑚𝑎𝑥{0, 𝑐𝑜𝑠 (𝐸D , 𝐸−𝑐 ) − 𝑐𝑜𝑠 (𝐸D , 𝐸+𝑐 )
+ 𝜂 ∗ (𝑟𝑎𝑛𝑘𝑐− − 𝑟𝑎𝑛𝑘𝑐+ )}
+ 𝛼L𝑆𝐹𝑇

(2)

where 𝐸 denotes the vector representations, 𝜂 is the hyperparame-
ter and 𝑟𝑎𝑛𝑘𝑐+/𝑐− denotes the ranking position of the candidates
respectively, meaning that the contrastive pair with a larger ranking
gap should have a larger margin [3, 113].

2.6 Reinforcement Learning Alignment
The supervised fine-tuning and contrastivemultitask learning stages
equip Oreo with the ability to capture critical evidence and retain
supportive information from retrieved content. However, knowl-
edge inconsistencies among the retriever R,Oreo and the generator
G persist due to their independent optimization processes. Addi-
tionally, training Oreo with keeping G as a black-box precludes
gradient back-propagation fromG to updateOreo . To address these
challenges, we incorporate reinforcement learning (RL) into Oreo
’s training pipeline following the above training stages. This step
enables Oreo learn from labeled ground truth of downstream tasks
by aligning their output with the needs of G to produce correct
answers. Specifically, we model G as a reward model and leverage
the discrepancy between G’s generated output and ground truth
as reward signals. Proximal Policy Optimization (PPO) [66, 80] is
employed to optimize Oreo in this alignment stage for its flexibility
and alignment with our reward-based objective, which directly in-
corporates generator feedback without needing labeled or synthetic
preference pairs.

Policy formulation and optimization. In this step,M𝜃 serves
as the policy 𝜋𝜃 . It takes the reconstructed context 𝑐 from prior train-
ing steps and returns a new 𝑐

′
, optimized by feedback from G. The

action space consists of all tokens in the corpus. At each step, the
parameterized policy 𝜋𝜃𝑡 selects an action 𝑎𝑡 in a given state 𝑠𝑡 to
maximize the discounted long-term reward E𝜋𝜃𝑡 [

∑𝑇
𝑡−0 𝛾

𝑡R(𝑠𝑡 , 𝑎𝑡 )].
Specifically, the action 𝑎𝑡 is predicting the next token, and state 𝑠𝑡
is the sequence of all preceding tokens. The objective function is:

L𝑅𝐿 =E[𝑚𝑖𝑛(𝑟𝑡 (𝜃 ) · 𝐴𝑡 , 𝑐𝑙𝑖𝑝 (𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖) · 𝐴𝑡 )]
− 𝛽 (𝑉 (𝑠𝑡 ) − 𝑅𝑡 )2

(3)

where 𝑟𝜃 =
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 ) is the ratio of the updated policy 𝜋𝜃 to
previous policy 𝜋𝜃𝑜𝑙𝑑 . PPO ensures stable and efficient updates by
clipping policy ratios, preventing excessively large changes that
could destabilize training. The parameter 𝜖 defines how much the
new policy can deviate from the old policy. 𝐴𝑡 is the advantage
function, measures whether or not the action is better or worse than
the policy’s old behavior, estimated using Generalized Advantage
Estimation (GAE) [76]:𝐴𝑡 =

∑𝐿
𝑙=0 (𝛾𝜆)

𝑙 (𝑅𝑡+𝑙 +𝛾𝑉 (𝑠𝑡+𝑙−1)−𝑉 (𝑠𝑡+𝑙 ))
where 𝛾 and 𝜆 are discount factors. 𝑉 (𝑠𝑡 ) is a critic network esti-
mating the value of state 𝑠𝑡 . 𝑅𝑡 is the estimated reward at time 𝑡 .
𝛽 (𝑉 (𝑠𝑡 ) − 𝑅𝑡 )2 weighted by 𝛽 minimizes the discrepency between
estimated and true values.

Reward estimation. With the downstream generator G serv-
ing as a reward model, the generation of Oreo by policy 𝜋𝜃𝑡 is
passed to G with query 𝑞 to generate the answer 𝑦. When the end
of sentence (e.g. <EOS>) token is generated, the corresponding
reward 𝑅𝑡 is obtained by comparing the generated answer 𝑦 with
ground truth answer 𝑦𝑔𝑜𝑙𝑑 , which is measured by the ROUGE score
𝑅𝑡 = 𝑅𝑂𝑈𝐺𝐸 (𝑦,𝑦𝑔𝑜𝑙𝑑 ). However, G generates answers only after
completing all tokens, but (3) updates every action step. To address
this, we incorporate a token-level weighting mechanism [101]. Con-
sidering that a token 𝑡 with higher generation probability deemed
more critical by the current policy. Consequently, the token’s con-
tribution to the final reward is proportionally adjusted. We estimate
the reward at each step 𝑡 using the formulation:

𝑅𝑡 = ROUGE(𝑦,𝑦𝑔𝑜𝑙𝑑 ) ∗ log(softmax(𝑒𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) )) (4)

