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ABSTRACT

There has been significant growth in online social science experiments in order to understand behavior
at-scale, with finer-grained data collection. Considerable work is required to perform data analytics for
custom experiments. We also seek to perform repeated networked experiments and modeling in an iterative
loop. In this work, we design and build four composable and extensible automated software pipelines
for (1) data analytics; (2) model property inference; (3) model/simulation; and (4) results analysis and
comparisons between experimental data and model predictions. To reason about experiments and models,
we design a formal data model. Our data model is for scenarios where subjects can repeat actions (from
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a set) any number of times over the game duration. Because the types of interactions and action sets are
flexible, this class of experiments is large. Two case studies, on collective identity and complex contagion,
illustrate use of the system.

1 INTRODUCTION

1.1 Background and Motivation

Online controlled networked social experiments (games) are increasingly used to study social behaviors
(Kearns et al. 2009; Charness et al. 2014) and explore phenomena such as collective identity, exploration
versus exploitation, and diffusion and contagion (Centola 2010; Mason and Watts 2012; Charness et al.
2014). Computational modeling is useful in understanding and reasoning about these behaviors (Fujimoto
et al. 2017). Combining experiments and modeling enables each to inform and guide the other. This
combined approach has been done in some studies without automation (Ackland and O’Neil 2011), or
purely conceptually (van der Zee and Holkenborg 2010).

An iterative experimental and modeling approach requires several classes of operations: (1) design
and conduct experiments (2) data acquisition, (3) data fusion and integration, (4) analyze experimental
data, (5) develop and verify models (data-driven models if models are based on the data), (6) infer model
parameters, (7) run simulations, (8) compare experimental data against model output, (9) exercise models
beyond the ranges of experimental data, and (10) iterate (this is one ordering; see Figure 1). To improve
human productivity, it is advantageous to automate these operations for improved efficiency, reproducibility,
and scalability. Although there are software systems that address some of these operations (Rioux et al.
2008; Jo et al. 2016), an automated and extensible system for evaluating social phenomena through iterative
experiments and modeling that addresses all of these issues is lacking.

Figure 1: Four pipelines (in gray) for controlled networked online experiments and modeling in the
social sciences. In this analysis loop, experiments (experimental platform, upper left) are performed.
Experimental data are transformed into a data common specification (in blue) that conforms to our data
model (see Section 2). This model provides a single specification that enables any experiment whose data can
be cast in terms of the model, to be analyzed in the system (e.g. a classroom experiment). With controlled
experiments we seek to specify the parameters for a next set of experiments (experiment specification).
This composition of pipelines is one of several possibilities. Our system uses human-in-the-loop.

In this work, we present an experiment/modeling/simulation/analysis environment composed of pipelines
to study social behaviors. A pipeline is a sequence of operations, each of which performs a useful task
by taking one or more inputs and producing one or more outputs. A pipeline combines operations in
analyst-specified ways. We distinguish our work from workflows because, while pipelines have many
common features with workflows, here we do not account for provenance of digital objects under a data
management system. Figure 1 provides an overview of our system that is described further below. We
also provide multiple formalisms, for a data model and a dynamical systems computational model, that
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Figure 2: Data (above, blue) and computational (below, red) models enable formal specification of
(1) experiments and observations and (2)modeling and simulation (MAS). They help ensure correspondence
between experiments and MAS.

underpin our environment. See Figure 2. Throughout this work, experiment or game means having human
subjects interact to achieve some objective, while the actions are recorded for later analysis. Modeling
refers to building mathematical representations (i.e., models) of experiments. Simulation means running
software implementations of models, e.g., of agent-based models (ABMs). For clarity, we purposely avoid
ambiguous terms like computational experiment.

1.2 Technical Challenges for Social Science Pipelines and Novelty of Work

Technical challenges can be broken down into two categories: those pertaining to pipelines in general, and
those that are more specific to social sciences. For large and complex scientific applications, abstractions that
capture data processing and computation are important (da Silva et al. 2017). A system is easier to understand
and reuse with high-level abstractions (Garijo et al. 2014). General challenges include: identifying correct
levels of abstraction for systems and applications (e.g., formal data models and computational models);
automation; reproducibility; composability; extensibility; scalability; and traceability (Gil et al. 2007).

