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Abstract

There has been much research on the combinatorial problem of generating the linear extensions of
a given poset. This paper focuses on the reverse of that problem, where the input is a set of linear
orders, and the goal is to construct a poset or set of posets that generates the input. Such a problem
finds applications in computational neuroscience, systems biology, paleontology, and physical plant
engineering. In this paper, two algorithms are presented for efficiently finding a single poset, if such
a poset exists, whose linear extensions are exactly the same as the input set of linear orders. The
variation of the problem where a minimum set of posets that cover the input is also explored. This
variation is shown to be polynomially solvable for one class of simple posets (kite(2) posets) but
NP-complete for a related class (hammock(2,2,2) posets).

General Terms: Algorithms.

Keywords: partial orders, posets, linear extensions.

1 Introduction

With the growing popularity of knowledge discovery in databases (KDD) and its applications in numer-
ous scientific domains [10, 15], algorithms for data mining have become a fertile ground for theoretical
developments. Modern data mining algorithms process massive amounts of data, typically more than
what can fit into main memory, and yield patterns that can be viewed either as compressed represen-
tations [24] or as generative models of data.

Many data mining algorithms extract meaningful patterns by performing efficient techniques that
would otherwise require combinatorial enumeration or counting. A classical example is the search for
frequent subsets in a collection of sets [1], where frequency is determined by a user-determined support
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threshold. This threshold defines the minimum number of occurrences of a specific subset in order
for it to be considered a frequent subset. The support criterion is harnessed effectively by algorithms
like Apriori [2] that enumerate all possible candidates and search level-wise, beginning with singleton
subsets, estimating their support among the collection, and building upon those subsets that pass the
threshold to explore bigger subsets. Researchers have since generalized the scope of such algorithms
to finding sequential patterns from a collection of lists [3], frequent trees from a forest [36], and even
frequent subgraphs from a collection of graphs [20].

In this paper, we focus on the task of poset mining, i.e., finding order constraints (expressed as
partial orders) from a collection of total orders. Pei et al. [26] study this problem in the traditional
framework of frequent pattern mining and present an Apriori-like algorithm for mining frequent posets.
Mannila and Meek [23] cast a variation of this problem in a probabilistic setting and present algorithms
that mine a specific category of posets. Ukkonen [33] introduces a scoring function to accurately define
a “best-fit” poset or set of posets against the input set of total orders. Gionis et al. [14] seek bucket
orders (total orders with ties), instead of posets.

Although these works offer much practical significance, few theoretical results on mining posets
from linear orders have been published. Related theoretical results generally concern two areas: (1)
determining the minimum number of linear extensions whose intersection is a given poset and (2)
generating the set of linear extensions of a given poset. The first is also known as the poset dimension
problem, which has been shown to be NP-Complete [35] and hard to approximate [17]. The second is
a well-studied combinatorial problem for which many polynomial-time algorithms exist [25, 28, 29, 32].
Since a poset can be viewed as a generator of linear extensions (orders), the underlying data mining
problem is the converse of the well-studied latter problem. This has not been studied from a classical
algorithmic perspective. Therefore, we focus on the most basic version of poset mining, where we are
given a set of linear orders and we must find one poset (or a small number of posets) that generates
the linear orders. We study the theoretical complexity of this problem, present a general framework to
pose and study various inference tasks, and develop algorithms for mining restricted classes of posets,
extending and improving some of the results in our earlier work [11, 12].

The problems and algorithms described in our work find applications in many domains where
we seek to reconstruct system dynamics from sequential data traces, such as computational neuro-
science [22], paleontology [30], systems biology [4, 34], and physical plant engineering [21]. In the area
of computational neuroscience, for instance, the linear orders are neuronal firing sequences and the
goal is to reconstruct a circuit (poset) that captures order (or lack thereof) in how a given culture of
neurons fire. In paleontology, mining posets from linear orders directly corresponds to the seriation
problem where we seek to uncover the biochronology of fossil sites. In systems biology, researchers seek
to reconstruct the underlying reaction pathways by studying the orders in which enzyme/protein con-
centrations rise/fall. Finally, in physical plant engineering, the linear orders denote symbol sequences
indicative of process stages and diagnostics, and the goal is to capture precedence relationships between
these symbols in the form of a poset.

