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This article presents the design and implementation of a software tool, PROXIMUS, for error-bounded

approximation of high-dimensional binary attributed datasets based on nonorthogonal decompo-

sition of binary matrices. This tool can be used for analyzing data arising in a variety of domains

ranging from commercial to scientific applications. Using a combination of innovative algorithms,

novel data structures, and efficient implementation, PROXIMUS demonstrates excellent accuracy,

performance, and scalability to large datasets. We experimentally demonstrate these on diverse

applications in association rule mining and DNA microarray analysis. In limited beta release,
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1. INTRODUCTION

With the availability of large scale computing platforms for high-fidelity sim-
ulations and instrumentation for data gathering, increased emphasis is be-
ing placed on efficient techniques for analyzing large and high-dimensional
datasets. These datasets may comprise discrete attributes such as those
from business processes, information retrieval, and bio-informatics, as well as
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continuous attributes such as those in scientific simulations, astrophysical mea-
surements, and engineering design. An important subclass of applications with
discrete datasets restricts data values to a binary subset. Such applications
form the focus of this article.

Analysis of high-dimensional data typically takes the form of extracting
correlations between data items, discovering meaningful information in data,
clustering data items, and finding efficient representations for clustered data,
classification, and event association. Since the volume (and dimensionality) of
data is typically large, the emphasis of new algorithms must be on efficiency
and scalability. Analysis of continuous attribute data generally takes the form
of Eigenvalue/singular value problems (PCA/rank reduction), clustering, least
squares problems, etc. Analysis of discrete datasets, however, generally leads to
NP-complete/hard problems, especially when physically interpretable results in
discrete spaces are desired. Consequently, the focus here is on effective heuris-
tics for reducing the problem size. Two possible approaches to this problem
are probabilistic subsampling and data compression. This article focuses on
algorithms and heuristics for error-bounded compression of very large high-
dimensional binary-attributed datasets.

Compression of binary data is a particularly challenging problem when com-
pressed data is required to directly convey the underlying patterns in the
data. Conventional techniques such as singular value decomposition (SVD), fre-
quency transforms such as discrete cosine transforms (DCT) and wavelets, and
others cannot be used here because the compressed data (orthogonalized vec-
tors or frequency coefficients) are not directly interpretable as signals in noisy
data. Techniques for clustering do not generalize easily to high-dimensions (104

or more) while yielding error-bounded cluster centroids. Unfortunately, the run-
times of all these methods are unacceptably large when scaled to millions of
records (vectors), or more.

In this article, we present the design and implementation of a software tool
for compressing binary matrices. This tool, PROXIMUS, is demonstrated to have
excellent compression properties, compression times, and scalability in terms of
dimensionality and dataset size. PROXIMUS implements a nonorthogonal matrix
transform based on recursive partitioning of a dataset. The partitioning process
extracts a representative pattern in the dataset and uses this pattern to divide
the dataset into two, based on the distance of a relation from the representa-
tive pattern. The representative pattern is computed as a binary representative
vector of the matrix of relations. PROXIMUS computes only the first binary rep-
resentative vector and consequently, each representative pattern has a phys-
ical interpretation at all levels in the hierarchy of the recursive process. For
the discovery of the representative binary vector, we adopt an iterative alter-
nating heuristic. Due to the discrete nature of the problem, initialization of bi-
nary representative vectors is critical for convergence to desirable local optima.
Taking this into account, we derive effective initialization strategies, along
with algorithms, data structures, and efficient implementation schemes for a
multiresolution representation of the dataset.

PROXIMUS provides several features that can be used to analyze binary at-
tributed data. These include:
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—discovering dominant and deviant patterns in the data in a hierarchical man-
ner (deviant patterns are those that are largely orthogonal to all dominant
patterns),

—clustering of data in an error-bounded and physically interpretable form,

—finding a concise representation for the data, and

—isolating signal from noise in a multiresolution framework.

It is important to note that the binary nature of data makes it critical to use
appropriate data structures and algorithms. Naive storage, data movement,
and computation schemes can easily overwhelm conventional computing plat-
forms. As we demonstrate in our results, PROXIMUS couples fast algorithms with
extremely efficient data structures and implementation to provide a powerful
software framework. It is also useful to note that the techniques presented in
this article for binary datasets can be extended to arbitrary discrete datasets (by
allowing arbitrary singular values in conjunction with binary valued singular
vectors) [Zyto et al. 2002].

In the next section, we discuss the use of matrix transforms in the context of
data analysis and compression and review existing approaches. In Section 3, we
present the mathematical underpinnings of PROXIMUS using representative ex-
amples. We present the implementation of PROXIMUS, emphasizing the design of
suitable data structures and efficient implementation schemes, in Section 4. We
demonstrate the effectiveness of PROXIMUS on both synthetic and experimental
data and explore the effect of various parameters on the quality of approxima-
tions in Section 5. We also illustrate the scalability of PROXIMUS to extremely
large datasets and present sample applications of PROXIMUS in diverse domains.
Finally, in Section 6, we draw conclusions and outline some avenues for future
research.

2. BACKGROUND AND RELATED WORK

Conventional approaches to analysis of large scale data focus on probabilistic
subsampling and data compression. Data reduction techniques based on prob-
abilistic subsampling have been explored by several researchers [John and
Langley 1996; Provost and Kolluri 1999; Toivonen 1996; Zaki et al. 1996]. Data
compression techniques are generally based on the idea of finding compact rep-
resentations for data through discovery of dominant patterns or signals. A nat-
ural way of compressing data relies on matrix transforms, which have found
various applications in large scale data analysis. Variants of orthogonal and
nonorthogonal matrix transformations such as truncated singular value de-
composition (SVD), semidiscrete decomposition (SDD), centroid decomposition
(CD), and principal direction divisive partitioning (PDDP) have been widely
used in information retrieval and data mining [Berry et al. 1995; Boley 1998;
Chu and Funderlic 2002; Kolda and O’Leary 1998, 2000]. In the rest of this
section, we summarize commonly used orthogonal and nonorthogonal matrix
transformations and their applications in data analysis and explore alternative
approaches for binary datasets.
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2.1 Rank Reduction and the Singular Value Decomposition (SVD)

SVD transforms a matrix into two orthogonal matrices and a diagonal matrix of
singular values, based on the Eigen-decomposition of matrices AAT and AT A.
Specifically, an m by n rectangular matrix A can be decomposed into

A = X �Y T , (1)

where X is an m × r orthogonal matrix, Y is an n × r orthogonal matrix, and
� is an r × r diagonal matrix of the singular values of A in descending order.
Here, r denotes the rank of matrix A. The matrix Ã = x1σ1 yT

1 is a rank-one
approximation of A, where x1 and y1 denote the first columns of matrices X
and Y , respectively. These vectors are the left and right singular vectors of A
corresponding to the largest singular value.

If we think of a matrix as a multiattributed dataset with rows correspond-
ing to relations and columns corresponding to attributes, we can say that each
3-tuple consisting of a singular value σk , kth column in X , and kth column in
Y represents a pattern in A characterized by corresponding singular value σk .
For larger singular values (relative to other singular values), the correspond-
ing pattern is more dominant in the dataset. SVD forms the basis for latent
semantic indexing (LSI) commonly used in information retrieval [Berry et al.
1995], which takes advantage of this property of SVD for rank reduction and
noise elimination. LSI summarizes the underlying data represented by matrix
A by truncating the SVD of A to an appropriate number of dominant singular
values. In doing so, the insignificant patterns corresponding to small singular
values are filtered.

2.2 Semidiscrete Decomposition (SDD)

SDD is a nonorthogonal matrix decomposition in which the values of the entries
in matrices X and Y are constrained to be in the set {−1, 0, 1} [Kolda and
O’Leary 2000]. The main advantage of SDD is its lower storage requirement,
which enables a higher rank representation for a given amount of memory. SDD
applied to LSI is shown to do as well as truncated SVD, while using less than
one-tenth of the storage [Kolda and O’Leary 1998]. SDD also finds application
in image compression and pattern matching and has been shown to provide fast
and accurate pattern matching, though performing slightly worse than DCT-
based image compression [Zyto et al. 2002]. McConnell and Skillicorn [2001]
show that SDD differs from SVD in that it is extremely effective in finding
outlier clusters in datasets and works well in information retrieval for datasets
containing a large number of small clusters.

Since the entries of the semidiscrete decomposition vectors are constrained
to be in the set {−1,0,1}, computation of SDD becomes an integer programming
problem which is NP-hard. Kolda and O’Leary [2000] propose an iterative al-
ternating heuristic to solve the problem of finding rank-one approximations to
a matrix in polynomial time. Each iteration of this heuristic has linear time
complexity.
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2.3 Centroid Decomposition (CD)

Centroid Decomposition (CD) is an approximation of SVD that is widely used
in factor analysis. It has been shown empirically that CD provides an estimate
of second order statistical information of the original data [Chu and Funderlic
2002]. CD represents the underlying matrix in terms of centroid factors that
can be calculated without knowledge of the entire matrix; the computation only
depends on the correlations between the rows of the matrix. Centroid factors
are computed via the centroid method, which is a fast iterative heuristic for
partitioning the data. This heuristic aims to modify the coordinate system to
increase the eccentricity of the system variables with respect to the origin.
The transformation aims to move the discovered centroid far away from the
origin, so that it represents a better essential factor. Centroid method requires
knowledge of correlations between all pairs of rows. This requires quadratic
time and space in the number of rows. Thus, while adapting centroid method
to binary data, an alternative for the correlation matrix must be provided that
is much sparser and takes advantage of the discrete nature of data.