We address three challenges that pertain to social sciences moreso than many fields where pipelines
and workflows have been traditionally applied. First, greater range is required in modeling functionality;
modeling in social sciences can be different from that in engineering disciplines because often a “model” is
a qualitative textual description that is open to different interpretations due to lack of details. Hence a social
science “model” can lead to different interpretations and algorithmic models to build and evaluate. Second,
experiments in the social sciences can vary widely, depending on the phenomena being studied (Thaler
2016). Hence, data analytics, including data exploration, requires custom analyses. Third, different classes
of problems require different data and computational models. Melnikov et al. (2018) are pursuing systems
similar to that in Figure 1 for quantum studies.

The novelty of this work is devising a data model and applying a computational model that together
form abstract representations of experiments and modeling and simulation (MAS) so that we can determine
whether an experiment or simulation can be analyzed with our system, and ensure correspondence between
experiments and MAS (Figure 2). A second novelty is that our pipelines take a microservices conceptual
approach (Cerny et al. 2017) wherein the software components of a pipeline—which we call functions—
have narrow scopes. Consequently, new functions can be added for new experiments and models in a
targeted way, fostering reuse and expanding functionality without introducing redundant capabilities. A
third novelty is the range of functions we currently provide: most workflows in the social sciences are for
social network analyses (Garijo et al. 2014); we go well beyond that here.
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1.3 Contributions

1. Formal data model for networked experiments and simulation modeling. We develop a formal
abstract data model for networked social science experiments. The model provides a common representation
for both experiments and modeling, thus producing a correspondence between experiments and MAS. It also
provides a needed level of abstraction per Section 1.2. Our data model has the following five characteristics:
(1) an experiment may be composed of multiple phases (i.e., sub-games); (2) each phase may have a
different finite duration; (3) each phase may have a different interaction structure among players (i.e.,
different networks); (4) each phase may have a different set of actions (and interactions) among players;
and (5) these actions may be repeated by players any number of times within the duration of a phase (i.e.,
temporal interactions). Experiments with our five characteristics represent a significant class of experiments,
e.g., (Centola 2010; Mason and Watts 2012; Charness et al. 2014). The data model, with our computational
model (Section 3), provides a formal specification for experiments and models.

2. Four extensible pipelines for modeling and simulation, and analysis, of controlled networked
experiments. We design and construct pipelines for (1) data analysis, (2) model property inference,
(3) modeling and simulation, and (4) model evaluation against experiment results, and prediction. Each
pipeline consists of an extensible collection of functions that can be composed to accomplish computational
goals. Moreover, the pipelines themselves can be composed in several ways (Figure 1 is one way). Syntactic
data validation of function inputs and outputs ensures robust software execution. The ten operations in
Section 1.1 are embedded in these pipelines (generating software verification cases is not automated). The
Figure 1 caption explains why we emphasize controlled experiments; however, use of the pipelines does
not require this (e.g., they can be used with social media data). The steps in Figure 1, while automated,
are often executed with a human-in-the-loop. The pipelines also satisfy the reproducibility, composability,
and other “ilities” of Section 1.2.

3. Case studies. We provide two case studies to illustrate use of the system. In one, we describe
social experiments that we conducted as a priming activity for collective identity (CI) formation within a
group of networked human subjects. All elements in Figure 1 are used. In a second case study, we take
the experiment in (Centola 2010) and demonstrate how it maps onto our data model, thus showing that we
can evaluate such experiments with our system. Although the number of subjects in experiments is limited
to tens of people, our pipelines have been run with millions of artificial subjects for scalability.

Paper Organization. We first present formalisms for the data model (Section 2) and the computational
model of discrete dynamical systems (Section 3) because these underpin the pipelines. Next, we present a
conceptual view of the pipelines and their components (Section 4), followed by implementation (Section 5).
We provide case studies in Section 6, related work in Section 7, and then conclude.

2 DATA MODEL FOR NETWORKED EXPERIMENTS AND MAS

One of the challenges is to formally represent social experiments and models. Here, we propose a general
adaptive abstract data model for networked social experiments with the five characteristics itemized in
Contribution 1 of Section 1.3. The purpose of the data model, Table 1, with the computational model of
Section 3, is to provide a formal representation for experiments and MAS. Hence, given a description of
an experiment or model, one can determine whether our system can be applied; and in reverse, given a
phenomenon of study, these models can be used to formulate experiments and models. The “data common
specification” in Figure 1 (blue) is produced from this model. For ease of exposition, we describe the data
model in terms of an experiment, but it is equally valid for modeling and simulation.