Since the rewards estimated by (4) are sequence-level and sparse,
following [92], we regularize the reward function using a token-
level KL penalty to prevent the model from deviating too far from
the initialized LM. The final regularized reward estimation is:

𝑅𝑡 = 𝑅𝑡 − 𝛿𝐾𝐿(𝜋𝜃𝑡 (𝑎𝑡 |𝑠𝑡 ) | |𝜋0 (𝑎𝑡 |𝑠𝑡 )) (5)

3 Experiments
We evaluate Oreo across five open-domain question-answering
(ODQA) tasks, comparing its performance against a suite of base-
lines. Our experiments holistically assess the quality of recon-
structed context by Oreo along five critical dimensions: efficiency,
effectiveness, robustness, faithfulness and completeness. Our
primary emphasis is on short-term factual QA tasks, where the
answers are typically concise in a few tokens. These tasks are sen-
sitive to context quality and require precise evidence identification
and summarization, making them an ideal benchmark for evaluat-
ing the performance of Oreo . In this section, we provide details
of tasks and datasets (§3.1), baselines (§3.2) and experiment setup
(§3.3).

3.1 Datasets and Tasks
Datasets. We evaluate Oreo on both single-hop and multi-hop
open-domain question answering tasks. For single-hop QA, we
use PopQA (PQA) [62], NaturalQuestions (NQ) [45], and TriviaQA
(TQA) [40]. For multi-hop QA, we test Oreo on the more complex
HopotQA (HQA) [102] and 2WikiMultiHopQA (2WQA) [31], where
each question requires reasoning over multiple articles.

External knowledge source. For all experiments, we use the
Wikipedia dump [41] as the external knowledge source.
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Evaluation metrics. Following previous studies, e.g., [88], we
assess extractive QA performance (PopQA, NQ, and TriviaQA) using
the Exact Match (EM) metric, while abstractive QA performance
(HotpotQA and 2WQA) are measured using unigram F1.

We provide detailed statistics and experimental setups for each
dataset in Appendix B.

3.2 Baselines
For comparison, we focus on evaluating how effectively Oreo en-
hances vanilla RAG systems treating both the retriever and gen-
erator as black-box components, acknowledging that they may
be imperfect and not allowed to be fine-tuned. We compare the
performance of downstream tasks using five configurations:

(1) Query only. The answer generation is performed by using
only the query without incorporating any retrieved context.
This mostly relies on the internal knowledge of LMs

(2) Original full content. The context for answer generation
is the sequential concatenation of all retrieved document
chunks. This setup uses raw, unprocessed retrieval results

(3) Passage-level filtering. Only the most relevant chunks are
selected as context. Specifically, the chunk that is best-ranked
is chosen for each query. For single-hop tasks, only one
passage is selected, while for multi-hop tasks, two passages
are used

(4) Extraction and compression. We employ eight state-of-
the-art information extraction and compression methods to
select informative sentences and generate concise summaries
from retrieved documents. Specifically:

(a) CXMI-trainedmodel, following [88], uses conditional cross-
mutual information (CXMI) [24] to train a language model
to filter redundant context by quantifying each sentence’s
contribution to the correct answer

(b) Selective-Context [52] removes uninformative content
based on self-information

(c) LLMLingua [37] and LLMLingua-2 [67] apply perplexity-
based compression to retain sentences that most enhance
answer likelihood

(d) xRAG [14] encodes passages into a single embedding to-
ken, integrating them via modality fusion into the LM’s
representation space

(e) CompAct [103] is a progressive compression framework
that preserves query-aware content

(f) EXIT [34] employs an adaptive extractive pipeline to select
context based on query relevance

(g) Refiner [54] uses a decoder-only LLM to extract verbatim
query-relevant spans, organizing them by interdependen-
cies

(5) reconstructed context by using Oreo

3.3 Experiment setup
Retriever. To retrieve top-k document chunks for each query (𝑘 = 5
unless otherwise specified), we employ a range of off-the-shelf re-
trievers, including Contriver [49], DPR [41] and BM25 [74]. The
choice of multiple retrievers ensures that the robustness of Oreo
is tested against various retrieval mechanisms, each with different
strengths and weaknesses. Additionally, we extend our experiments

to include retrieval of the top-10 document chunks for 2WikiMul-
tihopQA to examine whether Oreo ’s performance is sensitive to
context length.

Downstream generator. We access how do the contexts gener-
ated by different methods described in §3.2 affect the downstream
generator by evaluating the performance of QA tasks. Specifically,
we use FLAN-T5 [17] and OPT-IML [35] as the downstream genera-
tor. (Note that, Oreo operates as an independent module, making it
compatible with various retrievers, generators, and other existing
RAG frameworks. )

Model and training. We employ T5-small [72] as the backbone
model for Oreo , though it is applicable to any encoder-decoder
and auto-regressive models such as LLaMA. Oreo is implemented
based on Transformer library [91], with RL implementation built
upon the open-sourced package RL4LM [73]. For CML, we allow
a maximum of 12 contrastive samples generated by Oreo and set
beam size as 8. Unless otherwise specified, Oreo is trained for 5
epochs during SFT and 3 epochs for CML stages, with batch size
4/8/16 based on the dataset size, and using a learning rate of 5𝑒 − 5.
Detailed parameter settings are listed in Appendix C.