2.4 Principal Direction Divisive Partitioning (PDDP)

Principal direction divisive partitioning (PDDP) is a hierarchical clustering
strategy for high-dimensional real-valued sparse datasets [Boley 1998]. PDDP
splits documents (rows) into two parts, recursively, based on the principal di-
rection of the document-term matrix. Here, principal direction corresponds to
the first singular vector of the matrix obtained by moving the centroid of the
original matrix to the origin. The idea of recursively partitioning the matrix
based on the first singular vector is similar to that used by PROXIMUS. However,
PROXIMUS is designed specifically for binary-attributed data and works on the
original matrix rather than moving its centroid to the origin, in contrast to
PDDP. For these reasons, PROXIMUS is significantly faster than PDDP.

2.5 Other Work on Summarizing Discrete-Attribute Datasets

Other work on summarizing discrete-attributed datasets has largely focused on
clustering very large categorical datasets. A class of approaches is based on well-
known techniques such as vector-quantization [Gray 1984] and k-means cluster-
ing [MacQueen 1967]. The k-modes algorithm [Huang 1997] extends k-means
to the discrete domain by defining new dissimilarity measures. Another class
of algorithms is based on similarity graphs and hypergraphs. These methods
represent the data as a graph or hypergraph and apply partitioning heuristics
to this representation. Graph-based approaches represent similarity between
pairs of data items using weights assigned to edges and define cost functions on
this similarity graph [Gibson et al. 1998; Guha et al. 2000; Gupta and Ghosh
2001]. Hypergraph-based approaches observe that binary-attributed datasets
are naturally described by hypergraphs and directly define cost functions on
the corresponding hypergraph [Han et al. 1998; Özdal and Aykanat 2004].

Our approach differs from these methods in that it discovers naturally oc-
curring patterns with no constraint on cluster sizes or the number of clusters.
Thus, it provides a generic interface to the problem which may be used in diverse
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applications, as we demonstrate in our experimental results. Furthermore, the
superior execution characteristics of our approach make it particularly suited
to high-dimensional attribute sets.

3. PROXIMUS: MATHEMATICAL FOUNDATIONS

PROXIMUS relies on nonorthogonal decomposition of binary matrices to extract
patterns. In many applications, the underlying data can be represented as
a matrix with rows representing relations with binary attributes, or feature
vectors with binary-valued features. For such a representation, the proposed
nonorthogonal decomposition of binary matrices finds a minimal set of repre-
sentative patterns for the rows and associates each row with a pattern. This
results in a compact and error-bounded approximation for the given matrix.

The problem of extracting patterns from a given set of binary vectors can be
stated as follows: Given m binary vectors defined over an n-dimensional space,
construct a summary of k � n (representative) vectors such that each of the
given vectors is within given bounded distance from some representative vector.
A variety of distance metrics can be used to measure the distance between
binary vectors. PROXIMUS uses Hamming distance as its metric, since it is well
suited to binary spaces. The Hamming distance between two binary vectors is
defined as the number of entries that are different in the two vectors.

A binary rank-one approximation to a binary matrix is defined as an outer
product of two binary vectors that is at minimum Hamming distance from the
matrix over all outer products of the same size. In other words, the rank-one
approximation problem for matrix A with m columns and n rows is one of finding
two vectors x and y that maximize the number of zeros in the matrix (A−x yT ),
where x and y are of dimensions m and n, respectively. The following example
illustrates this concept:

Example 3.1. Given a matrix A, we compute a rank-one approximation as
follows:

A =
⎡
⎣ 1 1 0

1 1 0
1 1 0

⎤
⎦ =

⎡
⎣ 1

1
1

⎤
⎦ [ 1 1 0 ] = x yT

Here, vector y can be thought of as the pattern vector, which is the best approx-
imation for the objective (error) function specified. In our case, this vector is
[1 1 0]T . Vector x is the presence vector representing the rows of A that are well
approximated by the pattern described by y . Since all rows contain the same
pattern in this rank-one matrix, x is vector of all ones. We further clarify this
discussion with a slightly nontrivial example.

Example 3.2. Consider now a binary matrix A, which does not have an
exact rank-one representation (i.e., the matrix is of higher rank).

A =

⎡
⎢⎢⎣

0 1 1 0 1
0 0 1 0 1
0 0 0 1 1
1 0 1 0 1

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦ [ 0 0 1 0 1 ] =

⎡
⎢⎢⎣

0 0 1 0 1
0 0 1 0 1
0 0 0 0 0
0 0 1 0 1

⎤
⎥⎥⎦
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Table I. Summary of Notation

Symbol Meaning Symbol Meaning

A Binary matrix Ã Representative matrix

m Number of rows (context) mA Number of rows in A
n Number of columns (context) nA Number of columns in A
N Number of nonzeros (context) NA Number of nonzeros in A

A(i) ith row of matrix A A(i, j ) i, j th entry of A
Ai Submatrix of A
x Binary presence vector y Binary pattern vector

X Binary presence matrix Y Binary pattern matrix

x(i) ith entry of x k Number of representative vector pairs

ε Bound on Hamming radius d Height of recursion tree

h(x, y) Hamming distance r(A, y) Hamming radius

||.||F Frobenius-norm of a matrix ||.||2 2-norm of a vector

O(.) Asymptotic upper bound �(.) Asymptotic upper & lower bound

The pattern vector here is [0 0 1 0 1]T and the corresponding presence vector
is [1 1 0 1]T . This presence vector indicates that the pattern is dominant in
the first, second, and fourth rows of A. A quick examination of the matrix
confirms this. In this way, a rank-one approximation to a matrix can be thought
of as decomposing the matrix into a pattern vector, and a presence vector that
signifies the presence of the pattern.

Conventional singular value decompositions (SVDs) can be viewed as sum-
mations of rank-one approximations to a sequence of matrices. Starting with the
given matrix, SVD computes a pair of singular vectors that are associated with
the largest singular value of the matrix. The outer product of this pair, scaled
by the corresponding singular value, provides the best rank-one approximation
for the matrix in terms of minimizing the norm of the error. This approximation
is subtracted from the given matrix to obtain a residual matrix, which in turn is
the part of the matrix that cannot be represented by the first singular matrix,
and the same procedure is applied to the residual matrix. Subsequent singular
vectors are chosen to be orthogonal to all previous singular vectors. The number
of singular vector pairs necessary to reach a zero residual matrix is equal to the
rank of the matrix. Indeed, the procedure can be terminated earlier to obtain a
“truncated SVD” for the matrix which provides the best possible approximation
for a given number of singular vectors.

While SVD is useful in some applications involving discrete datasets (eg.,
latent semantic indexing (LSI)), the application of SVDs to binary matrices
has two drawbacks. First, the resulting decomposition contains nonintegral
vector values, which are generally hard to interpret for binary datasets. SDD
partially solves this problem by restricting the entries of singular vectors to
the set {−1, 0, 1}. However, the second drawback is associated with the idea
of orthogonal decomposition, or more generally, extraction of singular vectors.
If the underlying data consists of nonoverlapping (orthogonal) patterns only,
SVD successfully identifies these patterns. However, if patterns with similar
strengths overlap, then, because of the orthogonality constraint, the features
contained in some of the previously discovered patterns are extracted from
each pattern. In orthogonalizing the second singular vector with respect to
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the first, SVD introduces negative values into the second vector. There is no
easy interpretation of these negative values in the context of most postprocess-
ing techniques, such as evaluating frequent itemsets. Since SDD is based on
repeatedly finding rank-one approximations to a residual matrix obtained by
extracting the information that is already contained in a previous approxima-
tion, SDD also suffers from the same problem. A simple solution to this problem
is to cancel the effect of the first singular vector by removing this singular vec-
tor and introducing all subsets of this vector with appropriate weights. This
can prove to be computationally expensive. What is required is a nonorthog-
onal transform that does not introduce negative values into the composing
vectors.

Based on these observations, our modification to SDD for binary matrices
has two major components:

—pattern and presence vectors are restricted to binary (0/1) elements, and

—the given matrix is partitioned based on the presence vector after each compu-
tation of a rank-one approximation, and the procedure is applied recursively
to each partition. No orthogonalization is performed with respect to previ-
ously detected representative vectors. This method provides a hierarchical
organization of representative patterns.

3.1 Discrete Rank-One Approximation of Binary Matrices

The problem of finding the optimal discrete rank-one approximation for a binary
matrix can be stated as follows.