The rest of the paper is structured as follows. Section 2 presents definitions and notations used in
the paper. In Section 3, we formulate the problem of determining a single poset that generates the
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input set of linear orders, and present two algorithms for solving the problem. Simple variants of these
two algorithms can be used to solve the more relevant problem of finding a generating poset when some
of its linear extensions are not present in the input set. In Section 4, the problem of finding a minimum
set of posets to cover the input set is formally defined, and complexity results for two poset classes are
presented. The formalization of this problem provides a framework on which related problems may
also be stated. In particular, the problem constrained to the class of hammock(2,2,2) posets is shown
to be NP-complete, while for the related class of kite(2) posets, a polynomial-time solution is given.
Finally, we summarize our results and present future directions in Section 5.

2 Preliminaries

A (finite) partially ordered set or poset P = (V, <P ) is a pair consisting of a finite set V and a binary
relation <P ⊆ V × V that is irreflexive, antisymmetric, and transitive. For any u, v ∈ V , we write
u <P v if (u, v) ∈ <P .

For a given poset P = (V, <P ), we say that a pair of distinct elements u, v ∈ V are comparable in
P , written u ⊥P v, if either u <P v or v <P u. Otherwise, u and v are incomparable in P , written
u ‖P v. Moreover, if u <p v and there is no w ∈ V such that u <P w <P v, then we say v covers u,
written u ⋖P v, and also say that (u, v) is a cover relation in P .

A poset P = (V, <P ) corresponds to a directed acyclic graph (DAG) G = (V, E) with vertex set
V and edge set E = {(u, v) | u <P v}. The Hasse diagram H(P ) for the poset P is a drawing of the
transitive reduction of the DAG G. Equivalently, the edge set of the Hasse diagram H(P ) consists of
all cover relations (u, v) in P .

As an example, let V = {1, 2, 3, 4, 5, 6, 7}, and let

<P = {(1, 3), (1, 6), (2, 1), (2, 3), (2, 4), (2, 5), (2, 6), (4, 1), (4, 3),

(4, 5), (4, 6), (5, 3), (6, 3), (7, 1), (7, 3), (7, 4), (7, 5), (7, 6)}

be a binary relation on V . The reader may verify that P = (V, <P ) is a poset. Its Hasse diagram
H(P ) is in Figure 1.

When the Hasse diagram of a poset P = (V, <P ) is a single path consisting of all the n elements
of V , then the poset P is also called a linear order. Formally, a linear order L = (V, <L) is a poset
such that u ⊥L v for every pair of distinct elements u, v ∈ V . A linear order L determines a unique
permutation (v1, v2, . . . , vn) of the elements of V with v1 <L v2 <L · · · <L vn. In this case, we use the
notation L[i] = vi for the ith element in the permutation and L−1[vi] = i for the position of vi.

Given two posets P1 = (V, <P1
) and P2 = (V, <P2

) over the same set, we say that P2 is an
extension of P1, written P1 ⊑ P2, if <P1

⊆ <P2
. Moreover, if P2 is a linear order, then we say that P2

is a linear extension of P1. For a given poset P , we denote its set of linear extensions by L (P ), and
say that P generates L (P ). Generating the set of linear extensions of a given poset P is equivalent
to generating all topological sorts of its Hasse diagram [9]. For the poset P whose Hasse diagram is
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Figure 1: Hasse diagram of the example poset

shown in Figure 1, the set of linear extensions is readily computed to be

L (P ) = {(2, 7, 4, 1, 5, 6, 3), (7, 2, 4, 1, 5, 6, 3), (2, 7, 4, 1, 6, 5, 3),

(7, 2, 4, 1, 6, 5, 3), (2, 7, 4, 5, 1, 6, 3), (7, 2, 4, 5, 1, 6, 3)},

where the six linear extensions are given in permutation notation.
Much attention has been given to the combinatorial problems of counting [5, 6] and generating

the linear extensions of a given poset [8, 19, 25, 28, 32]. Brightwell and Winkler [6] prove that the
problem of determining the number of linear extensions of a given poset is #P-complete. Pruesse and
Ruskey [29] provide an algorithm that generates all linear extensions of a given poset, which may be
exponential in number. Here, we investigate problems whose input is a set Υ of linear orders on a
fixed base set V . The problem space that we have in mind results in a poset or set of posets that
generates (or approximately generates) Υ, in the senses we develop in the next sections. In some of
these problems, we restrict the poset or set of posets to specific classes. We now define those classes
of posets.