Inference. During inference, we perform ablation studies by
varying the number of tokens produced byOreo to assess its impact
on performance.

4 Results and Analysis
We seek to answer the following questions through experiments:

(1) How does Oreo perform in the RAG pipeline for QA tasks
compared to alternative context configurations outlined in
§3.2? (§4.1)

(2) To what extent does Oreo reduce input token length and
balance inference latency while improving QA performance?
(§4.2)

(3) How robust is Oreo to noisy contexts and perturbations in
chunk order? (§4.3)

(4) Howwell doesOreo generalize to out-of-distribution datasets
unseen during training? (§4.4)

(5) How effective isOreo in generating context that are complete
to the query and faithful to the retrieved chunks? (§4.5)

(6) How does the number of tokens in the reconstructed context
affect downstream QA performance? (§4.6)

4.1 Effectiveness Evaluation
Overall Performance. Table 1 reports the average performance
across single-hop and multi-hop QA tasks using Flan-T5 and OPT-
IML as downstream generators, with contexts obtained through
various retrieval, extraction, and compression strategies. Across all
settings, Oreo consistently outperforms other approaches, achiev-
ing the highest performance on both single-hop (Exact Match)
and multi-hop (F1) tasks. Flan-T5 generally delivers superior per-
formance compared to OPT-IML, likely due to its more advanced
instruction tuning.

Comparison against context configurations. Figure 3 presents
the performance of different setups across five datasets (with Flan-
T5 as downstream generator): using query-only inputs (without
retrieval), original full content, passage-level filtering, Oreo with
and without RL. The results demonstrate that Oreo surpasses all
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Table 1: Average performance of Oreo across five QA benchmarks using Flan-T5 and OPT-IML as downstream generators, compared with baseline methods.
SC denotes Selective-Context. Performance on single-hop and multi-hop QA tasks is evaluated using Exact Match and Unigram F1, respectively. Bold values
indicate the best results.

No Retrieval Full Passage CXMI SC LLMLingua LLMLingua-2 xRAG CompAct EXIT Refiner Oreo (Ours)
Task

Flan-T5 as the downstream generator
Single-hop QA 0.1088 0.3662 0.3394 0.4016 0.2713 0.3491 0.269 0.2863 0.3603 0.3487 0.3680 0.4451
Multi-hop QA 0.4485 0.5671 0.5398 0.603 0.5297 0.5745 0.5576 0.4828 0.5974 0.5923 0.5925 0.658

OPT-IML as the downstream generator
Single-hop QA 0.125 0.2300 0.2698 0.2714 0.1696 0.1726 0.2461 0.2297 0.3142 0.3075 0.3160 0.3616
Multi-hop QA 0.4416 0.334 0.5866 0.4626 0.346 0.4363 0.5501 0.4818 0.5865 0.5828 0.5834 0.6542

other configurations across five datasets using Flan-T5. For single-
hop QA tasks, Oreo achieves notable improvements in EM scores,
with gains of 8.8%, 23.1%, and 37.5% on the PopQA, NQ, and Trivi-
aQA datasets compared with using original full context respectively.
The relatively smaller improvement on PopQA can be attributed to
the nature of its queries, which involve rare and long-tail entities.
In the case of more complex multi-hop QA tasks, Oreo achieves F1
score improvements of 12.7% on HotpotQA and 19.8% on 2WQA.
These improvements are comparatively less pronounced than those
seen in single-hop tasks. This discrepancy likely stems from the
increased task complexity inherent in multi-hop QA. The additional
challenge of ensuring coherence in abstractive multi-hop reason-
ing from fragmented chunks underscores the potential for further
optimization in Oreo ’s handling of such tasks. The experiments
conducted on the 2WQA dataset using top-5 and top-10 retrieved
document chunks demonstrate Oreo ’s flexibility in handling dif-
ferent input lengths. The improved performance with the top-10
chunks arises from the increased likelihood of covering more pas-
sages that contain the ground-truth answer.

Overall, these results reveals Oreo ’s capability to capture essen-
tial information and filter out distracting content from retrieved
document chunks, leading to improved performance in downstream
factual QA tasks. The modest improvements achieved with RL fur-
ther emphasize its value in addressing knowledge inconsistencies
between the retriever and generator.

Comparison against baselines. We compare the quality of
generated context by Oreo against a suite of representative extrac-
tion and compression methods across five QA datasets. Table 2 sum-
marizes the performance and token counts across five datasets by
employing Flan-T5 as the downstream generator. From the table, it
is evident that Oreo outperforms almost all selected methods across
five datasets, with improvements ranging from 0.35% to 8.58% over
the second-best methods. These gains are particularly pronounced
in extractive, single-hop tasks such as NQ and PopQA, where con-
cise yet precise evidence retrieval is paramount. On multi-hop tasks,
Oreo remains competitive but shows relatively smaller gains, as
these tasks require complex evidence chaining and reasoning to
synthesize evidence scattered across multiple chunks. In addition
to achieving superior performance, Oreo significantly reduces the
context length provided to the downstream generator while main-
taining or even enhancing task accuracy. We further validate these
findings by evaluating with OPT-IML as the downstream generator
(see Fig. 4). Consistent with results of using Flan-T5, Oreo leads to
the highest performance across four datasets (except HotpotQA),