Definition 3.3. Rank-One Approximation
Given matrix A ∈ {0, 1}m ×{0, 1}n, find x ∈ {0, 1}m and y ∈ {0, 1}n that minimize
the error:

h(A, Ã) = ||A − Ã||2F = |{i, j : A(i, j ) �= Ã(i, j )}|, (2)

where Ã = x yT is the representative matrix.
In other words, the error for a rank-one approximation is the number of

nonzero entries in the residual matrix. This problem is closely related to one of
finding maximal cliques in graphs. Although there is considerable literature on
the maximum clique and biclique problems [Bron and Kerbosch 1973; Peeters
2003], we do not know of any approximation algorithms or effective heuristics
in literature for this relaxed formulation of the problem. However, the main
purpose here is to find a low-rank decomposition that approximates groups of
rows with local patterns, rather than a globally optimal rank-one approxima-
tion. Since a locally optimal solution to the rank-one approximation problem
is associated with a local pattern, it is adequate to apply an efficient heuristic
to discover underlying local patterns in the matrix. Removing the nonorthog-
onality constraint and applying such an heuristic recursively, it is possible to
find an approximation to the entire matrix while improving the local approxi-
mation as well. For this purpose, we adopt an alternating iterative heuristic for
the computation of SDD vectors to binary matrices, with suitable initialization
heuristics.
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3.1.1 Alternating Iterative Heuristics. Since the objective (error) function
can be written as

||A − x yT ||2F = ||A||2F − 2xT Ay + ||x||22|| y ||22, (3)

minimizing the error is equivalent to maximizing:

Cd (x, y) = 2xT Ay − ||x||22|| y ||22. (4)

For fixed y , it is possible to find vector x that maximizes this objective function
in linear time in the number of nonzero entries of A. The solution to this problem
is discussed in detail in Section 4.4.1. Similarly, the problem can be solved in
linear time for vector y , given vector x. This leads to an alternating iterative
algorithm based on the computation of SDD [Kolda and O’Leary 2000]; namely,
initialize y , then solve for x; now, solve for y based on updated value of x.
Repeat this process until there is no improvement in the objective function.

3.1.2 Approximate Continuous Objective Function. An alternate heuristic
approach to the rank-one approximation problem is to replace the discrete ob-
jective function of Equation (4) with a continuous approximation, which follows
from the analysis of the minimization problem of Equation (3) in the contin-
uous domain. In the case of decomposing continuous valued matrices, it has
been shown [O’Leary and Peleg 1983] that the objective function of rank-one
approximation is equivalent to one of maximizing:

Cc(x, y) = (xT Ay)2

||x||22|| y ||22
. (5)

Although this function is not equivalent to the objective function in the case
of binary matrices (i.e., Cd (x, y) and Cc(x, y) do not have their global optimum
at the same point) the behavior of these two functions is generally correlated.
Thus, we can use Cc(x, y) as a continuous approximation to Cd (x, y). Although
a local maximum of Cc(x, y) does not necessarily correspond to a local maximum
of the discrete objective function, it may correspond to a point that is close to a
local maximum and has a higher objective value than many other undesirable
local maxima. Consequently, it can be more effective and flexible in the iterative
course of the algorithm, especially for very sparse matrices. In this case, fixing
y and letting sy = Ay/|| y ||2 as above, the objective becomes one of maximizing

Cc(x) = (xT sy )2

||x||22
. This problem can also be solved in linear time, as discussed in

Section 4.4.1. Both of the heuristics arising from the two objective functions are
implemented in PROXIMUS.

3.2 Recursive Decomposition of Binary Matrices

We use the rank-one approximation of the given matrix to partition its rows
into two submatrices. This is in contrast to conventional SVD-based techniques
that compute the residual matrix and apply the transformation repeatedly. This
difference manifests itself in the ability of PROXIMUS to find local (interpretable)
patterns, whereas SVD finds global trends in the matrix.
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Definition 3.4. Partitioning Based on Rank-One Approximation:
Given rank-one approximation Ã = x yT ≈ A, a partition of A with respect to
this approximation is defined by two submatrices A1 and A0, where

A(i) ∈
{

A1, i f x(i) = 1
A0, otherwise

for 1 ≤ i ≤ m. Here, A(i) denotes the ith row of A.

The intuition behind this approach is that the rows corresponding to 1’s in the
presence vector are the rows of a maximally correlated submatrix of A. Since
the rank-one approximation for A gives no information about A0, we further
find a rank-one approximation and partition this matrix recursively. On the
other hand, we use the representation of the rows in A1 given by the pattern
vector y and check if this representation is adequate via a stopping criterion.
If so, we decide that matrix A1 is adequately represented by matrix x yT and
stop; else, we discard x and y , and recursively apply the procedure for A1 as
for A0.

The partitioning-and-approximation process continues until the matrix can-
not be further partitioned and the resulting approximation adequately repre-
sents the entire matrix. We use the Hamming radius of the set of rows that are
present in the approximation to measure the adequacy of the representation
provided by a rank-one approximation, using the pattern vector as the centroid
of this set of rows.

Definition 3.5. Hamming Radius
Given a matrix A ∈ {0, 1}m×n and a binary vector y ∈ {0, 1}n, the Hamming
radius of A centered around y is defined as:

r(A, y) = max
1≤i≤mA

h(A(i)T , y), (6)

where h(x, y) = ||x − y ||22 is the Hamming distance between binary vectors x
and y .

We use the Hamming radius as the major stopping criterion for the algorithm
to decide whether the underlying pattern can represent all rows of the cor-
responding submatrix adequately. The recursive algorithm does not partition
submatrix Ai further if the following conditions hold for the rank-one approxi-
mation Ai ≈ xi yT

i .

—r(Ai1, yi) < ε, where ε is the prescribed bound on the Hamming radius of
identified clusters; and

—xi( j ) = 1 ∀ j (i.e., all the rows of Ai are present in Ai1).

If the above conditions hold, the pattern vector yi is identified as a representa-
tive pattern in matrix Ai and recorded along with its associated presence vector
in the approximation of A. The resulting approximation for A is represented
as Ã = X Y T . Here, X and Y are m × k and n × k matrices containing the
presence and pattern vectors in their rows, respectively, and k is the number of
identified patterns (i.e., the number of representative vector pairs). Note that
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while the presence matrix X has orthogonal columns, since each pattern can
be present in exactly one row, columns of the pattern vector Y are not neces-
sarily orthogonal. This is because the resulting patterns may be overlapping,
since the representative patterns are never extracted from the matrix. Thus,
the resulting approximation is a binary nonorthogonal decomposition of A.

4. PROXIMUS: ALGORITHMS AND DATA STRUCTURES

PROXIMUS is a software package that uses the binary nonorthogonal decomposi-
tion described above for analysis of binary attributed datasets. It is available
both as a stand-alone application for data analysis, or as a library of functions
that can be used in diverse applications that involve binary datasets. Such ap-
plications include association rule mining, clustering, pattern discovery, and
vector quantization.

4.1 Software Organization and Interface

PROXIMUS is implemented in the C programming language and its source code
is available for free download at http://www.cs.purdue.edu/homes/koyuturk/
proximus/. It can be compiled into an application that decomposes a given bi-
nary matrix into two low-rank binary matrices whose product approximates
the given matrix based on various input parameters. These parameters can be
tuned to obtain a desired approximation depending on the application. The soft-
ware is composed of several modules that can serve independently as a library
for computations on binary matrices.

4.1.1 Input Parameters. PROXIMUS can be executed as an application using
the bnd command from the shell using the following prototype:

% bnd <filename> <optional arguments>.

Table II presents a description of the input parameters. The only mandatory
argument for the application is the name of a file containing the given matrix.
The file format used to store both given and representative matrices in
PROXIMUS is described in Section 4.1.2. Table II also describes optional argu-
ments that can be used to tune several parameters. The argument algorithm
is used to specify the objective function to be maximized during rank-one
approximation. Possible choices are discrete and continuous objective functions
discussed in Section 3.1.1 and 3.1.2, respectively. The algorithm used for
initializing the pattern vector in rank-one approximation is specified by the
init argument. Various initialization methods implemented in PROXIMUS are
discussed in Section 4.4.2. The argument epsilon sets the desired bound
on the Hamming radius of the clusters of rows discovered by PROXIMUS. The
final optional argument, minclustersize, can be used to limit the size of the
clusters discovered by PROXIMUS. If this parameter is set to a value c > 1,
PROXIMUS terminates with submatrices having number of rows less than c
without checking the stopping criteria. The motivation for this parameter is
that a submatrix that has c rows is small enough to be considered a good
cluster of rows.
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Table II. Description of Input Parameters

Argument Description Default value

<filename> Name of the file containing input matrix. N/A

-a <algorithm> Algorithm to be used for rank-one approximation.

(1) Discrete
(2) Continuous

Discrete

-i <init> Initialization strategy.

(1) Allones
(2) Center
(3) Maximum
(4) Partition
(5) Greedy Graph Growing
(6) Neighbor
(7) Random-row
(8) Random

Random-row

-e <epsilon> Bound on Hamming radius. 0

-w Write representative vectors. If used, presence

and pattern vectors will be written in files

<filename>.X.out and <filename>.Y.out,

respectively.

False

-c <minclustersize> Minimum size of a cluster of rows. 1

Fig. 1. Storage of sparse binary matrices in PROXIMUS: (a) sample matrix, (b) its representation in

row-major format.

4.1.2 Data Representation and Storage. In PROXIMUS, binary matrices are
stored in sparse row-major format as ascii files. An m×n matrix containing N
nonzero entries is stored in a file containing m+1 lines. Each of the last m lines
contain a list of column indices of nonzero entries (ones) in the corresponding
row of the matrix. Indexing of columns starts from zero in PROXIMUS. The first
line is reserved for the declaration of matrix parameters—it contains the num-
ber of rows, columns, and nonzeros in the matrix, respectively. A sample sparse
binary matrix and its representation are shown in Figure 1.

4.2 Overview of Algorithms

We illustrate the recursive structure of the hierarchical decomposition of binary
matrices with an example.