A leveled poset (also known as a weak order) is a series composition of antichains; that is, a poset
P = (V, <P ) is a leveled poset if and only if the vertex set V can be partitioned into levels (or
antichains) V1, V2, . . . , Vk such that, for u ∈ Vi and v ∈ Vj , we have u <P v if and only if i < j. The
sequence V1, V2, . . . , Vk is called a leveling of P .

Next, define a hammock poset to be a leveled poset where |V1| = |Vk| = 1 and, for 2 ≤ i ≤ k − 1,
either |Vi| = 1 or |Vi+1| = 1. Figure 2 shows the Hasse diagram of a hammock poset, with partition

{3}, {4, 14}, {7}, {6}, {12, 9}, {11}, {2, 8, 13}, {10}, {5}, {1}.

A non-singleton Vi in a hammock poset is a hammock set (or simply hammock), and its elements are
hammock vertices. A vertex in a singleton partite set, on the other hand, is called a link vertex. The
hammock poset described in Figure 2 is more specifically called a hammock(2,2,3) poset to indicate
the ordered sizes of the hammocks.

When a hammock poset has only one hammock, we call it a kite poset, or specifically a kite(k)
poset if the size of the hammock is k. Kite posets are the simplest class of posets that we consider.
Hammock and kite posets arise naturally in the area of dialog modeling for user interfaces and similar
applications because A hammock is a combinatorial model for a mixed-initiative dialog [31].
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Figure 2: Hasse diagram of a hammock poset

ALGORITHM: GeneratingPosetOne

INPUT: A set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

OUTPUT: A poset P on V such that L (P ) = Υ, if one exists.

1 <P ←
⋂

L∈Υ <L

2 if Υ = L (P )

3 then return P

4 else return failure

Figure 3: First polynomial-time algorithm to solve Generating Poset

3 Generating Posets

The simplest nontrivial problem from the problem space we wish to explore asks whether there is a
single poset that generates a set of linear orders.

Generating Poset

INSTANCE: A set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

SOLUTION: A poset P such that L (P ) = Υ.

The algorithm in Figure 3 obtains a generating poset for a set of linear orders, if such a poset
exists. It has been presented in previous work [33] and we state the result without proof.

Theorem 1. The problem Generating Poset can be solved in O
(

mn2
)

time.

The algorithm involves obtaining a candidate poset by computing the intersection of relations from
the linear orders. This is easily carried out in O

(

mn2
)

time, since each of the m linear orders has
O

(

n2
)

ordered pairs. The candidate poset is returned by the algorithm after it is verified that the
linear orders it generates is exactly the input set. That verification step is done in O(mn) time by
using the algorithm of Pruesse and Ruskey [29].

We present a second algorithm for the Generating Poset problem. This algorithm provides
a more efficient method for obtaining a candidate poset, thereby improving the algorithm’s running

5



ALGORITHM: generatingposettwo

INPUT: A set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

OUTPUT: A poset P on V such that L (P ) = Υ, if one exists.

1 <P ← <L1

2 for i ← 2 to m

3 do for each (v, u) ∈ ⋖Li

4 do if (u, v) ∈ <P

5 then <P ← <P \ {(u, v)}

6 if Υ = L (P )

7 then return P

8 else return failure

Figure 4: An O
(

mn2
)

-time algorithm to solve Generating Poset

time. We first present a lemma needed for the proof of the correctness of this algorithm.

Lemma 2. Let P = (V, <P ) be a poset, and let u, v ∈ V be distinct. Then u ‖P v if and only if there
exists two linear orders L, L′ ∈ L (P ) such that u ⋖L v and v ⋖L′ u.