Figure 3: Performance on five datasets by using query without retrieval,
original full concatenation of chunks, passage-level filtering, context gen-
erated by Oreo with and without RL. 2WQA_k represents retrieving top-k
documents for the 2WQA dataset. The downstream generator is Flan-T5.
Performance of PopQA, NQ and TriviaQA are measured by Exact Match
and HotpotQA and 2WQA are measured by unigram F1.

bringing +0.0211 EM (PopQA), +0.0405 EM (NQ), +0.0019 EM (Trivi-
aQA), -0.0142 F1 (HotpotQA) and +0.0495 F1 (2WQA) improvements
compared with the second-best baseline method.

SOTA methods observations. Among selected SOTA meth-
ods, CompAct [103] marginally outperforms Oreo on HotpotQA,
achieving a 2.26% higher F1 score. This advantage is attributed to
CompAct’s incremental and iterative compression strategy, which
proves beneficial for tasks requiring deep multi-hop reasoning.
However, its inference latency is nearly 3X that of Oreo , present-
ing a trade-off between accuracy and efficiency. Other strong per-
formers include CXMI-guided model, Refiner and EXIT, which use
query-aware or contrastive objectives to maintain relevance. In
contrast, Selective-Context yields the weakest results overall. This
underperformance likely stems from its reliance on self-information
of lexical units (e.g., tokens, phrases, or sentences), which fail to
capture dependencies among semantic units. Similarly, LLMLingua
and LLMLingua-2, which employ perplexity-based filtering, also
struggle across datasets. Their reliance on self-information and
perplexity metrics, without explicit query conditioning, limits their
ability to extract context tightly aligned with user queries.

4.2 Efficiency Evaluation
We assess the efficiency of Oreo from two key perspectives: (1) the
trade-off between context length reduction and downstream QA
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Table 2: Summary of QA task performance and token counts using context derived from different methods. Flan-T5 is the generator. Performance on PopQA,
NaturalQuestions, and TriviaQA is evaluated using Exact Match, while HotpotQA and 2WikiMultihopQA are assessed using Unigram F1. Bold values indicate
the best performance among all methods, italics text denotes the second-best performance. The values in parentheses indicate the percentage improvement of
the best-performing method over the second-best method. All datasets are tested with top-5 retrieved chunks and all retrieved passages are set the same for
different methods.
Methods PopQA NaturalQuestions TriviaQA HotPotQA 2WikiMultihopQA

EM # tokens EM # tokens EM # tokens F1 # tokens F1 # tokens

No Retrieval 0.1320 30 0.0558 39 0.1387 31 0.4599 47 0.4371 35
Full content 0.4305 1689 0.3584 1636 0.3097 1676 0.6014 1707 0.5328 1786
CXMI 0.4202 340 0.3917 329 0.3929 354 0.6409 351 0.565 305
Selective Context 0.1445 199 0.3981 193 0.2712 203 0.5588 214 0.6106 158
LLMLingua 0.2702 497 0.4125 491 0.3647 520 0.5584 527 0.5905 394
Passage 0.4150 131 0.2506 183 0.3526 203 0.5280 190 0.5515 205
LLMLingua-2 0.2603 252 0.1892 247 0.3573 265 0.6186 269 0.4965 279
xRAG 0.2117 31 0.2580 40 0.2893 32 0.4777 48 0.4879 36
CompAct 0.3917 142 0.265 173 0.4242 180 0.6932 174 0.5015 173
EXIT 0.3972 124 0.2301 211 0.4188 208 0.6742 180 0.5104 123
Refiner 0.4312 91 0.2677 148 0.4051 148 0.6706 131 0.5144 102
Oreo (Ours) 0.4682 (+ 8.58%) 108 0.4413 (+6.98%) 134 0.4257 (+0.35%) 130 0.6775 (-2.26%) 272 0.6384 (+ 4.55%) 103

Figure 4: Performance comparison with 95% confidence intervals against baselines using OPT-IML as the generator. Specifically, Passage denotes passage-level
filtering, CXMI refers to filtering guided by conditional cross-mutual information, and Full represents the use of original content without any filtering. PopQA,
NQ, and TriviaQA are evaluated with Exact Match scores, while HotpotQA and 2WQA use Unigram F1 for accuracy measurement

performance, and (2) the trade-off between end-to-end inference
latency and QA performance.