Example 4.1. Figure 2 illustrates the recursive structure of PROXIMUS in
the decomposition of the matrix (A) of Figure 1(a) with bound on Hamming
radius ε = 1. Starting with matrix A, a rank-one approximation to A is
computed. Matrix A is then partitioned into A1 and A0 based on the presence
vector x = [0 1 1 0]T . Here, the pattern vector is y = [1 0 0 1 1]T . The rank-one
approximation to A1 returns a presence vector of all 1’s (x1 = [1 1]T ) and the
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Fig. 2. Recursive structure of PROXIMUS. The tree shows the recursive decomposition of the matrix

in Figure 1(a) with ε = 1. Each rectangular internal node is a rank-one approximation and two

circular children of these nodes are the matrices that result from partitioning of parent matrix

based on this approximation. Leaves of the recursion tree correspond to final decomposition.

approximation is adequate (r(A1, x1) ≤ 1), so the recursion stops at that node
and y1 = [1 0 0 1 1]T is recorded as a representative pattern. Note that while
recording presence vectors, we extend the dimensions of the vector to the num-
ber of rows in the vector by filling in zeros into all entries that correspond to the
rows of the given matrix that are not contained in the present submatrix (i.e.,
x1 is recorded as [0 1 1 0]T since A1 contains only the second and third rows of
A). Matrix A0 is further partitioned since the approximation Ã0 = x0 yT

0 , where
y0 = [0 1 0 0 1]T and x0 = [1 0]T , does not cover all rows of A0. The overall
decomposition of A into three representative vector pairs is Ã = X Y T , where

X = [x1, x01, x00] =

⎡
⎢⎢⎣

0 1 0
1 0 0
1 0 0
0 0 1

⎤
⎥⎥⎦ and Y T = [ y1, y01, y00]T =

⎡
⎣ 1 0 0 1 1

0 1 0 0 1
0 0 1 0 0

⎤
⎦ .

A more detailed example for recursive decomposition on a larger matrix is
shown in Figure 8.

An outline of the recursive algorithm and its components is presented in
Figure 3. Procedure INITIALIZEPATTERNVECTOR initializes the pattern vector based
on the given matrix. Possible methods for initialization of the pattern vector
are discussed in Section 4.4.2.
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Fig. 3. Outline of the algorithms for recursive decomposition of binary matrices.

4.3 Data Structures

As seen in Figure 3, three major types of data are involved in the decomposi-
tion of binary matrices. The first component corresponds to the binary matrices
themselves, which act as the input and output for the decomposition. Each
rank-one approximation is associated with two binary vectors that need to be
saved throughout the computation since they constitute the final approximation
and help in tracking the hierarchical structure of the resulting decomposition.
Finally, integer vectors are used in the computation as the result of multipli-
cation of binary matrices with binary vectors. Binary matrices and vectors are
sparse by nature and the selection of appropriate storage schemes for these
data types is important for space utilization as well as computational cost,
since they generally tend to be very large and high-dimensional. The only in-
teger vectors that appear during the course of the algorithm are zx and z y in
procedure RANKONEAPPROXIMATION, which is shown in Figure 3. Since these vec-
tors result from a binary matrix-vector multiplication, they are not necessarily
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Fig. 4. Sparse representation of the matrix in Figure 1 in (a) traditional CSR; (b) modified CSR

format; (c) original matrix partitioned into two.

sparse. Therefore, they are stored in a dense array of integers. However, since
these integer vectors are temporary variables that are consumed immediately
after being produced, it is possible to recycle these vectors within and across
rank-one approximations.

4.3.1 Binary Matrices. Several binary matrices appear through the recur-
sive process of decomposition. The rows of each matrix are partitioned into two
submatrices based on rank-one approximation and each resulting matrix is fur-
ther decomposed recursively. It would require excessive space and data move-
ment if each matrix that appears in the course of the recursive process is stored
separately. This process can be handled very efficiently based on the following
observations: First, the two children of a matrix that result from partitioning
the matrix are disjoint (row) subsets of the original matrix. Second, it is easy to
split the rows of a matrix into two if the matrix is stored in compressed sparse
row (CSR) format. Therefore, entire decomposition can be performed in-place
on the original matrix with an appropriate modification of CSR format.

Traditionally, CSR representation of sparse matrices consists of two arrays;
one storing the column indices of nonzero entries and the other storing point-
ers to this array, one for each row, to point the first nonzero entry of the row
[Saad 1996]. End-pointers are not needed since the start pointer of each row
also marks the end of the previous row. Figure 4(a) illustrates the CSR repre-
sentation of the matrix in Figure 1(a). The last element of the pointer array is
necessary to mark the end of the list of nonzero elements in the matrix. Note
that these arrays are usually accompanied by a third array that stores the value
of each entry. This is not necessary in our case since each nonzero entry of the
matrix is equal to one.

In PROXIMUS, row pointers are stored in a linked list rather than in a con-
tiguous array, in order to handle the partitioning of rows efficiently. Figure 4(b)
shows this representation. The matrix can be partitioned by simply splitting
the linked list of row pointers. This operation can be performed in a single
pass over the rows without any extra storage. The partitioning of matrix A of

ACM Transactions on Mathematical Software, Vol. 32, No. 1, March 2006.



48 • M. Koyutürk et al.

Example 4.1 into A1 and A0 is shown in Figure 4(c). Note that it is now neces-
sary to keep pointers to not only the first entry but also to the last entry of each
row, since the list of nonzero entries of the matrix is not contiguous anymore.
With this representation, the space required to store all binary matrices that
appear during the course of decomposition is no more than the space required
for the matrix.

4.3.2 Binary Vectors. It is possible to store binary vectors in either com-
pressed sparse format or in bit-arrays. While compressed sparse format is
highly efficient in terms of space, it is necessary to use a full-vector to per-
form sparse matrix-vector multiplication (mat-vec) in time linear in the num-
ber of nonzero entries [Duff et al. 1987]. Since the core computation in recur-
sive matrix decomposition is a mat-vec, it is crucial for overall performance to
perform this operation in linear time. For this reason, while the binary vec-
tors are stored in sparse representation throughout the decomposition process,
they are expanded into full vectors (bit-arrays) during mat-vecs. Note that bit-
arrays are also recycled in the same manner as integer vectors, requiring stor-
age of only two full vectors for the entire decomposition process.

4.4 Algorithmic Issues

4.4.1 Major Computations. As seen in Figure 3, the core computations in
the decomposition of matrices are those during each iteration of a rank-one
approximation, namely, a matrix-vector multiplication followed by solving the
maximization problem of Equation (4). Right matrix-vector multiplication (i.e.,
the computation of z y = Ay) can be easily performed in time linear in the
number of nonzeros of A. Similarly, left-vector multiplication (zx = xT A) can
also be performed in linear time by visiting each element of the binary vector
and if this element is nonzero, incrementing the corresponding entry of zx for
each nonzero element of the corresponding row [Loan 2000].

If the objective function to be maximized is the discrete function of Equa-
tion (4), then the solution for vector x for a fixed vector y is given by the follow-
ing equation:

x(i) =
{

1, if 2z y (i) ≥ ny

0, otherwise (7)

This equation follows from the following idea: If we set the ith entry of vector x,
then the ith row of the representative matrix x yT will have ny = || y ||22 nonzero
elements. Then, the contribution of this entry to Cd (x) will be positive only if at
least half of these elements match those of the original matrix. Note that two
entries match if the j th entry of the row of interest of A and the binary vector
y are both nonzero. Clearly, z y (i) is equal to the number of nonzeros on the ith

row of A that match the nonzeros in y . Therefore, Equation (7) follows. This
equation can be evaluated in �(m) time, once z y is computed. Similarly, we can
compute vector y that maximizes Cd (x, y) for a fixed x in �(n) time.

In the case of the continuous objective function, the algorithm is based on the
following observation: If the solution to Cc(x) contains l nonzero entries, these
entries correspond to the largest l entries of sy . This is indeed a generalization of
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Fig. 5. Computation of vector x to maximize Cc(x) for fixed vector y .

the statement of the previous paragraph and was proved by O’Leary and Peleg
[1983]. Thus, the problem can be solved in linear time by sorting elements of sy

and visiting elements of x in the resulting order until no improvement in the
objective function is possible. Note that although entries of sy are normalized
in the mathematical formulation, it can be omitted in implementation since
normalization doesn’t affect the ordering of the elements. In addition, sy being
an integer vector makes it possible to use counting sort, which proves to be
efficient for this problem since the entries of sy are bounded by number of
columns (rows) of A. The algorithm for the maximization of Cc(x) for fixed
vector y is given in Figure 5.

4.4.2 Initialization of Iterative Process. While finding a rank-one approx-
imation, initialization is critical not only for fast convergence but also for the
quality of the solution since a poor choice can result in poor local maxima. In
order to have a feasible solution, the initial pattern vector should have mag-
nitude greater than zero (i.e., at least one of the entries in the initial pattern
vector should be equal to one). It is important that the initialization of pattern
vector must not require more than �(NAi ) operations, where Ai is the subma-
trix being approximated, since it will otherwise dominate the runtime of the
overall algorithm. The following initialization algorithms are implemented in
PROXIMUS.

—Allones: A vector of all ones. This scheme is very fast but generally converges
to local maxima that correspond to large clusters with poor proximity.

—Center: Center of all rows on the n-dimensional hypercube. This scheme leads
to patterns that characterize the overall structure of the matrix rather than
capturing individual patterns.

—Maximum: Set only the entry of pattern vector that corresponds to the column
of the matrix with largest number of nonzeros.