Experiment Schema. Each experiment has the following elements: a unique id exp id, a number np
of phases, a number n of players, a t begin timestamp for the beginning of the game, and a t end timestamp
for the end of the game. Each player has a unique id vi for identification. A set of players in an experiment
is defined by V = {v1, ...,vn}. An experiment has nsa player attributes defined for each player. Player
attributes W are invariant across phases (e.g., age, education level that might be solicited through a survey).
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Table 1: Definition of our data model. The experiment schema describes experiment parameters. The
phase schema describes parameters for a phase; an experiment can have any number np of phases. We use
experiment throughout in the table and text, but the data model is also used for (simulation) models.

# Parameters Symbols Description
Experiment Schema
1 Experiment id exp id Unique id for an experiment.

2 Number of phases np Number of phases in an experiment.

3 Number of players n The number of unique players over all phases in an experiment.

4 Begin time t begin Timestamp of experiment beginning.

5 End time t end Timestamp of experiment ending.

6 Set of player IDs V V = {v1, . . . ,vn}. Set of players over all phases; vi 2V is a unique id for a player.

7 Player attributes W W =[n
j=1W j. W j = (w j1,w j2, . . . ,w j,nsa) is the sequence of nsa attributes for v j 2V .

Phase Schema
1 Phase schema id ph sch id Unique id for phase schema.

2 Sequence inp 1  inp  np. Element of the sequence of phases of the experiment.

3 Phase begin time t ph begin Timestamp of phase beginning.

4 Phase duration tp Number of time increments in the phase.

5 Unit of time up Time unit of one time increment (e.g., seconds, days).

6 Network definition G(V 0,E 0) Node set V 0 = {v1, ...,vh} and edge set E 0 = {e1, . . . ,em}, where V 0 ✓V may not
be all nodes (players) in the system, and ei = {v j,v`} with v j,v` 2 V 0. Note that
E 0 may be empty.

7 Meaning of an
edge.

L Set L of string representations l 2 L stating the meaning(s) of an edge (e.g., l =
“communication channel” or “influence”).

8 Node attributes for
a phase.

G G = [tp
t=0

�
[h

j=1 G j(t)
�
. G j(t) = (g j1(t),g j2(t), . . . ,g j,hv(t)) is the sequence of hv

attributes for v j 2 V 0 in the phase inp at time t. G is a triple nested sequence in
attributes, player ID, and time.

9 Edge attributes for
a phase.

Y Y = [tp
t=0

�
[m

j=1 Y j(t)
�
. Y j(t) = (y j1(t),y j2(t), . . . ,y j,he(t)) is the sequence of he

attributes for e j 2 E 0 in the phase inp at time t. Y is a triple nested sequence in
attributes, player ID, and time.

10 Initial conditions
for nodes

Bv Nodes: Bv =[h
j=1Bv

j . Bv
j = (b j1,b j2, . . . ,b j,µv) is the sequence of µv initial conditions

for the phase, for v j 2V 0; µv � 0.

11 Initial conditions
for edges

Be Edges: Be =[m
j=1Be

j. Be
j = (b j1,b j2, . . . ,b j,µe) is the sequence of µe initial conditions

for the phase, for e j 2 E 0; µe � 0.

12 Action set A A = {a1,a2, ...,ana}. Set of na actions that each player can execute, over time, any
number of times, during a phase, where na � 0.

13 Action sequence T T = [tp
t=0

�
[h

k=1 Tk
�
. Tk = (si,a j,v`1 ,v`2 , to, pyq) is the schema for an action tuple.

si is a string that is a unique identifier for an action sequence. Action a j 2 A
is initiated by node v`1 2 V 0, and v`2 is the target node of the action, with edge
e = {v`1 ,v`2} 2 E 0. to 2R is the time of the action (0  to  tp); pyq is the payload
represented as a JSON schema.

