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Nearly every aspect of modern life is laced with questions and choices regarding sustainabil-
ity. Some questions are pervasive, e.g., should I print this IEEE Potentials article or should I 
read it online? Others are subtle and we might not think consciously about them, e.g., how 

much CO2 does a Google search release into the atmosphere? Still others are knotty conundrums: 
how do we encourage and incentivize an entire city to “go green?”

Computational sustainability [Gomes (2009)] deals with answering questions such as the above 
using mathematical and algorithmic techniques. Its scope is broad: from designing environmentally 
friendly substitutes for everyday products, to reducing carbon emissions of data centers, to encour-
aging energy efficiency in homes, and finally to understanding the interplay between multiple 
systems at a societal level. 

Many issues interplay in achieving sustainability goals. First, it is desirable to have an accurate 
model of the underlying process or product so that we can understand exactly where to focus our 
sustainability objectives. Second, we must systematically evaluate and assess alternatives alongside 
multiple (environmental and other) criteria. Finally, satisfactory implementation of sustainable alter-
natives requires a “buy-in” from all involved stakeholders. 
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Because sustainability involves com-
plex systems interacting across various 
scales, “first-principles” models can be 
both costly to construct and infeasible to 
use in practice. This is where data 
mining becomes attractive. Data mining 
provides a powerful methodology to use 
inexpensively gathered data and build 
phenomenological models of the under-
lying system for possible optimization 
and reengineering.

Data mining, also referred to as 
knowledge discovery or machine learn-
ing, refers to the extraction of nontrivial 
and potentially actionable information 
from massive volumes of data. Estab-
lished examples of data mining abound, 
(e.g., mining supermarket baskets for 
items frequently purchased together, 
studying customer reviews from product 
sites to understand opinions and senti-
ments, and finding patterns of gene 
expression in cells and tissues). Here, we 
use data mining techniques with a view 
toward extracting insights into how to 
design more sustainable systems. We 
illustrate our ideas by showcasing the 
use of data mining in three broad prob-
lem contexts: cloud computing, sustain-
able redesign of products, and urban 
infrastructure management.

Cloud computing
Cloud computing means different 

things to different people. For some, it 
is the “as-a-service” viewpoint that 
makes computing to be a true utility 
such as electricity or natural gas. For 
others, it is the networked view of com-
puter and information resources that 
can be harnessed from anywhere, (e.g., 
smartphones). Still others emphasize 
the “pay for use” model with resources 
made available on demand rather than 
explicit provisioning or renting of  
computers. 

Today, every major e-commerce 
portal or online social networking site 
runs on the cloud, meaning it is pow-
ered by data centers that have grown 
from housing a few hundred multipro-
cessor systems to tens of thousands of 
individual servers. Concomitantly, data 
centers have become an object of scorn 
for environmentalists. A news report 
[Leake and Woods (2009)] ignited a 
controversy by claiming that a single 
Web search query can use up to half of 
the equivalent energy of boiling a kettle 
of water! A more recent report [Markoff 
(2011)] has suggested that in recent 
times data centers have used less power 
than expected (partly due to reduced 

demand stemming from the sluggish 
world economy but also partly due to 
improved efficiencies in data center 
equipment and construction). Neverthe-
less, according to global estimates by 
the U.S. Environmental Protection 
Agency, data centers consume 1–2% of 
the world’s electricity and are already 
responsible for more CO2 emissions 
than entire countries such as Argentina 

or The Netherlands [Kaplan, Forest, and 
Kindler (2008)]. Hence, reducing the 
carbon footprint of cloud computing is 
an important goal to environmental  
sustainability.

Data centers constitute a mix of com-
puting elements, networking infrastruc-
ture, and storage systems along with 
power and cooling infrastructure (see  
Fig. 1), all of which can contribute to 
energy inefficiency. Many approaches are 
possible to stem energy usage across 
these categories. Servers are typically pro-
visioned based on peak demand and thus 
are lightly used on average (believed to 
be in the single digits to at most 10–15%). 