—Partition: Select a separator column and identify the rows that have a nonzero
in that column. Initialize the pattern vector to the centroid of these rows. The
idea is to partition the rows of the matrix along one dimension expecting that
such a partition will include rows that contain a particular pattern.
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—Greedy Graph Growing (GGG): Based on the idea of iterative improvement
heuristics in graph partitioning [Karypis and Kumar 1998], this scheme
starts with a randomly selected row in one part and grows that part by
including rows that share the maximum number of nonzeros with that part
until a balanced partition is obtained. The initial pattern vector is set to the
center of rows in this part.

—Neighbor: Observing that a balanced partition of rows is not necessary due
to the nature of the problem, we select a row randomly and initialize the
pattern vector to the centroid of the neighbors of that row (i.e., the set of
rows that share a nonzero with that particular row).

—Random-Row: Initial pattern vector is a randomly selected row. The expec-
tation is that the selected row is part of a cluster, so the iterative algorithm
will capture the representative pattern in that cluster.

—Random: Some randomly selected entries of initial pattern vector are set.
In PROXIMUS, the number of entries set is equal to the average number of
nonzeros per row.

All of the above initialization schemes require O(NAi ) time to compute, where
NAi is the number of nonzero entries in the matrix being approximated, there-
fore, they do not introduce any overhead on the asymptotic complexity of the
underlying algorithm.

4.5 Time and Space Complexity

4.5.1 Time Complexity. In the alternating iterative heuristic for comput-
ing rank-one approximations, each solution to the optimization problem of
Equation (4) takes O(NAi ) time, where Ai is the submatrix being approximated.
The number of iterations required to compute a rank-one approximation is a
function of the initialization vector and strength of associated local minima. In
general, if the underlying pattern is strong, we observe very fast convergence. In
our experiments, we observe the computation time of a rank-one approximation
to be linear in the number of nonzeros of the matrix for all instances.

If we view the recursive process as a tree with each node being a rank-one
approximation to a matrix, we can observe that the total number of nonzeros of
the matrices at each level of the recursion tree is at most equal to the number
of nonzeros in the original matrix. Thus, the overall time complexity of the
algorithm is bounded by O(d × N ), where d denotes the height of the recursion
tree. If the resulting decomposition has k pattern vectors (which is equal to the
number of leaves) in the recursion tree, then d ≤ k −1. Note that this is a loose
bound, since d � k in general. More specifically, d and k are functions of the
underlying pattern structure of the given matrix and the prescribed bound on
Hamming radius.

4.5.2 Space Complexity. As discussed in Section 4.3.1, all rank-one ap-
proximations are performed in-place on the original matrix, therefore, the total
space required for the binary matrices is O(m+ N ). All binary and integer vec-
tors that appear in the computation of a rank-one approximation are recycled
across rank-one approximations. A vector can be of length at most O(m + n),
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therefore, the space required for storing vectors is O(m + n). If we are only
interested in the final decomposition, all the pattern and presence vectors that
appear at the leaves of the recursion tree are recorded in pattern and presence
matrices, respectively. The final presence matrix is a sparse binary matrix of
size k × m, with m nonzero entries since each row is linked to exactly one pat-
tern. The pattern matrix contains the representative patterns in its k columns,
and a pattern vector can contain at most twice the number of nonzeros in the
row of the original matrix that contains this pattern, by Equation (7). Thus,
there can be at most 2N nonzeros in the pattern matrix. Note that this is a
loose bound since the number of pattern vectors are much smaller than the
number of rows in the given matrix. Since k ≤ m and we may assume that
m, n ≤ N , the overall space requirement is linear in the number of nonzeros of
the matrix. We conclude from this discussion that PROXIMUS is well-suited for
use in large-scale problems.

If we need to keep track of the hierarchical structure of the decomposition,
then it is only necessary to store all pattern vectors that appear at intermediate
nodes of the recursion tree, since intermediate presence vectors can be recon-
structed from the tree. Since the recursion tree has at most 2k nodes and each
pattern vector contains approximately 2N/m nonzeros, the additional space
required for saving hierarchical cluster information is proportional to Nk/m,
on an average.

5. EXPERIMENTAL RESULTS

In this section we present detailed experimental results on various performance
aspects of PROXIMUS. We first compare the performance of PROXIMUS with that
of traditional matrix decomposition and clustering methods. We then present
results on synthetic datasets with a view to exploring various program param-
eters and their impact on performance. The IBM Quest dataset generator is
particularly useful in this regard, since it enables us to generate datasets with
specific characteristics. We also present two real applications built on the PROX-
IMUS library. These applications relate to mining association rules in relational
data and extracting coregulated genes from microarray data.

5.1 Use of PROXIMUS in Clustering and Pattern Extraction

In this section, we report two experiments that illustrate the superior char-
acteristics of PROXIMUS in approximating and clustering binary datasets com-
pared to other state-of-the-art clustering and approximation techniques that
work particularly well on continuous data. We generate two sample matrices
by implanting uniform patterns into groups of rows on a background of uniform
white noise.

The first matrix, shown in Figure 6(a), contains four overlapping patterns
with uniform distribution. This matrix is generated as follows. For the back-
ground noise, any entry of the 80 × 52 matrix is set to 1 with probability pb.
If the ith row contains the kth pattern, then the (i, j )th entry of the matrix is
set to 1 with probability pp, where (k − 1)l + 1 ≤ j ≤ kl + r. Here, the leading
columns of two successive patterns are l apart and r denotes the number of
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Fig. 6. Approximation of a sample binary matrix that contains four overlapping uniform patterns.

(a) original matrix, (b) rank-4 approximation provided by PROXIMUS, (c) rank-4 approximation pro-

vided by SVD, (d) rank-8 approximation obtained by quantizing SVD approximation, (e) approxi-

mation (sum of four rank-one matrices) obtained by quantizing most dominant singular vectors, (f)

rank-4 approximation provided by K-means clustering.

columns shared by two neighboring patterns. While generating the matrix of
Figure 6, pattern length parameters l and r are set to 12 and 4, respectively,
probability parameters pb and pp are set to 0.01 and 0.8, respectively, and the
number of rows that contain the same pattern is set to 20. Note that the rows
and columns that belong to a particular pattern are shown to be adjacent in
the figures just for illustration purposes. In other words, for any of the algo-
rithms whose performance is reported here, the ordering of rows or columns is
not important. Indeed, if we reorder the rows and the columns of the matrix
randomly, it is possible to recover the block-diagonal structure of the matrix
using the hierarchical clustering of rows provided by PROXIMUS.
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The rank-4 approximation provided by binary nonorthogonal decomposition
of the matrix is shown in Figure 6(b). As seen in the figure, PROXIMUS is able
to capture the four underlying patterns in the matrix and associate each row
with the pattern that it contains. The Frobenius norm of the error of this ap-
proximation is 19.7, which is the square root of the Hamming distance of 388
between the given and representative matrices.

The rank-4 approximation provided by the four most significant singular vec-
tors of SVD is shown in Figure 6(c). This approximation is optimal in the sense
of minimum least squares, with an error of 17.2. Although this is less than the
binary approximation provided by PROXIMUS, it is not very useful in applications
involving binary data for several reasons, as discussed earlier. Although we can
see in the figure that SVD approximation is able to reveal the underlying pat-
terns on the diagonal blocks of the matrix once the matrix is reordered, it is not
possible to capture these patterns just by analyzing the real-valued singular
vectors provided by SVD. On the other hand, binary pattern and presence vec-
tors of PROXIMUS reveal this structure clearly, regardless of ordering. In order to
address the interpretability problem of SVD, it is necessary to quantize the SVD
approximation. This can be done in two ways. The first method is to quantize
the rank-4 SVD approximation matrix, obtaining the binary approximation of
Figure 6(d) with an error of 19.7, which is the same as that of PROXIMUS. How-
ever, the rank of this approximation is 8, since quantization of individual entries
does not preserve the rank of the matrix. In order to preserve the rank of the
matrix, it is possible to quantize the dominant singular vectors rather than the
representative matrix. This makes it possible to represent the representative
matrix as the sum of four rank-one matrices. However, quantization of singular
vectors is problematic since these vectors may contain large negative values.
The only way to quantize these vectors is rounding the absolute value of each
singular vector amplified by the associated singular value, relying on the as-
sumption that a large negative value in a left singular vector accompanied by
another negative in the corresponding right singular vector may be associated
with a pattern in the matrix. However, this assumption does not always hold,
since a negative value combined with a positive value in the corresponding sin-
gular vector may be associated with the correction of an error introduced by
more dominant singular vectors. Consequently, binary quantization amplifies
such errors because of misinterpretation of negative values. Indeed, the rank-4
approximation obtained by quantizing singular vectors has an error of 45.2 that
is more than 100% worse than that of other techniques. As seen in Figure 6(e),
this method is unable to reveal the underlying pattern structure.

We also compare the performance of PROXIMUS with that of K-means. We
obtain an approximation through K-means clustering by approximating each
row by the centroid of the cluster that it is assigned to. For the matrix of Figure 6,
four-way K-means clustering provides the same approximation as PROXIMUS,
as shown in Figure 6(f). However, for harder instances K-means is not able
to separate clusters with significant overlap, as will be discussed in the next
example.