Figure 5 illustrates the number of tokens forwarded to the down-
stream generator and the total inference latency, which includes
both Oreo ’s context reconstruction and the subsequent genera-
tion time. We compare three input configurations: query-only (no
retrieval), full document content, and the context reconstructed
by Oreo . Oreo achieves a substantial reduction in input length,
compressing the context by 84% to 94% compared to full document
content. This compression is accompanied by a latency reduction
of 22.98% to 43.01%, while simultaneously delivering significant
performance improvements ranging from 8.76% to 37.46%. These
gains are especially pronounced in extractive QA tasks (e.g. NQ,
TriviaQA) as shown from the steeper improvement in Figure 5 from
right endpoints to peaks. The high compression rate and improved
performance demonstrates Oreo ’s capability to effectively con-
dense the retrieved context by preserving only the most critical
evidence required for accurate answer generation. This also indi-
cates the context reconstructed by Oreo is highly utilized by the
downstream generator. The favorable trade-off between latency
and performance underscores Oreo ’s potential for real-world appli-
cations, offering both computational efficiency and improved task
accuracy for scalable, high-throughput RAG systems.

4.3 Robustness Evaluation
We evaluate Oreo ’s robustness from two aspects: its sensitivity
to irrelevant or distracting information (noise robustness), and
its ability to handle arbitrary rankings of retrieved chunks (order
robustness).

Figure 5: Left (a) - Comparison of number of input tokens for generator
and QA performance across different context types. Right (b) - Comparison
of end-to-end inference time (measured in seconds) by using different types
of context.
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Noise robustness. We evaluate the robustness of Oreo in han-
dling noise within the retrieved documents, focusing specifically
on extractive QA tasks. In this evaluation, we retain a single chunk
that explicitly contains the ground-truth answer and introduce four
irrelevant documents to simulate a noisy retrieval scenario. This
setup examines Oreo ’s effectiveness in filtering out distractions
content and identifying query-specific information to generate ac-
curate responses. Figure 6 depicts the performance degradation as
irrelevant chunks are added to the context. Compared to directly
concatenating all retrieved chunks as context, context reconstructed
by Oreo demonstrates a smaller decrease in EM scores and a slower
rate of decline, as evidenced by a less steep slope.

Figure 6: Performance declines as irrelevant chunks are introduced into
the retrieved chunk set.

Order robustness. We evaluate the robustness of Oreo to vari-
ations in the order of retrieved documents by shuffling the top-5
retrieved results and comparing its performance against the original
document order. The results for five datasets are presented in Table
3. From the table we can see that,Oreo consistentlymaintain the per-
formance on five datasets (with ±0.003 to ±0.027). This highlights
that Oreo is order- or position-agnostic. Even the retrieved chunks
are suboptimally ranked or presented in an arbitrary order, Oreo
can still effectively capture and synthesize essential information as
long as the evidence exists in the chunks. This capability is largely
attributed to Oreo ’s inherent reordering feature during context
reconstruction, enabling it to function as an implicit reranker. Such
robustness is particularly valuable for mitigating the "lost-in-the-
middle" [58] phenomenon, where the order of relevant information
may influence the downstream generator’s performance.

Table 3: QA performance when shuffling the retrieved documents.

Dataset w/o shuffle w/ shuffle

PopQA 0.468 0.441
NaturalQuestions 0.441 0.425
HotpotQA 0.426 0.429
TriviaQA 0.678 0.668
2WikiMultihopQA 0.638 0.614

4.4 Generalizability Evaluation
To evaluate the cross-dataset generalizability of Oreo , we assess its
transferring capability by applying models trained on one dataset to
tasks in a different dataset without any fine-tuning. This approach
tests Oreo ’s ability to generalize its context reconstruction and
synthesis capabilities to unseen query distributions. Specifically,
we examine performance when using a model trained on PopQA

to generate answers for NQ and a model trained on 2WQA to pro-
cess HotpotQA queries. We report the detailed results in Table 8 in
Appendix E, which demonstrate thatOreo achieves competitive per-
formance in the zero-shot setting. For example, themodel trained on
PopQA achieves a score of 0.4352 when applied to NQ, only slightly
lower than the performance of being specific trained (i.e. 0.4413 and
0.4682). Similarly, using the 2WQA-trained model on HotpotQA
yields a score of 0.6344, closely matching the intra-dataset score of
0.6384. These findings demonstrate Oreo ’s ability to generalize its
context reconstruction to similar QA types effectively, even under
query distribution shifts. Its strong performance across datasets
highlights its robustness and adaptability, making it a promising so-
lution for open-domain QA tasks that require flexibility in handling
diverse knowledge sources and query structures.

4.5 Faithfulness and Completeness Evaluation
Apart from the downstream task performance, the quality of context
generated by Oreo is essential, esp. the factual accuracy (faithful-
ness) and coverage of relevant information (completeness) with
respect to the original retrieved passages. To this end, we conduct
an evaluation of both faithfulness and completeness to ensure that
Oreo produces context that is not only concise but also reliable and
fully representative of the source passages.

We adopt the LLM-as-a-judge framework [29] to systematically
assess these dimensions. In particular, we prompt Qwen2.5-Instruct
[100] to evaluate the generated context by assigning faithfulness
and completeness scores on a 0–10 scale. Faithfulness reflects the
degree to which the context remains factually grounded in the origi-
nal retrieved content, avoiding hallucinations or the introduction of
extraneous information. Completeness assesses whether the context
sufficiently captures all salient and relevant details from the original
passages with respect to the query. To promote transparency and
interpretability, the model is also asked to provide a rationale sup-
porting each score. Prompts for scores and explanation generation
are provided in Appendix D.