The low server utilization problem is  
compounded by the fact that servers are 
not power proportional; that is, their 
power consumption is not proportional 
to their utilization. In fact, even energy 
efficient servers often consume more 
than 50% of maximum power at zero to 
low utilization levels. One approach to 
improving sustainability of information 
technology (IT) is to consolidate work-
load through intelligent scheduling and 
operating system (OS) virtualization [Tolia 
et al. (2008)], and turning off the idle serv-
ers. In other words, the number of servers 
deployed dynamically varies with work-
load. Similarly, dynamic management of 
an ensemble of chiller units in response 
to varying load characteristics is another 
strategy to make a data center more 
energy efficient. There are even end-to-
end methodologies proposed that track 
inefficiencies at all levels of the IT  
infrastructure “stack” and derive measures 
of energy flow efficiencies during data 
center operation.

To understand what parts of a data 
center contribute to inefficiencies, it is 
helpful to conduct an energy break-
down of a data center’s consumption. 
For every 100 W of total power utilized 
by a data center, often fewer than 50 W 
goes toward powering IT equipment. 
The rest of the power goes toward 
operating the cooling systems, lighting, 
uninterruptible power supplies (UPSs), 
server fans, and other subsystems. Of 
these, the cooling infrastructure, partic-
ularly the chiller units, consumes the 
bulk of the power and is the focus of 
our attention here. 
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Fig. 1 Elements of a data center [Watson et al. (2009)]. 

Data centers constitute a mix 
of computing elements, 
networking infrastructure, 
and storage systems along 
with power and cooling 
infrastructure, all of which 
can contribute to energy 
inefficiency.
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The cooling infrastructure can be 
viewed as a pipeline involving com-
puter room air conditioner (CRAC) units, 
chillers, and cooling towers. CRAC units 
first cool the exhaust air from the server 
racks. The chilled water needed by the 
CRAC units is provided by chillers, 
where refrigerant loops transfer the heat 
extracted to the environment directly or 

through cooling towers. Modern data 
centers are cooled by an ensemble of 
chillers configured to dynamically 
respond to specific load conditions. 
However, such ensembles are difficult to 
configure optimally due to the unavail-
ability, inadequacy, or infeasibility of 
theoretical models (“first principles” 
methodologies as described earlier).  

For instance, we can gain access to an  
operating curve for an individual chiller 
unit but translating such curves to mul-
tiple chillers is nontrivial.

By mining sensor streams from chiller 
installations, we can obtain a real-time 
perspective into system behavior and 
identify strategies to improve efficiency 
metrics. Due to the “firehose”-like nature 
of such data streams, data mining algo-
rithms must be able to ingest and pro-
cess data at rates necessary to yield 
real-time, actionable, insights. 

One of the key aspects of interest to 
the data center engineer is to efficiently 
manage an ensemble of potentially het-
erogeneous chiller units. Hence our 
objective is to link multivariate, numeric, 
time series data—utilizations of units in 
a chiller ensemble–to sustainability met-
rics. We address this goal by composing 
a sequence of data mining algorithms 
[Patnaik et al. (2009)].

As shown in Fig. 2, we first perform 
clustering of the multivariate series (here 
utilization values from five chillers, R1–R5) 
and use the sequence of cluster identifiers 
as an abstract symbolic representation of 

the operating point of the overall system. 
Clustering is a data mining approach that 
groups nearby points into the same clus-
ter and far-away points into different clus-
ters. We further raise the level of 
abstraction of the symbol sequence by 
encoding the transitions from one symbol 
to another. The resulting event sequence 
is now mined for repetitive patterns, 
which we call motifs.

A motif is a pattern of the form, e.g., 
“symbol A followed by symbol B fol-
lowed by symbol C” (not necessarily 
consecutively), that occurs frequently in 
the event stream. To mine such patterns, 
we use serial episode discovery algo-
rithms. An overview is shown in Fig. 3, 
which uses a levelwise approach popu-
lar in many areas of data mining. First, 
we evaluate patterns of length one-sym-
bol for their frequency, and retain only 
those that pass a user-specified fre-
quency threshold. These frequent one-
symbol patterns are then composed to 
form candidate two-symbol patterns, 
which are in turn evaluated and pruned 
for frequency. For instance, because 
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Fig. 2 Redescribing multivariate numeric chiller utilization data into an event 
sequence symbolic representation.
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Fig. 3 Levelwise search for motifs.
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form that occurs frequently 
in the event stream.
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symbols A and D are both frequent, we 
create the candidate pattern “ASD” and 
evaluate it. Conversely, because symbol 
C is not frequent, we do not consider 
candidates such as “ASC,” “CSD,” etc. 
This process continues until we can no 
longer compose patterns. We see that 
“ASBSD” is the longest frequent motif. 
Because we allow “don’t care” symbols 
inside a motif and because such don’t 
care symbols can span different lengths, 
this framework allows for robustness to 
noise and scaling in terms of finding 
matching motifs. 