The approximation provided by the methods of interest on a harder instance
is shown in Figure 7. The 134×64 matrix shown in Figure 7(a) consists of
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Fig. 7. Approximation of a sample binary matrix that contains five row clusters, each contain-

ing a randomly chosen pair of five overlapping uniform patterns. (a) original matrix, (b) rank-6

approximation provided by PROXIMUS, (c) rank-6 approximation provided by SVD, (d) rank-29 ap-

proximation obtained by quantizing SVD approximation, (e) approximation (sum of 6 rank-one

matrices) obtained by quantizing most dominant singular vectors, (f) rank-6 approximation pro-

vided by K-means clustering.
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five groups of rows, each of which contain two patterns randomly drawn from
five uniform overlapping patterns. These patterns are generated as described
above with the same pattern length parameters (l = 12, r = 4) and density
parameters pb = 0.005 for background noise, and pp = 0.8 for patterns. In this
experiment, the number of rows in each group is also chosen randomly from a
normal distribution.

As evident in Figure 7(b), PROXIMUS is able to provide a rank-6 approximation
for this matrix, which reveals the underlying pattern structure well, with an
error of 27.3. The only redundancy in this approximation is the division of
the second row group into two parts, which adds an additional rank for the
approximation. This is caused by the outlying sparsity of some columns in the
fifth pattern. On the other hand, as seen in Figures 7(c) and (d), although SVD
provides a rank-6 approximation with an error of 22.9 and the error of the
quantized SVD approximation is 26.2, which is better than that of PROXIMUS,
this approximation is of rank 29! If we rather quantize the SVD approximation
at the singular vector-level as a sum of six rank-one matrices, the approximation
totally deviates from the original matrix with an error of 68.7, which is shown
in Figure 7(e).

The approximation provided by six-way K-means clustering is shown in
Figure 7(f). The error of this approximation is 34.1. Although this approxi-
mation is able to capture the patterns in the first, second, and fifth row groups,
it clusters the significantly overlapping third and fourth row groups together.
If we try five-way clustering taking into account that there are five implanted
row groups, K-means is still not able to distinguish these two row groups as
separate clusters.

The recursion tree for the decomposition of the matrix in Figure 7 is shown
in Figure 8. This tree provides an illustrative example of the hierarchical na-
ture of PROXIMUS. The figure also illustrates the suboptimality of the heuristic
in face of the NP-hardness of the underlying problem. Observe that the sub-
matrices that are at the right-most two leaves of the tree contain very similar
patterns. However, since they are separated because of the dominance of an-
other pattern in the course of decomposition, they are represented by different
pattern vectors. In general, this problem can be stated as follows. Once rows
are partitioned into two different submatrices based on one pattern vector, they
cannot subsequently come together to be represented by the same pattern vec-
tor. While this problem might be addressed to a certain extent by rollbacks in
recursion, this would require significant compromise in terms of efficiency and
simplicity of the algorithm. In the implementation of PROXIMUS, we attempt to
minimize the effect of this problem at the leaves of the recursion tree. When an
approximation meets the stopping criteria, the pattern vector is compared to
previously recorded pattern vectors. If a close approximation exists, all of the
corresponding rows are candidates for merging into one representative vector.

5.2 Quantitative Evaluation of PROXIMUS

5.2.1 Performance Evaluation Metrics. Nonorthogonal decomposition of a
matrix A provides an approximation to the matrix, namely, Ã = X Y T , where
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Fig. 8. Decomposition of the matrix in Figure 7 via PROXIMUS. A rank-one approximation is com-

puted for each matrix (Ai) at the internal nodes of the tree. Resulting pattern vector ( yi) is shown at

the single child node of each matrix. The left child of a pattern vector is the submatrix that contains

the pattern (Ai1) and the right child is the submatrix that is composed of remaining rows of the

parent matrix (Ai0). The representative vector for the set of rows at each leaf of the PROXIMUS tree

is the one at its parent node.

X and Y are the presence and pattern matrices, respectively. A metric that
immediately follows from the definition of the problem is the Hamming distance
between the given and representative matrices, denoted h(A, Ã). Since this
metric is highly dependent on the size of the given matrix, we rather use the
average Hamming error per row, given by h(A, Ã)/mA. This metric provides an
understanding for the average deviation of all rows from their representative
pattern vectors.

We use two other normalized metrics, namely, precision and recall, which
are used frequently in the data mining community for the evaluation of min-
ing, clustering, classification, and learning algorithms. These two metrics to-
gether provide a two-sided understanding of how well the information in the
given matrix is captured and what extra information is introduced by the ap-
proximation. Precision measures the fraction of ones in the representative
matrix that also exist in the original matrix. It is defined by the following
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Table III. Description of Generated Data in Terms of

Number of Rows, Columns, Patterns, and Nonzeros

Dataset # Rows # Cols # Patterns # Nonzeros

M10K 7513 472 100 95048

L100K 76025 178 20 965210

M100K 75070 852 100 955555

H100K 74696 3185 500 958733

M1M 751357 922 100 9557237

formula:

precision = ||A&Ã||2F
||Ã||2F

= |{i, j : A(i, j ) = Ã(i, j ) = 1}|
|{i, j : Ã(i, j ) = 1}| (8)

Recall, on the other hand, measures the fraction of the ones in the original
matrix that are also captured by the decomposition. It is defined by the following
formula:

recall = ||A&Ã||2F
||A||2F

= |{i, j : A(i, j ) = Ã(i, j ) = 1}|
|{i, j : A(i, j ) = 1}| (9)

To measure the compactness of the approximation provided by PROXIMUS, we
adapt the commonly used compression ratio metric [Cover and Thomas 1991]
to our problem. Considering the number of nonzeros as the matrix size, we
define compression ratio as follows:

compression = NX + NY

NA
= |{i, j : X (i, j ) = 1}| + |{i, j : Y (i, j ) = 1}|

|{i, j : A(i, j ) = 1}| . (10)

Note that one may also consider the number of rows as the matrix size in some
applications.

5.2.2 Description of Input Matrices. The input matrices for this specific
study are generated using the IBM Quest synthetic data generator, which al-
lows us to control the number of patterns in the data as well as the correlations
between them [IBM]. We generate two sets of data, one for varying the num-
ber of rows and the other for varying the number of patterns. In the first set,
the number of patterns is fixed at 100 (medium), and three instances, named
M10K, M100K, and M1M, containing ≈ 10K (low), ≈ 100K (medium), and
≈ 1M (high) rows, respectively, are generated. In the second set, the number of
rows is fixed at ≈ 100K (medium) and three instances, named L100K, M100K,
and H100K, containing 20 (low), 100 (medium), and 500 (high) patterns, re-
spectively, are generated. The average number of nonzeros per row is set to
10. The average correlation between each pair of patterns is set to 0.1, while
the average confidence of a pattern is set to 90%. Table III presents a general
description of the five instances in terms of number of rows, columns, patterns,
and nonzeros.

5.2.3 Performance of PROXIMUS on Different Instances. A summary of the
results obtained from the decomposition of five synthetic matrices is shown
in Table IV. We show results of decomposing the five matrices with both
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Table IV. Performance on PROXIMUS on Five Instances (in terms of runtime, number

of representative vectors, compression ratio, error per-row, precision, and recall)

Obj. Init. Runtime # Appx. Comp. Error % %

Func. Scheme (secs.) Vectors Ratio Per-row Prec. Recall

M10K

Disc. Partition 0.3 1307 0.33 0.18 99.2 99.4

Cont. Partition 0.2 1309 0.33 0.18 99.2 99.3

Disc. Randomrow 0.3 1306 0.33 0.18 99.2 99.4

Cont. Randomrow 0.2 1319 0.33 0.17 99.2 99.5

L100K

Disc. Partition 1.5 771 0.10 0.38 98.7 98.4

Cont. Partition 1.6 772 0.09 0.37 98.7 98.4

Disc. Randomrow 1.0 737 0.09 0.31 98.6 98.9

Cont. Randomrow 1.2 783 0.10 0.39 98.6 98.3

M100K

Disc. Partition 5.0 4208 0.17 0.27 99.0 98.8

Cont. Partition 4.3 4272 0.17 0.30 98.9 98.7

Disc. Randomrow 3.4 4256 0.17 0.25 99.0 99.1

Cont. Randomrow 3.3 4155 0.16 0.29 99.0 98.7

H100K

Disc. Partition 33.6 16717 0.40 0.14 99.2 99.7

Cont. Partition 28.0 16799 0.40 0.14 99.2 99.7

Disc. Randomrow 26.8 16828 0.40 0.14 99.2 99.8

Cont. Randomrow 26.7 16737 0.40 0.14 99.2 99.7

M1M

Disc. Partition 87.8 12218 0.10 0.37 99.0 98.1

Cont. Partition 95.0 12375 0.10 0.40 99.0 97.8

Disc. Randomrow 52.0 11958 0.10 0.33 99.0 98.5

Cont. Randomrow 52.3 12014 0.10 0.37 99.0 98.1

discrete and continuous objective functions for the rank-one approximation
heuristic using two initialization schemes, partition and random-row. In all ex-
periments, the bound on Hamming radius is set to 3. All experiments reported
in this section are performed on a Pentium-IV 3.0 GHz server with 512 MB
RAM.

The columns in Table IV show the time spent in decomposing the matrix in
seconds, compression ratio, number of representative vectors (k), percentage
accuracy, precision, and recall, respectively. As evident in the table, PROXIMUS is
able to provide compression up to a factor of ten (i.e., compression ratio of 0.10)
while maintaining above 98% precision and recall for the hardest instance.
More impressively, the average Hamming error per row is less than 0.4 for all
instances, although the bound on Hamming radius is set to 3.