We provide evaluation results in Figure 7 in Appendix D.2 Among
all methods, Oreo consistently achieves the highest scores across
all datasets, excelling in both completeness and faithfulness, with
standout scores on complex datasets like HotpotQA (8.87 complete-
ness, 8.97 faithfulness). CompAct emerges as a strong second-best,
showing strong balance and high faithfulness, especially on Hot-
potQA and 2WQA. Refiner delivers moderately competitive results,
generally maintaining factual consistency but showing limitations
in coverage. EXIT demonstrates lower overall performance, espe-
cially struggling on more demanding datasets such as 2WQA. In
contrast, LLMLingua and LLMLingua-2 produce the weakest re-
sults, with both completeness and faithfulness significantly lower
across all datasets, likely due to aggressive filtering or compression
strategies that sacrifice critical information.

4.6 Ablation Study
We conduct an ablation study to investigate the effect of varying
context lengths generated by Oreo . Specifically, we progressively
increase the minimum token threshold for context generation from
30 to 300 tokens, in increments of 30, while fixing the number of
retrieved passages to top-5. The results of downstream task perfor-
mance are summarized in Figure 8 in Appendix ??. Our findings
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indicate a consistent performance improvement across all datasets
as the minimum context length increases, with gains being more
pronounced in the earlier stages (from 30 to 180 tokens). These
improvements suggest that extending the context allows the model
to access a broader set of relevant evidence, improving its ability
to synthesize accurate responses. However, beyond a threshold,
typically between 240 and 270 tokens, we observe a performance
plateau or marginal decline. This indicates diminishing returns with
excessively long contexts. While longer windows can potentially
capture more relevant details, they also risk introducing extraneous,
redundant, or weakly relevant content, which can dilute the core
information necessary for accurate answers.

5 Related Work
5.1 Post-retrieval Enhancement for RAG
Post-processing methods are widely employed to refine retrieved
content for improved downstream generation. These methods can
be categorized as follows:

Reranking. Rerankers reorder and prioritize retrieved docu-
ments to emphasize the most relevant results. They typically op-
erate sequentially or iteratively after retrieval, leveraging various
criteria such as semantic relevance between query and passages
[28, 32], connections among documents [23], the majority of reader
predictions [42, 63], and utility for generation [61]. Rerankers are
usually based on cross-encoder (e.g. BGE [95], Mixedbread [51]),
multi-vector models (e.g. ColBert [43, 75]). Recent works also ex-
plore using LMs as rerankers (e.g., RankT5 [116], RankZephyr [69],
RankGPT [82], DPA-RAG [22]).

Post verification and correction. Some studies incorporate
post-hoc evaluations to improve factuality and relevance of re-
trieved documents. Examples include relevance evaluators [99],
fact-checkers [56], attribution [25, 105] and multi-agent [98] mecha-
nisms to further solidify the accuracy and reliability of the retrieved
documents and responses.

Compressing. Compression methods condense retrieved con-
tent to improve efficiency and focus. These methods can be broadly
categorized into lexical-based and embedding-based approaches.
Lexical-based methods usually involve summarization techniques
[57, 96] to retain essential information, semantic filtering to re-
move low-importance tokens, and both extractive and abstractive
strategies for eliminating irrelevant context [96]. Some approaches
compute the self-information of lexical units to discard less informa-
tive content [53], or apply token-level filtering based on perplexity
[38]. Embedding-based methods, on the other hand, condense doc-
uments into fixed-size representations in the embedding space,
recent works include xRAG [14] and PISCO [59]. Our work falls
falls within the lexical-based compression group.

5.2 Reinforcement Learning for Large Language
Models

Reinforcement learning for Language Models (RL4LM) has emerged
as a transformative technique to further enhance LLMs’ perfor-
mance during the post-training process [11, 70]. Traditional RL4LM
usually involves a reward model, for example using PPO [76] to
update the policy model (e.g. InstructGPT [66], GPT-4 [1]). Some
RL4LM such as Direct Preference Optimization (DPO) [71] and
Reward-aware Preference Optimization (RPO) [2] get rid of the

reward model to provide more stable and computationally effi-
cient solutions (e.g. Qwen 2 [16] and Nemotron-4 [2]). Common
goals of RL4LM include improving performance of downstream
NLP tasks [21, 27, 73], minimizing data and resource dependen-
cies [112], aligning model outputs with user intent, values and
goals [66], and adhering to responsible AI principles [5, 6]. Human
feedback can be integrated into the framework by constructing
preference datasets, which are then used to fine-tune both the pol-
icy and reward models (also termed as Reinforcement Learning
from Human Feedback (RLHF)) [5, 33, 66]. Some studies also ex-
plore RL4LM without human feedback [71] or replaced with AI
feedback [6, 107] by distillation from LLMs [19, 68], prompting
LLMs as reward functions [46, 47, 110], and self-rewarding [107],
or using performance-based metrics such as fluency or coherence
[27], and task-specific constraints over the distribution of language
[73, 93]. In the specific domain of RAG, RRAML [4] employs RL to
train a retriever in arbitrarily large databases. PRCA [101] applies
RL to fine-tune the context to optimize the reward for the genera-
tor. BIDER [39] adopts RL to bridge the inconsistency between the
retriever and generator.
6 Conclusion
We have presented Oreo - a lightweight and pluggable module
designed to enhance the performance of RAG systems by recon-
structing retrieved document chunks and mitigating the potential
knowledge inconsistencies between the retriever and generator.
Oreo can be seamlessly integrated with arbitrary retrievers, gen-
erators, or other RAG components without requiring significant
adjustments or modifications. Experimental results demonstrate
Oreo ’s effectiveness in downstream tasks, its efficiency in com-
pressing context while improving performance, and its robustness
in handling noisy and imperfectly ranked document chunks.