To summarize, the raw, multivariate, 
time series data from chillers is first 
transformed to one discretized sequence 
using clustering. The time points where 
cluster labels change are noted as transi-
tion events. This process can be noisy 
depending on the noise level in the raw 
sequences and the clustering algorithm 
used. However, the flexibility allowed by 
the episode mining framework allows us 
to control this noise by overlooking clus-
ter transitions that are noisy and occur 
fewer times than true motif patterns. 
Once motifs are mined, we can translate 
their occurrences back to the original 
time series to observe them in their orig-
inal setting.

Having discovered many motifs, the 
next step is to categorize them as “good” 
or “bad” to provide guidance to an 
administrator or a management system 
regarding the most efficient configura-
tions of the chiller ensemble under a 
particular load. There are several sus-
tainability metrics such as power con-
sumed, carbon footprint, and exergy loss 

to study motifs. Note that optimizing a 
sustainability metric, such as power con-
sumed, may also minimize the total cost 
of operation. In our study, we estimate 
two sustainability metrics for each motif: 
the average coefficient of performance 
(COP) of the motif, and a measure 
reflecting the frequency and amplitude 
of oscillations in utilization values. The 
COP of a motif quantifies the cooling 
effectiveness of the ensemble during that 
motif occurrence. In order to estimate 
the frequency of oscillations in a motif, 
we compute the number of mean cross-
ings, that is, the number of times the  

utilization crosses the mean value. This 
is very similar to the number of zero-
crossings that is commonly used in 
speech processing for estimation of  
frequency.

Fig. 4 describes results from one 
installation involving an ensemble of five 
chiller units. The ensemble consists of 
two types of chillers: three air-cooled 
chillers and two water-cooled chillers. 
From the analysis, we found several fre-
quent motifs that repeatedly occurred 
throughout the data. For example, we 
found two motifs with very similar  
load levels (motifs 5 and 8) but which  
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Fig. 4 Two repetitive motifs mined from chiller utilization data. Switching from the left motif to the one on the right yields an 
estimated power savings of 10%. 

Table 1. Sample nodes from a PCB BOM. In practice,  
the number of nodes can easily run into tens of thousands.

Type Part # Description

Capacitor 71211838211Y
71211858231V
7121B1159312

cap-chip-270pf-50v-k-x7r-0603-tap
cap-chip-470pf-50v-j-x7r-0603-tap
capacitor-al,220uf,16v,m,-55˜+105c

Resistor 7124A1235812
7124A1235812
7124B1216112

res-chip-976-1%-1/10w-0603-tap
res-chip-976-1%-1/10w-0603-tap
resistor-ar,4p2r,0,5%,1/16w,1616,tr

Inductor 7125A1123812
7125B1147812
7125B1147812

idut-4.7uh-20%-43mhz-650ma-smd
inductor,0.22uh,+/-10%,25mhz,250ma
inductor,0.22uh,+/-10%,25mhz,250ma

Table 2. Impact factors of some nodes in the EI database.  
In practice, the number of impact factors runs into hundreds.

Description SO2 (kg) CO2 (kg)

Capacitor, electrolyte type, > 2-cm height 0.21549 47.78

Resistor, SMD type, surface mounting 13.123 11.204

Inductor, miniature RF chip type, MRFI 0.38215 54.542

Integrated circuit, IC, memory type 2.6046 505.92
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differed considerably in the COP level. 
These are shown in Fig. 4. Note that 
while both motifs 5 and 8 have three 
chillers turned on, they are of different 
types. In motif 8, all three operating 
chillers (C1, C2, and C3) are air-cooled. 
In motif 5, two air-cooled (C1 and C2) 
and one water-cooled chiller (C4) are 
running. In motif 5, one chiller runs at 
high utilization (C4 at 66.5%), while the 
other two run at low utilizations (11.3% 
and 33.8%). In motif 8, one chiller runs 
at low utilization (17.6%) whereas the 
other two operate at the medium range 
(49.1% and 44.3%). If the operational 
state of the chiller units could be trans-
formed from motif 8 to motif 5, an over-
all power savings of nearly 10% can be 
achieved. This directly translates to a 
cost savings of nearly US$40,000 annu-
ally (41 kW savings #  11 cents per kWh 
#  24 hr #  365 days). Extrapolating this 
cost saving to other similar motifs gives 
us an idea of the utility of data mining 
algorithms in helping achieve cost effec-
tiveness. Moreover, saving 1 kWh of 
energy is equivalent to preventing 0.8 kg 
of carbon dioxide release for this data 
center. The above energy savings would 
result in a carbon footprint reduction of 
287,328 kg of CO2 released into the 
atmosphere.