A comparison of the results on L100K, M100K, and H100K matrices reveals
that the more the number of underlying patterns in the matrix, the more the
number of representative vectors required for decomposition. In other words,
it is possible to provide more compression in less time for instances that have
fewer underlying patterns. Therefore, like any other compression scheme or ma-
trix decomposition, PROXIMUS is also more successful and efficient on instances
with less entropy. Note also that the approximation quality is not significantly
affected by the number of underlying patterns once ε is fixed. Therefore, it is
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Fig. 9. Effects of bound on Hamming radius (ε), initialization scheme and the heuristic objective

function on the performance of PROXIMUS on the M100K matrix. The graphs on first and second rows

show the variance in runtime, compression ratio, and Hamming error per-row, respectively, for ε

ranging from 1 to 10, for each initialization scheme. The results for the discrete and continuous

objective functions are shown on the left and right panels, respectively.

possible to achieve better compression by trading off quality. More strikingly,
our results on the M100K dataset show that the degradation in quality for
better compression is not very significant, namely, it is possible to achieve a
compression ratio of 0.12 for this matrix while keeping the precision and recall
above 90%, as shown in Figures 9 and 10.
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Fig. 10. Effect of bound on Hamming radius (ε), initialization scheme, and the heuristic objective

function on the precision and recall of approximation provided by PROXIMUS. The graphs in first

and second rows show the variance in precision and recall, respectively, for ε ranging from 1 to 10

for each initialization scheme. The results for the discrete and continuous objective functions are

shown in the left and right panels, respectively.

Similar to the number of patterns, once ε is fixed, matrix size also effects
PROXIMUS’s performance in terms of runtime and compression ratio, rather than
quality of approximation. Therefore, much faster decompositions with rela-
tively lower accuracy are possible for large matrices. We discuss the runtime
scalability of PROXIMUS in terms of matrix size and number of patterns in Sec-
tion 5.2.5.

5.2.4 Effect of Various Parameters. The performance of PROXIMUS on the
M100K dataset in terms of runtime and compression ratio, and the quality of
approximation in terms of error per-row, percentage accuracy, precision, and
recall for varying bound on Hamming radius (ε) are shown in Figures 9 and 10,
respectively. In each figure, the results for the discrete and continuous objective
functions are shown on the left and right panels, respectively.

Effect of Bound on Hamming Radius. All experiments in Figures 9 and 10
are performed for bound on Hamming radius ranging from 1 to 10, where ε =
10 provides a pretty loose bound, since the average number of nonzeros in a
row is 10. However, as seen in Figure 10, the precision and recall provided by
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PROXIMUS’ decomposition remains well above 80% even for such a loose bound on
Hamming radius. Furthermore, precision remains above 98% for the discrete
objective function, and recall remains above 98% for random-row and GGG
initialization schemes. This is due to the nature of the algorithm we adopt
in PROXIMUS. Namely, each rank-one approximation provides a fairly accurate
approximation, which ensures that a row that is present in the representative
matrix shares at least half of the nonzeros in the pattern vector, as stated
by Equation (4). This approximation is further improved recursively during
the course of decomposition, with bound on Hamming radius determining the
depth of this recursion. Note also that although the average Hamming error
per-row increases almost quadratically with increasing ε, this is not reflected
in the cumulative accuracy of approximation because even at its highest point
(ε = 10), the average error per-row is about 3, which is only one-third of the
average number of nonzeros per-row.

On the other hand, relaxing the bound on Hamming radius improves com-
pression where the growth in compression ratio with respect to the growth in
ε is sublinear for ε < 5 and superlinear for ε > 5. Similarly, a loose bound
on Hamming radius provides a significantly faster decomposition. Therefore,
since the loss in accuracy for this speedup, and improvement in compression
is relatively less significant, PROXIMUS may be used to obtain fast and compact
approximations with sufficient quality in many applications.

Effect of Initialization Scheme. The behavior of each variable with varying
ε is plotted for all initialization schemes in Figures 9 and 10. The allones and
center initialization schemes are not shown in the table to save space, since
their performance is relatively poor compared to the other schemes for the rea-
sons discussed in Section 4.4.2. An important observation revealed by these
figures is that the choice of initialization scheme affects the runtime signifi-
cantly, while the obtained compression ratio is relatively independent of the
initialization scheme. It is also interesting to note that the recall value of the
decomposition is more dependent on the initialization scheme when the discrete
objective function is used, while precision is more initialization-dependent with
the continuous objective function. More specifically, we can derive the following
conclusions on the performance of each initialization strategy:

—Maximum: The quality of approximation decays significantly for looser
bounds on Hamming radius with this initialization scheme. Moreover, it
provides the slowest decomposition when coupled with continuous objective
function.

—Partition: While being relatively robust to loose bounds on Hamming radius,
it is generally slow, especially with the discrete objective function.

—Greedy Graph Growing (GGG): One of the best initialization schemes in terms
of both runtime performance and approximation quality. It keeps recall above
90% and precision around 99% independent of the value of ε and the objective
function used.

—Neighbor: While being one of the fastest initialization schemes, it is not very
robust for loose bounds on Hamming radius.
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—Random-Row: This scheme is extremely fast compared to other schemes.
Moreover, it provides the best accuracy with the continuous objective function
and is among the best with the discrete objective function. It is also as robust
to loose bounds on Hamming radius as GGG. Therefore, it is the method of
choice for many practical applications.

—Random: This initialization scheme provides the best compression for most
values of ε, although the difference is not very significant. While it maintains
quality for higher ε when used with the discrete objective function, it is does
not couple well with the continuous objective function.

Effect of Objective Function. A comparison of the left and right panels of
Figures 9 and 10 shows that the discrete objective function is better in terms of
runtime, compression ratio, and accuracy. On the other hand, the continuous
objective function provides slightly better quality in approximation for tighter
bounds on Hamming radius. Based on these observations, we can speculate that
the discrete objective function provides better rank-one approximations with
more localized pattern vectors and smaller Hamming radius. On the other hand,
the continuous objective function provides rank-one approximations with more
general pattern vectors present in more rows. Hence, the continuous objective
function is associated with deeper recursion trees, providing slightly better
approximation at the cost of longer running time and less compression.

Another interesting observation is that precision remains around 99% for
any value of ε with the discrete objective function. This is true for all test
matrices. We observe the same pattern when the continuous objective function
is coupled with the greedy graph growing or random-row initialization schemes.
This is because PROXIMUS tends to prune out nonzeros in the matrix that do not
significantly belong to any pattern. These nonzero entries can be considered as
noise, taking into account the fact that the data generator adds some random
noise based on between-pattern correlation and pattern confidence parameters.
Therefore, a decomposition for a higher error value (i.e., smaller recall) may
also be regarded as a noise filtering decomposition rather than a low-quality
decomposition, to a certain extent. This is similar to the application of truncated
SVD in information retrieval.

5.2.5 Runtime Scalability of PROXIMUS. We perform two experiments to il-
lustrate the scalability of PROXIMUS in terms of matrix size and number of pat-
terns. The settings for these experiments are as follows:

—The number of patterns is kept constant at 100. The number of rows ranges
from approximately 10K to 3M. Note that number of nonzeros grows linearly
with number of rows ranging from 100K to 30M, while the number of columns
remains constant at about 1000.

—The number of rows is kept constant at 100K. The number of patterns range
from 20 to 1000. Note that the number of columns grows linearly from 200 to
10K with increasing number of patterns, while number of nonzeros remains
constant at about 1M.
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Fig. 11. Runtime of PROXIMUS with respect to matrix size and number of underlying patterns. On

the left is the log-log plot of number of nonzero entries vs runtime for three values of ε. The dotted

lines show two linear functions of number of nonzeros. Similarly, on the right is the log-log plot

of number of underlying patterns vs runtime in comparison with two dotted linear functions of

number of patterns.

We run PROXIMUS for data instances that correspond to six sample points for each
parameter by setting the initialization scheme to random-row and using the
discrete objective function. We perform experiments for tight (ε = 2), moderate
(ε = 5), and loose (ε = 10) bounds on Hamming radius. Each experiment is
repeated 10 times on a Pentium-IV 3.0 GHz server with 512 MB RAM.

The log-log plots of matrix size versus runtime in seconds are shown on the
left in Figure 11. We also plot two dotted lines that correspond to two linear
functions of matrix size, with slopes 1.0 × 10−6 and 1.0 × 10−5 for reference.
As evident in the figure, the lines for loose and moderate bounds on Hamming
radius are almost parallel to the reference lines, showing that the behavior of
runtime with respect to matrix size is linear. For tighter bounds on Hamming
radius, on the other hand, the line has a larger slope than the reference lines,
showing slight superlinearity, which is expected since the number of represen-
tative patterns increases significantly for tighter bounds on Hamming radius.

The log-log plots of number of underlying patterns versus runtime in seconds
are shown on the right in Figure 11. Similar to the previous case, we plot two
dotted lines that correspond to two linear functions of number of patterns, with
slopes 0.015 and 0.08 for reference. As seen in the figure, the line for ε = 10 is
sublinear with respect to the number of patterns, while the behavior of runtime
is sublinear at the two ends of the sampling range and slightly superlinear at the
middle for the other values of ε. Note that, generally, the number of identified
vectors is slightly superlinear in terms of the number of underlying patterns.

5.3 Application Studies

We present the use of PROXIMUS in two diverse applications with a view to
demonstrating the versatility of the library.