Proof. First, assume that u ‖P v. Let A = {w ∈ V | w <P u or w <P v}, B = {w ∈ V | u <P

w or v <P w}, and C = V \ (A ∪ B ∪ {u, v}). Since u ‖P v, we have A ∩ B = ∅. Moreover, for all
w ∈ C, we have u ‖P w and v ‖P w. Construct a linear order L = (V, <L) as follows. Start with a
linear extension of (A, <P ), follow it with a linear extension of (C, <P ), follow that with u and then v,
and conclude with a linear extension of (B, <P ). (We can suggestively say that L matches the pattern
ACuvB.) It is straightforward to check that L is a linear extension of P that has u ⋖L v. Similarly, to
obtain L′ such that v ⋖L′ u, let L′ be the same as L, except swap the positions of u and v. (L′ matches
the pattern ACvuB.)

The reverse implication is clear.

Theorem 3. The Generating Poset problem can be solved in O
(

mn2
)

time.

Proof. The algorithm in Figure 4 determines a generating poset as follows. It maintains a set of order
relations beginning with the order relations in one linear order L1 from the input set (Line 1). It
then removes order relations as it encounters succeeding linear orders. An n × n matrix M is used to
indicate membership in the candidate poset; i.e., mu,v = 1 whenever (u, v) ∈ <P .

The algorithm needs the cover relation for each Li, 2 ≤ i ≤ m, which takes O(n2) time to compute.
In lines 2–5, the algorithm removes every (u, v) from <P whenever it encounters a relation in a linear
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order Li such that v ⋖Li
u. A generating poset P , if it exists, must be a subset of each linear order,

and the condition (Line 4) reveals an element in P but not in Li. Lemma 2 guarantees that for any
(u, v) not in <P , there exists a linear order Li where v ⋖Li

u. Only O(n) cover relations in each of the
m − 1 remaining linear orders need to be inspected, requiring O(mn2) time to compute.

Because it takes O(n2) time to initialize the membership matrix using one linear order (Line 1) and
because the verification step takes O(mn2) time, the algorithm generatingposettwo has a running
time O

(

mn2
)

. The theorem follows.

The Generating Poset problem requires that the exact set of linear extensions of some poset be
the input instance. This is expected to occur very rarely. A more relevant version of the problem is
one that allows for some linear orders to be missing in the input. This is presented next.

Poset Super-Cover

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

SOLUTION: A poset P such that Υ ⊆ L (P ) and
∣

∣L (P )
∣

∣ is minimum.

Note that what is desired is a poset that is able to generate all of the input linear orders with as
few as possible extra linear extensions.

Theorem 4. The Poset Super-Cover problem is solvable in polynomial time.

Proof. To solve this problem, use GeneratingPosetOne for the Generating Poset problem, but
skip the verification step, and simply output the resulting poset. In this algorithm, we build the binary
relation <P by computing ∩L∈ΥL, the smallest partial order on V = {1, 2, . . . , n} that contains all
relations common to all the given linear orders. By setting <P = ∩L∈ΥL, we are sure that P generates
all linear extensions, and no larger one can. Adding any element to this binary relation reduces the
number of linear extensions, but the resulting poset no longer generates at least one of the linear orders
in the input. This proves the correctness of the algorithm. The polynomial running time follows from
the running time of this algorithm.

4 Poset Cover Problem

A poset cover for a set Υ of linear orders on V is a set P of posets such that the union of all linear
extensions of all posets in P is Υ, that is, such that Υ =

⋃

P∈P L (P ). There is always at least one
poset cover of Υ, since Υ is a poset cover of itself. The computationally interesting problem is to
minimize the number of posets in a poset cover. As a decision problem, this is the following.

Poset Cover

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n} and an integer
K ≤ m.

QUESTION: A poset cover P = {P1, P2, . . . , Pk} of Υ such that k ≤ K.
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Most sets of linear orders do not have a corresponding generating poset. Hence, the Poset Cover
problem is usually the one that must be addressed. Heath and Nema [16], however, have recently
proved that Poset Cover is NP-complete. Hence, to investigate polynomial-time solvable variants of
Poset Cover, we restrict our attention to poset covers whose elements come from a particular class.
Let C be a predicate applicable to posets (perhaps C characterizes the Hasse diagram of a poset). A
poset on V that satisfies C is called a C-poset. Each such predicate defines a class of posets, namely,
{P | P is a C-poset}.

The restricted decision problem is the following.

C-Poset Cover (COVERC)

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n} and an integer
K ≤ m.