Phase Schema. Each phase schema has the following elements: a unique id ph sch id, the number
inp of the phase in the sequence of phases, a t ph begin timestamp at the beginning of the phase, number
tp of time increments in the phase, and the unit of time up of one time increment. Each phase represents
the interaction structure among players as a network G(V 0,E 0) with meanings of edges L. Node attributes
G and edge attributes Y over all nodes and edges capture attribute changes in time. Players and edges may
have initial conditions Bv and Be, respectively. A is the set of permissible player actions. An action tuple Ti,
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which captures pair-wise interactions between players, may be intimately tied to the attribute sequences G
and Y of a phase because action tuples, for example, may cause or be caused by changes in node and edge
attributes. In essence, G and Y can be viewed as sequences of node and edge states. Items 8 through 11
and 13 of the phase schema in Table 1 follow the same basic pattern, to capture features by node or edge,
and by time. There are several sequences of values for a particular node or edge j (e.g., G j, Y j, Bv

j, Be
j,

and Tj). Each entry in these sequences can be scalars, sequences, sets, maps, and other structures. Then,
these entries are sequenced over time through the union of entries over time, from time 0 through tp. The
exceptions are the initial conditions Bv

j and Be
j, because by definition, they are specified only at time 0.

3 GRAPH DYNAMICAL SYSTEM MODEL FOR NETWORKED EXPERIMENTS AND MAS

In this section, we present a computational model known as discrete Graph Dynamical Systems (GDS).
This model formalizes experiments and MAS by capturing the interactions between pairs of players. That
is, we use GDS to specify, build, and execute experiments and simulators of experiments (and of other
conditions). We use this GDS model because it is correspondent with the data model of Section 2 and
because GDSs represent a general model of computation since they can simulate Turing Machines (see
e.g., (Barrett et al. 2006)). We also achieve correspondence between experiments and MAS, per Figure 2.

A synchronous Graph Dynamical System (GDS) (Mortveit and Reidys 2007) S is specified as
S = (G,F,W ), where (a) G(V,E), an undirected graph with |V | = n, represents the underlying graph of
the GDS, with node set V and edge set E, (b) F = ( f1, f2, . . . , fn) is a collection of functions in the system,
with fi denoting the local function associated with node vi, 1  i  n, and (c) W is the state space, which
is the union of the state space W v for nodes and the state space W e for edges; i.e., W =W v [W e. Each
undirected edge {vi,v j} 2 E can be represented by two directed edges: vi to v j, (vi,v j), and (v j,vi).

Each node of G has a state value from W v. Each edge of G has a state value from W e. Each function
fi specifies the local interaction between node vi and its neighbors in G. The inputs to function fi are the
state of vi, the states of the neighbors of vi, and the states of the edges outgoing from vi in G. Function
fi maps each combination of inputs to s0i 2W v for vi, and to s0i j 2W e for each directed edge ei j = (vi,v j).
s0i becomes the next state of node vi, and s0i j becomes the next state of ei j. These functions are executed
in parallel (i.e., synchronously) at each time step t. Node W v and edge W e state spaces in the model are
represented as (subsets of) the node (G) and edge attributes (Y), respectively, from Table 1. Attributes may
have additional parameters that are not part of the node or edge state, such as gender and age. Also, nodes
and edges may have internal state used internally for computation, and external state that they expose to
other graph elements. Action tuples Tk are also part of the state. GDS captures local interactions on the
network G. Player actions, the network, and many other parameters are well-defined. Local functions,
however, are not known, and approximations to them must be inferred from data.

4 HIERARCHICAL PIPELINE CONCEPTUAL VIEW

Pipeline Compositions. Our system is composed of all elements of Figure 1, except for the experiment.
We specifically separate the experimental platform from the pipelines so that the system can be used with
different experimental software platforms, through the data common specification, via the data model of
Section 2. The full system is shown with four pipelines in gray. An iteration of the loop, as shown in
Figure 1, may use any number of the four pipelines for flexible composability.

Pipelines. (1) The Data Analytics Pipeline analyzes temporal interactions among players to identify
patterns and phenomena in the data. Direct and derived data are used as input for (2) the Property Inference
Pipeline. This pipeline generates property values for parameters of simulation models by combining data
from multiple experiments. The simulation models (e.g., agent-based models, ABMs) are built off-line
and are part of (3) the Modeling and Simulation Pipeline, which invokes the code to run simulations,
using the generated property values, as well as network description, initial conditions, etc. Simulations
may model completed or contemplated experiments, or other scenarios beyond the scope of experiments.
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Figure 3: Functions hi (implemented as software)
within a pipeline. Pipelines control the execution
order of functions and the inputs and outputs for
each function, through a pipeline job specification.