5.3.1 Association Rule Mining. Our first application uses PROXIMUS as a
preprocessing tool for accelerating conventional association rule mining (ARM)
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algorithms. The idea is to first reduce the dataset using PROXIMUS and then
to apply conventional association rule mining algorithms to the reduced data.
In ARM, the input is a set of items and a set of transactions, each of which
is a subset of the global set of items. Association rules relate co-occurrences
of itemsets based on support and confidence metrics. For instance, a rule like
{bread , butter} ⇒ {milk} with 20% support and 90% confidence indicates that
20% of the transactions in the database contain these three items together, and
90% of the transactions that contain bread and butter also contain milk. ARM
aims at finding all association rules that satisfy user-defined thresholds on
support and confidence, which is a computationally challenging problem since
the space of itemsets grows exponentially and the number of transactions tends
to be very large (in the order of millions) in general [Hipp et al. 2000].

Transaction sets are naturally modeled by sparse binary matrices, where
rows correspond to transactions, columns correspond to items, and a one in-
dicates the occurrence of an item in a transaction. Since PROXIMUS returns a
minimal set of vectors that are close to the entire set of rows in the matrix
within a certain Hamming distance, we can use a single pattern vector discov-
ered by PROXIMUS to represent all transactions in which it is present. Associating
each representative transaction (pattern vector) with a weight that corresponds
to the number of transactions that contains this pattern, it is possible to mine
the set of representative transactions using conventional mining algorithms to
speedup the mining process. Since the number of transactions is a major factor
for the runtime performance of mining algorithms, compressing the transac-
tion set is expected to speedup the process significantly [Koyutürk and Grama
2003].

In our experiments, we use an efficient implementation [Borgelt 1996] of
the well-known a-priori algorithm [Agrawal and Srikant 1994] as the bench-
mark algorithm for association rule mining. We mine a benchmark transaction
database named connect obtained from the FIMI workshop data pages.1 This
dataset contains 67558 transactions over 129 items. Decomposing the binary
matrix that corresponds to this dataset using PROXIMUS in 1192 seconds, we
are able to represent this database with only 6703 representative transactions.
Comparison of the performances of the a-priori algorithm on original and rep-
resentative transaction sets in terms of runtime and discovered rules is shown
in Table 5.3.1. In our experiments, we fix the support threshold to 20% and
the confidence threshold varies from between 50% and 90%. For a confidence
threshold of 50%, a-priori is able to discover 3.12 million rules in 4766 seconds
on the original transaction set. On the other hand, the same algorithm discov-
ers 2.93 million rules in only 447 seconds on the representative transaction set,
2.8 million of which are rules that are also discovered on the original transac-
tion set. Hence, PROXIMUS is able to achieve a speedup of about 10, which is
consistent with the compression ratio in terms of number of transactions. Note
that the cost of a single run of a-priori on the original transaction set is about
four times the runtime of PROXIMUS! As meaningful association rules are mined
by repeatedly varying confidence and support values until a suitable rule set is

1http://fimi.cs.helsinki.fi/data/
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Table V. Comparison of the Performance of A-Priori Algorithm on the Connect Dataset and the

Representative Transaction Set (obtained by decomposing the original set using PROXIMUS, in

terms of runtime and discovered rules)

ARM Time # Rules (×106)
Confidence Speed Recall Precision

(%) Orig. (s) Appx. (s) Up Orig. Appx. Common (%) (%)

50 4766 447 10.7 3.12 2.93 2.80 89.8 95.6

70 3988 388 10.3 2.52 2.40 2.25 89.6 94.0

90 3335 333 10.0 1.73 1.79 1.56 90.1 87.1

determined, the speedup provided by PROXIMUS as a preprocessor becomes even
more impressive.

The recall and precision values measuring the quality of approximation are
also presented in the table. Recall is the percentage of rules discovered on
the representative transaction set among all rules discovered on the original
set. Precision, on the other hand, is the percentage of rules discovered on the
original transaction set among all rules discovered on the representative set.
As seen in the table, both precision and recall values are around 90% for all
values of confidence threshold. The performance of PROXIMUS on association rule
mining along with the effects of the properties of the input dataset, initialization
schemes, and bound on Hamming radius are discussed in detail in Koyutürk
and Grama [2003].

Based on these results, we establish PROXIMUS as an effective preprocessor for
data mining, which can be used for compressing large datasets before applying
conventional data mining algorithms. The speed and quality of the approxima-
tion provided by PROXIMUS can be also useful in distributed data mining algo-
rithms, where sites are loosely-coupled, or privacy is an issue [Chi et al. 2004].

5.3.2 Discovery of Regulation Patterns in DNA Microarray Experiments.
We also demonstrate the use of PROXIMUS in the context of microarray data
analysis [Koyutürk et al. 2003]. Our objective in this application is to examine
coregulation (up- and down-regulation) in groups of genes. With this goal, we
convert expression data from a selected microarray experiment for each gene
into a binary vector of length equal to number of samples. Each component of
the vector is assigned a value 0 if expression was down-regulated during the
period and 1 otherwise. Considering the binary regulation vector of each gene
as a row, this gives us a binary regulation matrix for the underlying microar-
ray experiment. We then decompose this matrix using PROXIMUS to determine a
suitable set of representative regulation patterns characterized by pattern vec-
tors along with a partitioning (and assignment) of the genes to these patterns
characterized by presence vectors. Each partition represents a set of genes that
are coregulated to within specified tolerance, which corresponds to the bound
on Hamming radius in the decomposition. This partitioning can then be used
to identify motifs in genes that control regulation.

We apply our method to microarray data from four experiments on yeast
cultures synchronized by the following methods: α-factor arrest (dataset al-
pha), elutriation (dataset elu), and arrest of cdc15/cdc28 (datasets cdc15/cdc28)
temperature-sensitive mutants [Spellman et al. 1998; Cho et al. 1998]. Dataset
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Fig. 12. Selected clusters from datasets CDC28 and CDC15, the representative patterns of these

clusters, and some members of the clusters illustrating excellent coregulation properties. Binary

regulation vectors are shown on the right panel, where dark and white boxes indicate up- and

down-regulation, respectively. Actual expression profiles of the corresponding genes are shown on

the right panel.

alpha corresponds to samples taken at 7-minute intervals for 140 minutes,
dataset cdc15 contains samples taken every 10 minutes for 300 minutes, dataset
cdc28 contains samples taken every 10 minutes for 160 minutes, and dataset
elu contains samples taken every 30 minutes for 330 minutes.

In Figure 12, we select some of the patterns from each dataset and demon-
strate the excellent clustering properties of PROXIMUS. In the figure, the left
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panel shows binary vectors with dark and white boxes indicating up- and down-
regulation, respectively. In the right panel, we display the original gene expres-
sion vectors that correspond to the binary regulation vectors on the left.

In the top panel of Figure 12, we illustrate three patterns from dataset cdc28.
The top pattern in each case is the representative pattern, which is identified
by PROXIMUS as a pattern vector in the decomposition of the binary regulation
matrix. The following five rows correspond to five sample genes from the data,
which are selected from the set of genes that contain this pattern (i.e., the set
of rows that have a one in the corresponding presence vector of this pattern).
The left panel illustrates the pattern in comparison to up- and down-regulation
data (0/1 discretized expression data). As seen in the figure, the first pattern
discovered by PROXIMUS on the cdc28 dataset exactly represents the regulation
characteristics of the five genes whose binary regulation vectors are displayed
under itself. This pattern is present in 322 of the genes, which also contain this
regulation pattern with a tolerance distance of, at most, 3 in terms of Ham-
ming distance to the representative pattern. On the right of each binary vector
is the actual gene expression data for the corresponding gene. Observe that
the five sample genes shown in the figure display exactly the same regulation
characteristics (i.e., their expression profiles in the cdc28 experiment are highly
correlated).

Decomposition of the binary regulation matrix for the cdc28 dataset reveals
that the next pattern in the figure is present in 257 genes. The binary regulation
vectors and expression profiles of five of these genes are also shown in the figure.
As seen in the figure, although the first sample shows a regulation pattern
that is exactly the same as the representative pattern, the second gene has
a regulation pattern that is at Hamming distance 1 from the representative
pattern. However, examination of the actual expression profiles of these two
genes reveals that the general regulation characteristics of these two genes are
highly correlated in the cdc28 experiment.

In general, PROXIMUS is able to discover 13 regulation patterns in the alpha
dataset, 10 in cdc15 dataset, 8 in cdc28 dataset, and 7 in the elu dataset.

6. CONCLUSIONS AND ONGOING WORK

This article presents the design principles, data structures, implementation
details, and use of PROXIMUS, an efficient software tool for error-bounded com-
pression of large, high-dimensional binary attributed datasets. We also present
detailed experimental results examining various performance characteristics
and provide sample applications in diverse areas. PROXIMUS finds applications
in many other areas, including clustering, classification, and dominant and de-
viant pattern detection. Our experiments illustrate that PROXIMUS is scalable to
very large datasets of high-dimensions, making it suitable for a variety of ap-
plications. The data structures and implementation schemes described in this
article can also be used in several applications involving sparse binary datasets,
exploiting the advantages of the sparse and binary nature of such datasets.

PROXIMUS can be further improved by exploring more effective initialization
strategies and refinement heuristics. It can also be generalized to discrete
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datasets that are not necessarily binary. Such datasets appear frequently in
a range of applications, such as image compression and pattern matching.
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