Sustainable redesign of products
We now turn to a second illustration 

of a data mining application to a sustain-
ability problem, namely to design sustain-
able products. Due to increasing public 
consciousness about sustainability, com-
panies are ever more eager to introduce 
ecofriendly products and services. 

In a 2010 article in The New York 
Times, Goleman and Norris (2010) 
investigate whether an e-reader or a 
printed book is more environmentally 
friendly. After considering the lifecycle 
of both products (including materials, 
manufacturing, transportation, even the 
light bulb energy used for reading, and 
finally discard) they conclude that the 
impact of one e-reader is somewhere 
between 50–100 paper books. This 
type of analysis is known as life cycle 
assessment (LCA) because it requires 
analysis of each component of a prod-
uct from “cradle to grave.” Similarly, 
Toffel and Horvath (2004) compare 
reading a traditional newspaper versus 
wirelessly receiving it on a personal 
ditial assistant and conclude that from a 
lifecycle perspective the latter results in 
32–140 times lower carbon impact and 
26–67 times lower water use. 
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Assessing environmental footprints in 
this manner and designing sustainable 
products are challenging tasks since they 
require analysis of each component of a 
product through its life cycle. To achieve 
a sustainable design of products, compa-
nies need to evaluate the environmental 
impact of their system, identify the major 
contributors to the footprint, and select 
the design alternative with the lowest 
environmental footprint. 

To understand what is involved, con-
sider a computer manufacturer conduct-
ing an LCA of a printed circuit board 
(PCB). It begins with a bill of materials 
(BOM) that outlines the composition of 
the product (see Table 1). The manufac-
turer must first map the nodes from the 
BOM into an environmental impacts 
(EI) database that quantifies multiple 
environmental impacts of components 
(see Table 2).

Note that nodes in the BOM data-
base outline attributes such as a part 
number and a short, unstructured text 
description (e.g., Table 1) whereas 
nodes in the EI database provide a tex-
tual description of the node and a set of 
impact factor values (e.g., Table 2). 
BOM databases are supplied by the 
manufacturer whereas the EI databases 
are created by other organizations such 
as environmental regulation and certifi-
cation bodies. The description columns 
across the BOM database (Table 1) and 
the EI database (Table 2) are hence dif-
ferent and may not have exact resem-
blance to form a mapping. This is the 
reason why we need a classifier to map 
BOM nodes to the nodes of the  
environmental database [depicted as 
Fig. 5(2) (top)].

Thus, one important task of data 
mining here is to learn a mapping from 
nodes in the BOM database to nodes in 
the EI database. This mapping serves two 
purposes: first, it provides an automated 
mechanism for environmental assessment 
of BOM components. Second, it helps 
identify the components where redesign 
efforts should be focused. We induce a 
naïve Bayes classifier to learn this map-
ping which is a technique that computes 
the posterior probability of classes by 
assuming conditional independencies of 
features. Once such a mapping is learned, 
we apply a disparate clustering technique 
[Hossain et al. (2010)] to find components 
that are functionally similar but have dis-
parate environmental impact factors, thus 
providing candidates for more sustain-
able design recommendations. This pro-
cess is depicted in Fig. 5(1).

Next, Fig. 5(2) shows how we 
obtain a design alternative of a specific 
product. At first, we use the classifier 
we trained in Fig. 5(1) to map each 
node of the bill of materials of the 
product to the EI DB nodes. Then  
we use a nonnegative least-squares 
(NNLS) fit to assess the environmental 
footprints of each component, to iden-
tify the top contributors. We also find 

the design alternatives from the list 
generated earlier. We suggest replace-
ments for the components that have 
high environmental footprint with sim-
ilar but more environmentally friendly 
components to design a more sustain-
able product.