Figure 4: An arbitrary software function h. Input
data instances D may have to be transformed t to
conform to required inputs I. Inputs and outputs O
are subjected to verification with specified schema.

(4) The Model Evaluation and Prediction Pipeline combines simulation results across multiple (stochastic)
executions and performs comparisons between experimental data and model predictions. Note that the
pipelines control execution of functionality. Execution control consists of a pipeline invoking functions
sequentially, as illustrated in Figure 3. Other control structures are being added.

Functions Within Pipelines. Functions are designed as microservices (i.e., modular software with
limited scope) within pipelines. Functions hi (1  i  3) in Figure 3 take inputs and generate outputs; these
are files, but may include other digital objects (e.g., database table entries). Figure 4 shows details.

5 PIPELINE IMPLEMENTATION

Pipelines. Pipelines are written in Python. Each takes a configuration file as input. This configuration file
states the operations (functions) to execute, the order of execution of these functions, the input and output
files for each function, and input and output JSON data schemas for verification of the input and output
file formats. A set of feedback parameters (e.g., error codes and pipeline state) are included in a log file
of codes (e.g., executing/executed, duration of execution, success or failure, list of inputs and outputs), by
function. If necessary, transformation codes transform data into the direct input for a function. The system
is programming language agnostic to particular functions. The pipeline can run on desktops, laptops, and
(Linux) clusters.

Functions Within Pipelines. Each pipeline has a list of available functions; Table 2 provides a listing
of types of functions hi within each of the four pipelines. They provide a range of capabilities, from simple
plotting routines to cleaning and organizing, storing and accessing data sets, and inferring properties and
running simulations. These are not exhaustive; users may add other functions and continue community-
based development. Each function completes one well-defined task. Many of these functions can be used
in multiple contexts; functions use the pipeline as a universal interface. Also, often a function represents a
category of operation; e.g., there are six different agent-based models (ABMs) under h1 of the Modeling
and Simulation Pipeline. Currently, functions are written in the following Programming Languages (PLs):
C++, Python, and R.

6 CASE STUDIES

6.1 Study 1: Full System Execution for Collective Identity Experiments

Collective identity (CI) is an individual’s cognitive, moral, and emotional connection with an enclosing
broader identity such as a team or a community (Polletta and Jasper 2001). A complete game seeks to
produce and measure the amount of CI among team players in an experiment. The experiment consists
of: phase-1–measure individual levels of CI using the DIFI index (Jiménez et al. 2016) (for a baseline);
phase-2–produce CI among team members using a collaborative anagrams game; and phase-3–measure
individual levels of CI in players using the same index as in phase-1. We focus on the most complex phase
of an experiment: the phase-2 collaborative anagrams game, motivated by (Charness et al. 2014).

Web-based Experiment Software Platform, Game Play, and Data Collection. The primary com-
ponents of our platform are the oTree framework (Chen et al. 2016), Django Channels, and the online
web interface. We designed and developed software for each phase of the experiment that interfaces with
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Table 2: Listing of types of functions as microservices within each of the four pipelines. Functions may be
considered as collections of functions because they can handle multiple types of data over the data model.

Function - (hi) Name: Description. Output type and significance.

Pipeline (1): Data Analytics (for experiments and model results)
(h1) Player interactions: Generate a timeline of individual and between-players actions; each player represents a lane;
each action has a unique color. Visualization, to detect common patterns between players and actions. (h2) Timestamp
Delta between related actions: Construct a visualization of the timestamp delta between related actions; a request action
has a correspondent receive action; each request action represents a lane, a horizontal line represents the length of time
it takes to receive a requested action. Visualization, to detect bursts in types of actions. Detect time patterns in types of
actions. (h3) Action progression: Generate a cumulative distribution plot for an action, by player. Data files and plot, to
show how an action progresses in time during an experiment phase. (h4) Average action: Generate plot of the average
number of actions between players in a window size s. Data files and plot, to show how an average action progresses in
time between experiments phases. (h5) Action histogram: Generate a histogram of timestamps of an action. Data files
and plot, to compare histograms among all experiment phases. (h6) Histogram of related actions: Generate a histogram
of timestamp delta between related actions. Data files and plot, to compare histograms between all experiments phases.
(h7) Discrete action sequence in timeline: Generate a discrete-time action sequence by phase; each action, from the action
set A has a unique id definition. Time series data files, to generate input for the Property Inference Pipeline.