QUESTION: A poset cover P = {P1, P2, . . . , Pk} of Υ such that k ≤ K and such that C(Pi) is true
for every Pi ∈ P.

In this section, we consider the predicates KITE(2) and HAMMOCK(2, 2, 2) that define 2 poset
classes where we are able to derive Poset Cover complexity results. We begin by developing notation
for partial covers, which will be the candidate members for the poset cover.

A poset P = (V, <P ) is a partial cover of Υ if L (P ) ⊆ Υ, that is, if every linear extension of P is
one of the linear orders in Υ. A partial cover P = (V, <P ) is maximal in Υ if there is no poset P ′ 6= P
on V such that P ′ ⊑ P and L (P ′) ⊆ Υ.

The number of partial cover posets for a set Υ of m linear orders may be exponential in m. However,
if we restrict our attention to some particular classes of posets, it may be possible to show that the
number of maximal partial covers in that class is polynomial in m and indeed can be generated in
polynomial time.

Before proceeding to the next theorem, we first define the down set cardinality D[v; P ] of element
v in poset P as 1 plus the number of elements less than v:

D[v; P ] = 1 +
∣

∣{u ∈ V | u <P v}
∣

∣.

We use this in the proof of the existence of a polynomial time algorithm for determining partial kite
poset covers from a given set of linear orders.

Theorem 5. Let Υ = {L1, L2, . . . , Lm} be a nonempty set of linear orders on V = {1, 2, . . . , n}. The
set of all partial cover kites for Υ can be generated in O

(

mn3
)

time.

Proof. Let P be a kite poset that is a partial cover of Υ. Let Vh ⊂ V be its hammock, and let u, v ∈ V
be the unique elements such that, for all w ∈ Vh, we have u ⋖P w ⋖P v. Let k = |Vh|, let i = D[u; P ]
and let j = D[v; P ]. It follows that 1 ≤ i < j ≤ n and j − i = k + 1 ≥ 3. We search for the elements
u and v by considering the O

(

n2
)

possible i, j pairs. For a linear order L = (v1, v2, . . . , vn), define its
i, j-restriction to be

L(i, j) = (v1, v2, . . . , vi−1, vi, vj , vj+1, . . . , vn).
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For a given i, j pair, sort the elements of Υ by their i, j restrictions, ordered by the entries from
the leftmost to the rightmost. This can be done in O(mn) time using radix sort. Let Lr ∈ Υ. There
is a partial cover kite(k) poset that has linear extension Lr if and only if there are k! elements of Υ
having the same i, j restriction as Lr. These k! elements, in fact, are all the linear extensions of the
kite(k) poset. Determining the existence of these elements is easily done by scanning the sorted linear
orders in O(mn) time. Thus, detecting partial cover kites requires O

(

mn3
)

time.
Each kite requires O

(

n2
)

time to construct. We now count the number of possible kite posets that
can be returned by this algorithm. Fix k, where 2 ≤ k ≤ n− 2. There are n− k − 1 possible i, j pairs
for kite(k) posets. For a fixed i, j pair, there are at most m/k! kite(k) posets. We obtain the following
upper bound on the total number of kite posets:

n−2
∑

k=2

m(n − k − 1)

k!
≤ mn

n−2
∑

k=2

1

k!

< mne

= O(mn).

We conclude that it takes O
(

mn3
)

time to construct O(mn) kite posets. Consequently, the running
time of this algorithm is O

(

mn3
)

. The theorem follows.

Theorem 6. COVERKITE(2) can be solved in O
(

m1.5n + mn3
)

time.

Proof. For a set Υ of linear orders on V , the set of all partial cover posets that satisfy the predicate
KITE(2) can be generated in O

(

mn3
)

time as shown in the proof of Theorem 5. Let p be the number
of partial cover posets returned; clearly, p = O(mn), since every linear order is associated with n − 3
kite posets satisfying KITE(2). Construct an undirected graph with vertex set Υ and an edge between
Lr and Ls if and only if one of the generated posets has both Lr and Ls as linear extensions. This
graph has m vertices and p edges. We need to choose a minimum set of edges such that every linear
order is incident on one of the edges. This can be accomplished as follows. Find a maximum matching
in the graph using the algorithm of Micali and Vazirani [27], which runs in O

(

m1/2p
)

= O
(

m1.5n
)

time. Choosing the kite poset for each of the edges in a maximum matching plus one edge for every
unmatched vertex yields an optimal solution to COVERKITE(2).