Limitations.While Oreo shows strong performance on open-
domain QA tasks, it has some limitations. First, its aggressive com-
pression may omit essential information in complex settings like
multi-hop or long-form QA. Second, Oreo has not been systemati-
cally tested in adversarial retrieval scenarios [86] involving conflict-
ing or deceptive content. Third, current evaluations rely heavily
on indirect metrics such as downstream QA accuracy or LLM judg-
ments, which may introduce bias.

Future Work. Future research will explore adaptive compres-
sion strategies that dynamically allocate token budgets as well as
robustness to adversarial or noisy retrieval scenarios. We are also in-
terested in developing more principled and fine-grained evaluation
frameworks to better understand the trade-offs between compres-
sion, informativeness and faithfulness in context reconstruction.
To address sparsity in rewards, a promising direction for future
work is to develop progress-based RL frameworks that incorporate
intermediate quality assessments of Oreo ’s reconstructed context,
providing denser and more fine-grained rewards to enable more
stable and efficient policy learning.
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Appendices

A Prompt Templates for Data Collection
A.1 Prompt Templates for Data Collection
Input: Your task is to decompose the question, extract and
abstract supporting information from the context to answer the
question. Your output should mention all entities involved in the
question, supporting sentences and rationals to all sub-questions
from the context. If the conetxt doesn’t provide information
to answer the question, output ’[UNKNOWN]’. Output the
<Output> part only.
Example1:
<Question>: Where was the director of film The Fascist born?
<Context>: {Retrieved document chunks}
<Output>: Luciano Salce, the director of the satirical film The
Fascist, was born on September 25, 1922, in Rome, Italy. Salce
was an Italian filmmaker, actor, and screenwriter known for his
ability to blend comedy with social and political critique.
Example2:
<Question>: what is the number 1 sport in the usa?
<Context>: {Retrieved document chunks}
<Output>: American football is the most popular sport in the
United States followed by basketball, baseball, and soccer.
Example3:
<Question>: What was the first English monastery to be sacked
by the Norsemen?
<Context>: {Retrieved document chunks}
<Output>: Vikings attacked the monastery at Lindisfarne on
June 8, 793, which is the first recorded Viking raid on an English
monastery.
Example4:
<Question>: Kate Philips played which wife of Henry VIII in
’Wolf Hall’?
<Context>: {Retrieved document chunks}
<Output>: Kate Phillips played Abigail Williams in "The Crucible"
at the West Yorkshire Playhouse, and then went on to film her
scenes for the BBC’s adaptation of "Wolf Hall" in which she
played Jane Seymour, Henry VIII’s third wife.
Example5:
<Question>: Lokomotiv Yaroslavl was the team founded in 2011
after the plane crash near which airport?
<Context>: {Retrieved document chunks}
<Output>: Lokomotiv Yaroslavl Hockey Club Lokomotiv, also
known as Lokomotiv Yaroslavl, is a Russian professional ice
hockey team. On 7 September 2011, nearly the entire team
perished in the Lokomotiv Yaroslavl plane crash. The aircraft ran
off the runway before lifting off, struck a tower mast, caught fire
and crashed from the end of the runway of Tunoshna Airport on
the Volga River bank.

{Question}
{Retrieved document chunks}
Output: {Output}
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A.2 Prompt Template for Boostraping Data
Generation

Input: You are given a question, a set of document chunks, a
correct answer, extract evidences and supporting information
from the chunks and generate rationales how these information
derive the correct answer.
Example1:
<Question>: What nationality were social anthropologists Alfred
Gell and Edmund Leach?
<Chunks>: {Retrieved document chunks}
<Correct answer>: British.
<Output>: Both Alfred Gell and Edmund Leach were British.
They were educated and primarily worked within the United
Kingdom’s academic framework. Their national and professional
affiliations firmly establish their British nationality.
Example2:
<Question>: Crucible is a geodemography computer system
created by a company that has stores in how many countries?
<Chunks>: {Retrieved document chunks}
<Correct answer>: 12.
<Output>: Crucible is a geodemography computer system created
by Tesco, a multinational grocery and general merchandise
retailer. Tesco has stores in 12 countries as of recent data, so 12 is
the answer.
Example3:
<Question>: What word is in both the genre of Muhammed
Suiçmez’s band and the genre of Dave Meniketti’s band?
<Chunks>: {Retrieved document chunks}
<Correct answer>: Metal.
<Output>: Necrophagist is known for its death metal style. Y&T
is often classified under the broader category of heavy metal. So
the answer is mental.