Pipeline (2): Property Inference
(h1) Properties for Markovian transition matrix: Use of the sequences of discrete actions to generate the probability of
transition from an action ai to an action a j as measured in the experiment data. Data files, to generate the properties for
a Markovian transition matrix. (h2) Properties for an adapted CRF model: Use of the sequences of discrete actions to
generate a derived feature vector accounting for history effects, where the vector corresponds to the discrete-time sequences
from the Data Analytics h7 output. Data files, to generate properties for an adapted conditional random fields (CRF) model.
(h3) Coefficients in a hierarchical model: Generalize the model to take the number of neighbors into consideration, and
also digest the additional experiment data where player degree increases or decreases. Data files, to generate coefficients
in a hierarchical model to augment the CRF model. (h4) Multilinear regression model: Construct multilinear regression
model on action set A. Data files, to generate ture of the model and parameter values.

Pipeline (3): Modeling and Simulation
(h1) Agent-based model (ABM): Execute agent-based simulation models; currently, six different models (stationary,
dynamic CRF). Data files, to generate Agent-Based Model Simulations outputs for self-consistency checks and predictions.
(h2) Statistical regression: Compute a relation between selected and observed values. Data files, to predict most probable
value of the observed values.

Pipeline (4): Model Evaluation and Prediction
(h1) Model Validation: Compares experiment outputs with simulation outputs. Data files and plots, to demonstrate that the
model is a reasonable representation of the actual system. (h2) Model Prediction: Generates statistical models to predict
outcomes. Data files and plots, to forecast outcomes in an experiment.

oTree. Django Channels technology supports interactions among players through websocket communication
between individual participants and the server. The experimental platform recruits players from Amazon
Mechanical Turk and, for all phases of an experiment, records players’ actions. The actions are clicks and
their event times for specified HTML objects such as letters, submit buttons, etc.

In phase-2, players are initially given three letters, and are provided communication channels to d
number of other players with whom they can share letters to help each other form words. That is, based
on the number n of players recruited, the experimental platform generates a graph on the n players, with
a pre-defined regular degree d. Players can form words, request letters from neighbors, and reply to letter
requests from neighbors. The goal is for the team to form as many words as possible. Total earnings in
this game are based on the total number of words formed by the team, and earnings are split evenly among
players. The words formed by a player have to be unique, but different players can form the same word.
Each player has, in effect, an infinite supply of each of her initial three letters so that she can use letters
to form words, and also freely share these initial letters with her neighbors. This is intended to foster CI.
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Data Analysis, Modeling and Simulations, and Modeling Evaluations using the Pipelines. Several
ABMs were built for this work. The one used here is based on a transition probability matrix where the
transition probability from one action a(t) = ai at time t to the next action a(t + 1) = a j for each agent
v, i, j 2 [1..4] and a(t) 2 A, is given by pi j = Pr(a(t + 1) = j|a(t) = i) with Âm

j=1 pi j = 1. For clarity,
we use i and j to represent the actions ai and a j 2 A. Agent v executes a stochastic process driven by
transition probability matrix P = (pi j)m⇥m, where m ⌘ |A| (here, = 4). We use a multinomial logistic
regression model for pi j. In essence, the ABM predicts action tuples Ti for players vi in the game, over
the 5-minute game duration. The complete system of Figure 1, and portions of it, were executed over
many loops in this study. Here we focus on one iteration of three experiments, with n = 6 and number
of neighbors d = 5, to analyze only the anagrams game. Figures 5 and 6 show, respectively, results for
the Data Analytics Pipeline (DAP) and Modeling and Simulation Pipeline (MASP) and Model Evaluation
and Prediction Pipeline (MEAPP). See the figure captions for details. In this work: (1) output data from
the DAP are inputs for the Property Inference pipeline (PIP); (2) outputs from the PIP are inputs to the
MASP; and (3) outputs from the DAP and MASP are inputs to the MEAPP.

We now address some particular aspects of these results. The plot generated by h3 in Figure 5 shows,
for each player of one game, the time series of words formed. Each step in a curve indicates the time at
which a new word is formed. The time series for all actions can be formed with h3. These data, like those
for h2 in Figure 5, are used to (1) understand player behaviors, (2) assist in specifying the structure of
ABMs, (3) infer properties of ABMs, and (4) help validate models by comparing model predictions with
them. h7 generates the data needed for PI. In Figure 6, the MASP is used to generate all plots for simulating
experiments. The MEAPP is used in the two plots to compare experiments and model predictions.