We move our attention to hammock(2,2,2) posets; let HAMMOCK(2, 2, 2) be the predicate that
describes such posets. We now show the NP-completeness of COVERHAMMOCK(2,2,2), using a reduc-
tion similar to that in Heath and Nema [16]. In particular, we reduce from Cubic Vertex Cover, a
known NP-complete problem (see [13]), which is defined here.

Cubic Vertex Cover

INSTANCE: A nonempty undirected graph G = (V, E) that is cubic, that is, in which every vertex
has degree 3; and an integer K ≤ |V |.
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QUESTION: Is there a subset V ′ ⊂ V of cardinality K or less such that every edge in E is incident
on at least one vertex in V ′?

The main idea in the reduction is to represent edges with linear extensions, and vertices with
hammock(2,2,2) posets, so that a linear extension representing an edge (u, v) can only be covered by
the hammock posets representing the vertices u and v. We construct it in such a way that if a vertex
cover contains a particular vertex, then the corresponding poset cover contains the corresponding
hammock poset. This intuition is further elucidated in the proof of the following theorem.

Theorem 7. The problem COVERHAMMOCK(2,2,2) is NP-complete.

Proof. First, we show that COVERHAMMOCK(2,2,2) is in the class NP. Let Υ = {L1, L2, . . . , Lm},
V = {1, 2, . . . , n}, and K, where K ≤ m, constitute an instance of COVERHAMMOCK(2,2,2). Let
P be a set of posets. First, check whether each poset in P satisfies HAMMOCK(2, 2, 2). Second,
check that |P| ≤ K. Third and finally, check that Υ =

⋃

P∈P L (P ). Generate the linear extensions
of every poset P ∈ P, and collect these in the set Υ′. If Υ′ = Υ, then we have a poset cover.
Each hammock(2,2,2) poset has exactly 2!2!2! = 8 linear extensions that can be easily generated
in polynomial time. Collecting these linear extensions into a single set Υ′ and then comparing this
set with Υ can also be done in polynomial time using known efficient algorithms for set union and
comparison. Thus, COVERHAMMOCK(2,2,2) is in NP. To complete the proof of the theorem, we show
a polynomial-time reduction from Cubic Vertex Cover to COVERHAMMOCK(2,2,2).

Let G = (VG, EG) and K ′ ≤ |V | be an instance of the Cubic Vertex Cover problem. If nv = |VG|
and ne = |EG|, then ne = 3nv/2, since G is a cubic graph. Figure 5 shows an example of a cubic
graph with nv = 6 and ne = 9. Construct the corresponding instance of COVERHAMMOCK(2,2,2) as
follows. Let n = 3(ne + 3) + 1, so the base set is V = {1, 2, . . . , n}. Let the base linear order be
Lb = (1, 2, . . . , n), here written in permutation notation.

For 1 ≤ i ≤ ne + 3, define the i-swap pair to be (3i − 1, 3i). If L is a linear order on V , then its
i-swap L[i] is obtained from L by swapping the two elements of V in its i-swap pair. We extend the
notation to any number of swaps, so that L[i, j, k] = ((L[i])[j])[k], where i, j, k are all distinct. (Note
that the order of swapping does not matter, since different swap pairs are disjoint.) Without loss of
generality, assume that the edges of G are e1, e2, . . . , ene . The linear order for ei is Lei

= Lb[i]. For
example, for edge e2, we have

Le2
= (1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37).

Let x = ne + 1, y = ne + 2, and z = ne + 3. Let L be a linear order on V . Define the set of cleanup
linear orders for L to be

C[L] = {L, L[x], L[y], L[z], L[x, y], L[x, z], L[y, z], L[x, y, z]} .

Then there is a unique hammock(2,2,2) poset that covers C[L]; call that poset P [L].
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Figure 5: A cubic graph example.