{Question}
{Retrieved document chunks}
{Correct answer}
Output: {output}

B Statistics and Experimental Setups for
Datasets

Table 4 provides detailed statistics for each dataset, including the
number of samples in the training set after curation, test set size,
the specific retriever used, and evaluation metrics. Besides, we use
the precision@k as an approximation of retrievers’ performance.
Precision@k is defined as the ratio of chunks that contain the among
all retrieved chunks k for each query.

C Parameter Settings
We detail the key hyperparameters and configurations used across
all experiments in Table 5. Specifically, CML and RL represents con-
trastive multitask learning and reinforcement learning respectively.

Table 5: Parameter settings for experiments. Parameters without being
specified are set to their default values as defined by the development
package.

Parameter Value
𝜂 (CML) 0.01
𝛼 (CML) 0.5
𝜖 (RL) 0.2
𝛾 , 𝜆(RL) 0.95

Top-k (RL) 4
Top-p (RL) 0.95

D LLM-as-a-Judge For Faithfulness and
Completeness Evaluation

D.1 Prompts for Qwen-2.5-Instruct
To directly evaluate the quality of context generated by Oreo , we
employ Qwen-2.5-Instruct [100] as a reference model to assess two
critical dimensions: faithfulness - how well the answer aligns with
the retrieved passages, and completeness - to what extend does
the generated context cover all essential information to correctly
answer the query.

We design instructions for prompting Qwen-2.5-Instruct, as de-
tailed in Table 6 and Table 7.

Table 6: Qwen-2.5-Instruct used for faithfulness evaluation

Faithfulness evaluation prompt

Input: """You are an expert evaluator assessing the **faithfulness** of a generated
context with respect to the original passages. You will be given a query, a set of
original passages, and a generated context.
Your task is to determine how accurately the generated context reflects the facts
and meanings in the original passages, focusing only on the information required
to answering the query. Consider whether the context includes hallucinated infor-
mation, omits key facts, or misrepresents any content.
Rate the faithfulness on a scale from 0 to 10: - 0: The generated context is entirely
unfaithful or unrelated to the original passages. - 10: The generated context is fully
faithful, with no hallucinations, distortions, or omissions of relevant information.
Output your score (a float between 0 and 10), followed by a concise explanation of
your reasoning. """
Text: {text}
Output: {Output}

Table 7: Qwen-2.5-Instruct used for completeness evaluation

Completeness evaluation prompt

Input: """You are an expert evaluator assessing the **completeness** of a generated
response. You will be given a query, a set of original passages, and a generated
context intended to answer the query.
Your task is to rate how thoroughly the generated context covers all necessary
information from the original passages required to answer the query. The context
should not omit relevant details, and should avoid adding any external or fabricated
content.
Rate the completeness on a scale from 0 to 10: - 0: The generated context provides
no useful information for answering the query. - 10: The generated context includes
all necessary information to fully and correctly answer the query.
Output your score (a float between 0 and 10), followed by a brief explanation of
your reasoning. """
Text: {text}
Output: {Output}
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Table 4: Dataset statistics, retrievers and evaluation metrics. EM -Exact Match, F1 - Unigram F1

Dataset # Train (k) # Test (k) Retriever Precision@5 Task Metric
PopQA 6.5 1.4 Contriver 0.287 Extractive single-hop QA EM

NaturalQuestions 28.3 3.6 DPR 0.33 Extractive single-hop QA EM
TriviaQA 30.1 11.3 Contriver 0.43 Extractive single-hop QA EM
HotpotQA 20.7 5.6 Contriver 0.137 Abstractive multi-hop QA F1

2WikiMultiHopQA 20.7 12.6 BM25 0.07 Abstractive multi-hop QA F1

Figure 7: Completeness and faithfulness evaluation by Qwen-2.5-Instruct

D.2 Scoring Results
Figure 7 presents the completeness and faithfulness scores evaluated
by Qwen-2.5-Instruct, demonstrating thatOreo achieves the highest
performance on both metrics.

E Generalizability Evaluation
To evaluate cross-dataset generalizability, we test Oreo ’s transfer-
ability by applying models trained on one dataset to a different one
without fine-tuning. This assesses Oreo ’s ability to reconstruct and
synthesize context under unseen query distributions. Specifically,
we evaluate models trained on PopQA for NQ, and on 2WQA for
HotpotQA. Detailed results are provided in Table 8.

Table 8: QA performance with zero-shot setting. PopQA → NQ represents
the model trained on PopQA is applied to NQ.

Dataset Model → Dataset Performance
NQ NQ→ NQ 0.4413

PopQA→ PopQA 0.4682
PopQA→ NQ 0.4352

HotpotQA HotpotQA → HotpotQA 0.6775
2WQA→ 2WQA 0.6384

2WQA→ HotpotQA 0.6344

We perform an ablation study to assess how varying Oreo ’s
context length affects downstream performance. By increasing the
minimum token threshold from 30 to 300 (in steps of 30) while
keeping the top-5 retrieved passages fixed, we observe performance
trends summarized in Figure 8.
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Figure 8: Performance of Oreo generating different lengths of context across five datasets
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