6.2 Study 2: Data Model for Online Experiment in (Centola 2010)

In (Centola 2010), the effects of network structure on complex contagion diffusion are studied by the spread
of health behavior through artificially structured online communities. We represent this experiment with the
data model from Section 2. Each experiment, exp id, consists of two independent phases (np = 2), one with
G(V 0,E 0) being a clustered-lattice network and another H(V 00,E 00) being a random network. V =V 0 [V 00 is
the set of all players with player vi 2V , and 1  i  n. There are n/2 players in each of the two networks,
assigned randomly. Gi contains variables for vi’s profile (i.e., avatar, username, health interests), ratings
of the forum content, and the state of vi in time; i.e., whether vi has joined the forum. The meaning of
an edge is l = communication channel between pairs of subjects. Bv

i contains initial conditions for the
game, including values for the elements of Gi. The set of actions is A = {a1,a2,a3}, where a1 is “send a
message” to encourage a neighbor to adopt a health related behavior; a2 is “join forum” which notifies a
participant every time a neighbor adopts the behavior; and a3 is “input rating content” in the forum.

Figure 7 shows many of these variables, and examples of action tuples; e.g., T1 where player 1 sends
a message to player 2, and T6 where player 1 inputs rating content in the forum. This data model instance,
coupled with a GDS formulation (not shown), means that the experimental data can be analyzed (and
modeled) with the pipeline system. We can perform similar mappings for other social experiments (Kearns
et al. 2009; Mason and Watts 2012; Salganik and Watts 2009).

7 RELATED WORK

There are several workflow systems. Examples include Taverna (Wolstencroft et al. 2013) for bioinfor-
matics, chemistry, and astronomy; Pegasus (Deelman et al. 2015) for large-scale workflows in astronomy,
seismology, and physics; and Kepler (Barseghian et al. 2010) for ecology and environmental workflows.
da Silva et al. (2017) provide an overview of several systems. To the best of our knowledge, none of these
systems addresses social sciences for modeling/experiments as we do here. For example, Taverna is used
to analyze suicide data in (Sinnott and Hussain 2010); there is no modeling component. Most workflows
in the social sciences are for social network analyses (Garijo et al. 2014); we go well beyond that here.
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Figure 5: The DAP was executed to analyze phase-2 of three experiments with n = 6 and d = 5. Function
h2 outputs a visualization for experiment #2. The bars in the Active timelines go from the time a request
for a letter is sent, until it is received. A Passive timeline shows the time from receiving a letter request
until the time a player replies. h3 plots the time series of words formed by player for experiment #2.

Figure 6: The MASP and MEAPP were executed to generate simulation results and model predictions,
and to compare experimental data to model predictions. All two plots use results from h1 of the MASP.
Function h1 of MEAPP plots corresponding experimental and model output data (left plot) and compares
experiment and model output using KL-divergence (right plot) for six parameters.

Specialized pipelines are used in different fields. In social sciences, (Jo et al. 2016) develop a three-part
pipeline for data analysis and student support in social learning; there is no modeling component. One
popular approach is ABM (Macal and North 2009) and simulations. In (Rioux et al. 2008), an XML-based
data pipeline for interactive simulation is implemented, but it does not integrate modeling with experiments,
nor does it have facilities for comparing model predictions with data. In (van der Zee and Holkenborg
2010) a conceptual model for online games is developed to work with simulations but it does not provide
a formal data model for online experiments nor an implementation. (Turner and Lambert 2015) address
workflows for statistical analysis of social science data. While several of these works address one or a
couple of the aspects of our pipelines, none of these works provide formal data models and computational
models (e.g., for ABMs) for pipelines, pipeline designs and implementations, pipeline functions, and case
studies, as we do.

8 CONCLUSION AND FUTURE WORK

A set of four composable and extensible pipelines for studying networked social science phenomena has
been presented, along with data and computational models for formal specification of experiments and
MAS, for a particular class of networked social science experiments. Ongoing work includes integrating
the pipelines into a distributed data management system, and adding new functions to the pipelines.
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Figure 7: Elements of the data model (Table 1), for the (Centola 2010) online social network experiment.
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