We choose the set of linear orders to be Υ = {Lb} ∪ {Lei
| ei ∈ EG} ∪ C, where the cleanup set C

is defined later. Fix v ∈ VG. Assume that v is incident on edges ei, ej , and ek. Define the poset Pv to
be the unique hammock(2,2,2) poset such that

{

Lb, Lei
, Lej

, Lek

}

⊂ L (Pv). Note that, in fact,

L (Pv) = {Lb, L[i], L[j], L[k], L[i, j], L[i, k], L[j, k], L[i, j, k]} .

Since we want the Pv’s to be the posets to cover the linear orders for the edges, we must put the
additional four linear orders in C. Since we do not want to be forced to choose every Pv, we must put
even more linear orders in C to provide alternative posets to cover the additional four linear orders.
In particular, define the set

Lv = C[L[i, j]] ∪ C[L[i, k]] ∪ C[L[j, k]] ∪ C[L[i, j, k]].

Lv contains all additional four linear orders in L (Pv). Moreover, Lv is exactly covered by the cleanup
posets P [L[i, j]], P [L[i, k]], P [L[j, k]], and P [L[i, j, k]].

We can now define C, which is

C =
⋃

v∈VG

Lv.

Careful counting shows that |C| = 32nv and that |Υ| = 1 + ne + 32nv.
To complete the instance of COVERHAMMOCK(2,2,2), define K = K ′ + 4nv.
We claim that G has a vertex cover of size ≤ K ′ if and only if Υ has a hammock(2,2,2) cover of

size ≤ K. First, suppose that G has a vertex cover of size ≤ K ′. Let that vertex cover be V ′ ⊆ VG.
Any hammock(2,2,2) cover of Υ must contain the 4nv cleanup posets. To cover the base linear order
and the edge linear orders, it suffices to choose the K ′ vertex posets Pv, where v ∈ V ′. Hence, Υ has
a hammock(2,2,2) cover of size |V ′| + 4nv ≤ K ′ + 4nv = K, as required. Now, suppose that P is a
hammock(2,2,2) cover of size |P| ≤ K. As before, P must contain all 4nv cleanup posets, plus some
number of vertex posets Pv. It is clear that these vertex posets correspond to a vertex cover of size at
most K − 4nv = K ′, as required.

11



It is easy to see that (Υ, V, K) can be constructed in polynomial time in the size of the Cubic Ver-
tex Cover instance. Hence, we have demonstrated a polynomial-time reduction of Cubic Vertex
Cover to COVERHAMMOCK(2,2,2). The theorem follows.

This section has shown that Poset Cover problem for HAMMOCK(2, 2, 2) is NP-Complete, but
polynomially solvable for the class KITE(2). A poset in KITE(2) is structurally simpler because its
linear extensions differ by a single transposition. It would be interesting to find out the complexity of
the problem for the class HAMMOCK(2, 2) or for KITE(3). Unfortunately there has been no result
for any of these yet.

5 Conclusions

This paper has formalized problems related to identifying sets of posets that summarize or compress
order-theoretic data sets. Through formalization, we hope to open the door for greater research into
these problems. We have presented polynomial-time algorithms for Generating Poset and provided
some complexity results for Poset Cover. While the problems bear much resemblance to classical
set cover problems, they also have striking differences, as the objects to be used in a solution are only
available implicitly, rather than explicitly given as in set cover problems. Future work may be directed
towards complexity results for Poset Cover for other poset classes, such as HAMMOCK(2, 2) and
KITE(3). Approximation algorithms can also be developed for restricted Poset Cover problems that
are proved to be NP-Complete. Alternative directions include complexity results on relaxed variations
of Generating Poset that allow the poset to generate a majority of the input set. There are also
variations of Poset Cover that ask for approximate solutions. For example, one might allow a
solution that is a set of posets that has linear extensions outside of the input set of linear orders; in
this case, one must decide what it means to have a good approximation.

It is also worthwhile to explore connections to studies that aim to cluster a given set of input orders
[7, 18]. A clustering algorithm partitions the given set of orders so that orders within a group are more
similar to each other than to orders in other groups. This requires the definition of a suitable distance
or similarity measure over the space of orders. The problems studied in this paper do not assume any
distance measure since two orders ‘far apart’ could still be generated by the same poset. Nevertheless,
characterizations resulting from such a clustering may relate to a poset cover.
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