We have applied the above methods 
on real data from a large computer 
manufacturer. We performed a case 
study on an enterprise computer PCB 
BOM that contained about 560 compo-
nents, including a mix of resistors, 
capacitors, application-specific inte-
grated circuits (ASICs), and logic 
devices. We used our framework to 1) 
estimate environmental footprints of the 
BOM components, 2) identify the top 
contributors to a particular impact 
(carbon emissions), and 3) suggest 
design alternatives for the top impact 
contributors. Note that we prepared a 
list of possible design alternatives by 
the methods described in Fig. 5(1). We 
use NNLS fit [Fig. 5(e)] to assess envi-

ronmental footprint and identify top 
contributors. Finally, we used the results 
generated at the end of Fig. 5(1) to pro-
pose design alternatives of the top con-
tributors of a specific BOM in Fig. 5(f). 
As the hotspot analysis in Fig. 6 shows, 
the primary culprit to carbon emissions 
in a PCB are the ICs and our suggested 
design alternatives could reduce the 
carbon footprint of the PCB by 4 to 7%. 
Although this might seem a modest 
improvement, the millions of PCBs rou-
tinely purchased across the globe can 
add up to a sizable contribution to  
sustainability. 

Sustainability in urban 
infrastructure

Finally, we look at sustainability 
issues involving an entire city or urban 
area. For instance, in the summer of 
2011, a significant portion of the United 
States was reeling under a heat wave, 
placing significant demands on utility 
companies in cities. This situation is 
reminiscent of heat waves recorded 
(and studied) in the past. For instance, 
in the book by Klinenberg (2009), 
which discusses the social and infra-
structural issues of the 1995 Chicago 
heat wave, the author draws attention 
to the inability of the infrastructure to 
meet peak demand and how two 
adjoining neighborhoods (Little Village 
and North Lawndale) were statistically 
identical but one had ten times the 
fatality rates of the other. Empirical 
models of urban infrastructure are 
hence critical to understanding such 
discrepancies.

While urban infrastructure research 
has typically employed techniques from 
supply chain management, asset man-
agement, logistics, and planning, we are 
beginning to use data mining tech-
niques to understand the complex  

Integrated
Circuits, 79.8%

Capacitor, 12%
Inductor, 7%

Diode, 1%

Other, 0.2%

Fig. 6 Hotspot analysis of the carbon footprint of enterprise computer PCB 
 components.

One important task of data 
mining here is to learn a 
mapping from nodes in the 
BOM database to nodes in 
the EI database.
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relationships and interactions between 
entities whose dynamics are evolving 
over time.

For instance, given gross metered 
usage data from homes, we can use data 
mining techniques to disaggregate and 
reconstruct the energy demand profiles 
for various home appliances across time. 
Unsupervised methodologies exist [e.g., 
Kim et al (2011)] that can break down a 
power load into its constituents using the 
aggregate load and contextual informa-
tion such as time of day, environmental 
conditions, and usage of other resources. 
Studies have shown that fine-grained 
feedback on usage obtained by such 
methodologies can help curtail peak use 
by up to 50%. The main advantage of dis-
aggregation is that it allows aggregate 
load to be split up into its constituents 
without requiring each individual device 
or appliance to be instrumented and 
metered. This provides insights into com-
ponent-wise resource consumption.

Going further, we can infer a model 
of realistic urban usage: what utilities are 
being used during which time periods in 
predominantly which regions? On top of 
such usage models, we can impose 
dynamics so that we can model move-
ments of people between locations, vari-
ations in usage with respect to the day of 
the week, holidays, and other “distrac-
tions” such as accidents and closures. 
This will allow us, to create a synthetic 
test bed of urban utility consumption. 
Such synthetic test beds are more pri-
vacy-preserving than methods that 
require intrusive knowledge of people 
and their habits. Further, they enable us 
to pose critical “what-if” scenarios that 
would not be possible through other 
means. Finally, we can integrate models 

of multiple physical and social organiza-
tional sectors such as electricity, water 
supply, surface transport, gas supply, 
drainage, waste management, and tele-
communications to arrive at sustainabil-
ity models for entire regions and cities.

Conclusion
Sustainability issues permeate all 

aspects of modern life. We have shown 
how computational sustainability through 
data mining techniques can serve as a 
key enabling technology in creating an 
environmentally friendly future. There 
are many other issues to successfully 
realizing sustainability goals that we have 
not considered here, including the 
human element of how to encourage 
and incentivize consumers to conserve 
resources, and the economic and public 
policy aspects of making sustainable 
products succeed in the marketplace. 
Nevertheless, as more and more complex 
systems are studied through a sustain-
ability lens, automated methodologies 
such as those presented here will become 
more important.
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